Supporting Information

Manganese-promoted reductive cross-coupling of disulfides

with dialkyl carbonates

Chao-Peng Zhang, Tian-Zhang Wang and Yu-Feng Liang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Email: yfliang@sdu.edu.cn

Table of Contents

1. General remarks	S2
2. General procedure	
3. Characterization data	S3
4. References	S19
5. NMR Spectra	
6. MS Spectra	S68

1. General remarks

¹H NMR, ¹³C NMR data were obtained on AVANCE III Bruker 500 MHz nuclear resonance spectrometers unless otherwise noted. Chemical shifts (in ppm) were referenced to tetramethylsilane (TMS) ($\delta = 0.00$ ppm) in CDCl₃ or dimethyl sulfoxide $(\delta = 2.50 \text{ ppm})$ in DMSO-d₆ as an internal standard. The data of ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multipletand br = broad), coupling constant (J values) in Hz and integration. 13 C NMR spectra were obtained by the same NMR spectrometers and were calibrated with $CDCl_3$ ($\delta =$ 77.0 ppm) or DMSO- d_6 (δ = 39.50 ppm). Flash chromatography was performed using 300-400 mesh silica gel with the indicated eluent according to standard techniques. Carbonate ester was purchased from Energy Chemical or prepared following our previously published procedures.¹ Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) unless otherwise noted. High-resolution mass spectral (HRMS) data were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionization (ESI) mode.

2. General procedure

To a 10 mL Schlenk tube was added sequentially disulfide **2** (0.2 mmol), Mn power (32.9 mg, 0.6 mmol) and LiCl (8.8 mg, 0.2 mmol). After the Schlenk tube was filled with nitrogen, carbonate ester **1** (0.4 mmol) and DMF (0.5 mL) were added via syringe. The resulting mixture was stirred at 100 °C for 12 h under N₂. After the reaction was completed, H₂O (5 mL) was added into the reaction mixture and extracted with ethyl acetate (5 mL x 3). The organic layer was dried, filtered, and concentrated. The residue was purified by column chromatography to afford product **3**.

3. Characterization data

Methyl(phenyl)sulfane (3aa).² The representative procedure was followed using 1,2diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3aa (44.1 mg, 91%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.23 (m, 4H), 7.12 – 7.09 (m, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.8, 128.7, 126.6, 124.9, 15.7.

Methyl(*p*-tolyl)sulfane (3ba).² The representative procedure was followed using 1,2di-*p*-tolyldisulfane (1b) (49.3 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ba (49.7 mg, 90%) as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.0, 134.7, 129.5, 127.3, 20.9, 16.8.

(4-Methoxyphenyl)(methyl)sulfane (3ca).³ The representative procedure was followed using 1,2-bis(4-methoxyphenyl)disulfane (1c) (55.7 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 20 : 1) yielded 3ca (48.1 mg, 78%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, *J* = 10.0 Hz, 2H), 6.78 (d, *J* = 10.0 Hz, 2H), 3.72 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 130.2, 128.7, 114.6, 55.3, 18.2.

(4-Fluorophenyl)(methyl)sulfane (3da).² The representative procedure was followed using 1,2-bis(4-fluorophenyl)disulfane (1d) (50.9 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3da (38.6 mg, 68%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.15 (m, 2H), 6.92 – 6.89 (m, 2H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.1 (d, *J* = 243.7 Hz), 133.2 (d, *J* = 3.8 Hz), 129.2 (d, *J* = 7.5 Hz), 115.8 (d, *J* = 22.5 Hz), 17.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -117.3.

(4-Chlorophenyl)(methyl)sulfane (3ea).² The representative procedure was followed using 1,2-bis(4-chlorophenyl)disulfane (1e) (57.4 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ea (42.3 mg, 67%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 10.0 Hz, 2H), 7.18 (d, *J* = 10.0 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 132.7, 130.9, 128.9, 127.9, 16.1.

(4-Bromophenyl)(methyl)sulfane (3fa).⁴ The representative procedure was followed using 1,2-bis(4-bromophenyl)disulfane (1f) (74.8 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3fa (57.0 mg, 71%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 4.2 Hz, 2H), 7.10 (d, *J* = 4.2 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 131.7, 128.1, 118.6, 15.9.

Methyl(4-nitrophenyl)sulfane (3ga).² The representative procedure was followed using 1,2-bis(4-nitrophenyl)disulfane (1g) (61. 7 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 50 : 1) yielded 3ga (50.1 mg, 74%) as a yellow soild. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 10.0 Hz, 2H), 7.22 (d, J = 10.0 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.8, 144.8, 125.0, 123.9, 14.9.

4-(Methylthio)phenol (3ha).⁵ The representative procedure was followed using 4,4'disulfanediyldiphenol (**1h**) (50.1 mg, 0.2 mmol) and DMC (**2a**) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 1 : 1) yielded **3ha** (40.3 mg, 71%) as a white solid. ¹H NMR (**500** MHz, CDCl₃) δ 7.22 (d, *J* = 10.0 Hz, 2H), 6.78 (d, *J* = 10.0 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (**125** MHz, CDCl₃) δ 154.1, 130.4, 128.8, 116.0, 18.0. Melting point: 85 °C.

(2-Fluorophenyl)(methyl)sulfane (3ia).² The representative procedure was followed using 1,2-bis(2-fluorophenyl)disulfane (1i) (50.9 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ia (40.3 mg, 71%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 6.18 (m, 1H), 7.10 – 7.06 (m, 1H), 7.06 – 7.01 (m, 1H), 7.04 – 7.02 (m, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (d, *J* = 242.5 Hz), 128.8 (d, *J* = 2.5 Hz), 127.3 (d, *J* = 7.5 Hz), 125.4 (d, *J* = 16.2 Hz), 124.4 (d, *J* = 3.8 Hz), 115.3 (d, *J* = 21.2 Hz), 15.6 (d, *J* = 2.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -111.31.

(2-Chlorophenyl)(methyl)sulfane (3ja).² The representative procedure was followed using 1,2-bis(2-chlorophenyl) disulfane (1j) (57.4 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ja (55.0 mg, 87%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.26 (m, 1H), 7.19 – 7.15 (m, 1H), 7.10 – 7.08 (m, 1H), 7.02 – 6.99 (m, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.1, 137.7, 131.8, 129.4, 127.2, 125.5, 15.2.

(2-Bromophenyl)(methyl)sulfane (3ka).⁴ The representative procedure was followed using 1,2-bis(2-bromophenyl)disulfane (1k) (74.8 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ka (49.3 mg, 61%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* =7.5 Hz, 1H), 7.03 (d, *J* =8.0 Hz, 1H), 6.89 (t, *J* =7.5 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.7, 132.7, 127.8, 125.7, 125.5, 121.8, 15.8.

N-[2-(Methylthio)phenyl]benzamide (3la).⁶ The representative procedure was followed using *N*,*N*-[disulfanediylbis(2,1-phenylene)]dibenzamide (1l) (91.3 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 20 : 1) yielded 3la (45.7 mg, 47%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.11 (br, 1H), 8.40 (d, *J* = 10.0 Hz, 2H), 7.84 (d, *J* =

5.0 Hz, 2H), 7.44 – 7.36 (m, 4 H), 7.24 – 7.20 (m, 1 H), 6.99 – 6.96 (m, 1 H), 2.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.9, 136.4, 132.7, 131.0, 129.8, 126.9, 126.7, 125.9, 123.5, 122.3, 118.4, 18.9. HRMS (ESI) m/z ([M+ H]+) Calcd. for C₁₄H₁₃NOS 244.0791, found: 244.0790.

2-(Methylthio)aniline (3ma).⁷ The representative procedure was followed using 2 2,2'disulfanediyldianiline **(1m)** (49.7 mg, 0.2 mmol) and DMC **(2a)** (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 10 : 1) yielded **3ma** (29.5 mg, 53%) as a colorless oil. ¹H NMR **(500 MHz, CDCl3)** δ 7.27 – 7.25 (m, 1H), 7.01 – 6.98 (m, 1H), 6.64 – 6.61 (m, 2H), 4.17 (br, 2H), 2.26 (s, 3H); ¹³C NMR **(125 MHz, CDCl3)** δ 147.1, 133.4, 128.9,120.3, 118.8, 114.9, 17.7. HRMS (ESI) m/z ([M+H]+) Calcd. for C₇H₉NS 140.0529, found: 140.0528.

(2,6-Dimethylphenyl)(methyl)sulfane (3na).² The representative procedure was followed using 1,2-bis(2,6-dimethylphenyl)disulfane (1n) (54.9 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3na (38.3 mg, 63%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.09 (s, 2H), 2.55 (s, 6H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.7, 135.2, 128.1, 128.0.

(2,4-Dimethylphenyl)(methyl)sulfane (30a).² The representative procedure was followed using 1,2-bis(2,4-dimethylphenyl)disulfane (10) (54.9 mg, 0.2 mmol) and

DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **30a** (45.0 mg, 74%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, J=10.0 Hz, 1H), 6.91 (d, J=10.0 Hz, 2H), 2.35 (s, 3H), 2.44 (s, 3H) 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.2, 134.7, 133.9, 130.8, 127.2, 125.8, 20.8, 20.0, 15.9.

3-Chloro-4-(methylthio)aniline (3pa).⁸ The representative procedure was followed using 4,4'-disulfanediylbis(3-chloroaniline) **(1p)** (63.5 mg, 0.2 mmol) and DMC **(2a)** (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 10 : 1) yielded **3pa** (49.1 mg, 71%) as a brown solid. ¹H NMR **(500 MHz, CDCl3)** δ 7.16 (d, *J* = 8.0 Hz, 1H), 6.59 – 6.56 (m, 2H), 4.25 (br, 2H), 2.21 (s, 3H); ¹³C NMR **(125 MHz, CDCl3)** δ 148.1, 134.6, 134.5, 118.5, 118.4, 114.3, 17.8. HRMS (ESI) m/z ([M+H]+) Calcd. for C₇H₈ClNS 174.0139, found: 174.0138. Melting point: 74 °C

(3,5-Difluorophenyl)(methyl)sulfane (3qa).² The representative procedure was followed using 1,2-bis(3,5-difluorophenyl)disulfane (1q) (58.1 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3qa (44.2 mg, 69%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.75 – 6.72 (m, 2H), 6.58 – 6.54 (m, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.1 (dd, *J* = 261.3, 13.8 Hz), 143.0, 108.6 (dd, *J* = 21.3, 7.5 Hz), 100.3 (dd, *J* = 25.5, 7.0 Hz), 15.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -109.72.

2-(Methylthio)pyridine (3ra).³ The representative procedure was followed using 1,2-

di(pyridin-2-yl)disulfane (1r) (44.1 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 20 : 1) yielded 3ra (20.0 mg, 40%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.36 – 8.35 (m, 1H), 7.41 – 7.37 (m, 1H), 7.10 – 7.08 (m, 1H), 6.89 – 6.87 (m, 1H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 149.4, 135.7, 121.4, 119.0, 13.2.

Methyl(naphthalen-2-yl)sulfane (3sa).² The representative procedure was followed using 1,2-di(naphthalen-2-yl)disulfane (1s) (63.7 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3sa (59.2 mg, 85%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.75 (m, 1H), 7.72 – 7.70 (m, 2H), 7.55 (s, 1H), 7.46 – 7.43 (m, 1H), 7.40 – 7.35 (m, 2H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.1, 133.9, 131.3, 128.2, 127.8, 126.8, 126.6, 125.7, 125.3, 123.4, 15.8. Melting point: 62 °C.

Tert-Butyl(methyl)sulfane (3ta).⁹ The representative procedure was followed using 1,2-di-*tert*-butyldisulfane (1t) (35.6 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ta (32.0 mg, 77%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 2.05 (s, 3H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 40.6, 30.1, 11.3.

3-(Methylthio)propan-1-ol (3ua).¹⁰ The representative procedure was followed using 3,3'-disulfanediylbis(propan-1-ol) **(1u)** (36.4 mg, 0.2 mmol) and DMC **(2a)** (36.0 mg,

0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ua** (23.4 mg, 55%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 3.75 – 3.72 (m, 2H), 2.63 – 2.60 (m, 2H), 3.52 – 2.50 (br, 1H), 2.12 (s, 3H), 1.88 – 1.83 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 61.4, 31.3, 30.8, 15.3.

3-(Methylthio)propan-1-amine (3va).¹¹ The representative procedure was followed using 3,3'-disulfanediylbis(propan-1-amine) (1v) (36.2 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (petroleum ether : ethyl acetate = 10 : 1) yielded 3va (26.4 mg, 66%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 2.74 – 2.71 (m, 2H), 2.50 – 2.46 (m, 2H), 2.03 (s, 3H), 1.70 – 1.65 (m, 2H), 1.19 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 40.90, 32.61, 31.43, 15.3. HRMS (ESI) m/z ([M+H]+) Calcd. for C₄H₁₁NS 106.0685, found: 106.0684.

2-(Methylthio)acetic acid (3wa).¹² The representative procedure was followed using 2,2'-disulfanediyldiacetic acid (1w) (36.4 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (DCM : MeOH = 5 : 1) yielded 3wa (18.2 mg, 43%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 10.75 (br, 1H), 3.20 (s, 2H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 35.3, 16.1.

Methyl 3-(methylthio)propanoate (3xa).¹³ The representative procedure was followed using dimethyl 3,3'-disulfanediyldipropionate (1x) (47.6 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane: ethyl acetate = 20 : 1) yielded 3xa (38.1 mg, 43%) as a colorless oil. ¹H NMR (500 MHz,

CDCl₃) δ 3.70 (s, 3H), 2.79 – 2.76 (m, 2H), 2.65 – 2.62 (m, 2H), 2.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 51.6, 34.1, 28.9, 15.3.

Decyl(methyl)sulfane (3ya).¹⁴ The representative procedure was followed using 1,2didecyldisulfane (**1y**) (69.3 mg, 0.2 mmol) and DMC (**2a**) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ya** (55.0 mg, 79%) as a colorless oil. ¹H NMR (**500 MHz, CDCl3**) δ 2.49 (t, *J* = 7.5 Hz, 2H), 2.10 (s, 3H),1.62 – 1.56 (m, 2H), 1.31 – 1.26 (m, 14H), 0.89 – 0.87 (m, 3H); ¹³C NMR (**125 MHz, CDCl3**) δ 34.3, 31.2, 29.6, 29.5, 29.3, 29.2, 29.1, 28.8, 22.7, 15.5, 14.1.

Benzyl(methyl)sulfane (3za).¹⁵ The representative procedure was followed using 1,2dibenzyldisulfane (1z) (49.3 mg, 0.2 mmol) and DMC (2a) (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3za** (44.7 mg, 81%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.22 (m, 4H), 7.28 – 7.16 (m, 1H), 3.06 (s, 2H), 1.92 (s, 3H); ¹³CNMR (125 MHz, CDCl₃) δ 138.2, 128.8, 128.4, 126.9, 38.3, 14.9.

Methyl(phenyl)selane (3a'a).¹⁶ The representative procedure was followed using 1,2diphenyldiselane **(1a')** (30.8 mg, 0.2 mmol) and DMC **(2a)** (36.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3a'a** (62.4 mg, 51%) as a colorless oil. ¹H NMR **(500 MHz, CDCl3)** δ 8.38 – 8.36 (m, 1H), 7.42 – 7.39 (m, 1H), 7.12 – 7.10 (m, 1H), 6.91 – 6.89 (m, 1H), 2.50 (s, 3H); ¹³C NMR **(125 MHz, CDCl3)** δ 149.4, 135.7, 121.5, 119.1, 13.2.

Ethyl(phenyl)sulfane (3ab).¹⁷ The representative procedure was followed using 1,2diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and diethyl carbonate (2b) (47.3 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ab (37.5 mg, 68%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.30 (m, 2H), 7.27 – 7.24 (m, 2H), 7.16 – 7.13 (m, 1H), 2.92 (q, *J* =7.5 Hz, 2H), 1.29 (t, *J* =7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.6, 128.9, 128.7, 125.6, 27.5, 14.3.

Butyl(phenyl)sulfane (3ac).¹⁸ The representative procedure was followed using 1,2diphenyldisulfane **(1a)** (43.7 mg, 0.2 mmol) and dibutyl carbonate **(2c)** (69.7 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ac** (39.8 mg, 60%) as a colorless oil. ¹H NMR **(500 MHz, CDCl3)** δ 7.26 – 7.24(m, 2H), 7.21 – 7.17(m, 2H), 7.10 – 7.07(m, 1H), 2.47(t, *J* = 7.5 Hz, 2H), 1.58 – 1.53 (m, 2H), 1.40 – 1.35 (m, 2H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR **(125 MHz, CDCl3)** δ 137.0, 128.8, 125.6, 33.2, 31.2, 21.9, 13.6.

Benzyl(methyl)sulfane (3ad).¹⁹ The representative procedure was followed using 1,2diphenyldisulfane **(1a)** (43.7 mg, 0.2 mmol) and dipentyl carbonate **(2d)** (80.9 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ad** (51.1 mg, 71%) as a colorless oil. ¹H NMR **(500 MHz, CDCl3)** δ 7.25 – 7.17 (m, 4H), 7.09-7.06 (m, 1H), 2.84 (t, *J* = 7.5 Hz, 2H), 1.61 – 1.55 (m, 2H), 1.36 – 1.23 (m, 4H), 0.82 (t, *J* = 7.5 Hz, 3H); ¹³C NMR **(125 MHz, CDCl3)** δ 137.0, 128.8, 125.6, 33.5, 31.0, 28.8, 22.2, 13.9.

Benzyl(methyl)sulfane (3ae).¹⁴ The representative procedure was followed using 1,2diphenyldisulfane **(1a)** (43.7 mg, 0.2 mmol) and dimethyl carbonate **(2e)** (114.6 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ae** (53.3 mg, 60%) as a colorless oil. ¹H NMR (**500 MHz, CDCl**₃) δ 7.25 – 7.23 (m, 2H), 7.21-7.17 (m, 2H), 7.09 – 7.06 (m, 1H), 2.83 (t, *J* = 7.5 Hz, 2H), 1.60 – 1.54 (m, 2H), 1.35 – 1.32 (m, 2H), 1.20 – 1.18 (m, 8H), 0.80 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.0, 128.8, 125.6, 33.5, 31.8, 29.2, 29.1, 28.8, 22.6, 14.1.

Benzyl(methyl)sulfane (3af).²⁰ The representative procedure was followed using 1,2diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and dibenzyl carbonate (2f) (96.9 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3af** (57.6 mg, 72%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.18 (m, 9H), 7.13 – 7.11 (m, 1H), 4.0 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 136.3, 129.6, 128.7, 128.71, 128.70, 128.4, 127.0, 126.2, 38.9. Melting point: 42 °C.

Benzyl(methyl)sulfane (3ag).²¹ The representative procedure was followed using 1,2di-p-tolyldisulfane (1a) (49.3 mg, 0.2 mmol) and dimethyl carbonate (2g) (56.9 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ag** (35.4 mg, 54%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.82 – 5.73 (m, 1H), 5.01 – 4.94 (m, 2H), 3.40 (d, *J* = 7.0 Hz, 2H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.3, 133.8, 132.0, 130.1, 129.7, 129.5, 128.5, 117.3, 37.8, 20.9.

2-(Phenylthio)ethan-1-ol (3ah).²² The representative procedure was followed using 1,2-diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and bis(2-hydroxyethyl) carbonate (2h) (60.2 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane: ethyl acetate = 4 : 1) yielded **3ah** (37.59 mg, 61%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 11.5 Hz, 2H), 7.17 (t, J = 7.5 Hz, 2H), 7.09 (t, J = 7.5 Hz, 2H), 3.61 (t, J = 6.5 Hz, 2H), 2.97 (t, J = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 134.9, 129.7, 128.9, 126.3, 60.2, 36.7.

(4-Chlorobenzyl)(phenyl)sulfane (3ai).²³ The representative procedure was followed using 1,2-diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and bis(4-chlorobenzyl) carbonate (2i) (124.0 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ai (62.79 mg, 61%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.19 – 7.12 (m, 6H), 7.09 – 7.07 (m, 3H), 3.94 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.1, 135.6, 132.8, 130.1, 130.0, 128.8, 128.5, 126.6, 38.3.

(4-Methoxybenzyl)(phenyl)sulfane (3aj).²⁴ The representative procedure was followed using 1,2-diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and bis(4-methoxybenzyl) carbonate (2j) (120.8 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane: ethyl acetate = 20 : 1) yielded 3aj (58.88 mg, 64%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 7.5 Hz, 2H), 7.17 – 7.06 (m, 5H), 3.98 (s, 2H), 3.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157, 136.5, 129.9,

129.6, 129.3, 128.7, 126.2, 113.8, 55.2, 38.3.

Hex-5-en-1-yl(phenyl)sulfane (3ak).²⁴ The representative procedure was followed using 1,2-diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and di(hex-5-en-1-yl) carbonate (2k) (90.5 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded 3ak (27.67 mg, 36%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.18 (m, 4H), 7.11 – 7.07 (m, 1H), 5.77 – 5.67 (m, 1H), 4.96 – 4.86 (m, 2H), 2.85 (t, *J* = 9.0 Hz, 2H), 2.00 (q, *J* = 9.0 Hz, 2H), 1.64 – 1.56 (m, 2H), 1.49 – 1.44 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 136.9, 128.9, 128.8, 125.7, 114.7, 33.5, 33.2, 28.6, 28.0.

2-[2-(Phenylthio)ethyl]thiophene (3al). The representative procedure was followed using 1,2-diphenyldisulfane **(1a)** (43.7 mg, 0.2 mmol) and bis(2-(thiophen-2-yl)ethyl) carbonate **(2l)** (112.8 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane) yielded **3al** (29.03 mg, 33%) as a colorless oil. ¹H NMR (**500** MHz, CDCl₃) δ 7.30 (d, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 7.14 (d, J = 7.5 Hz, 1H),7.08 (d, J = 5.0 Hz, 1H), 6.87 – 6.85 (m, 1H), 6.77(d, J = 5.0 Hz, 1H), 3.13 (t, J = 7.0 Hz, 2H), 3.06 (t, J = 7.0 Hz, 2H); ¹³C NMR (**125** MHz, CDCl₃) δ 142.6, 129.6, 129.0, 126.8, 126.2, 125.0, 123.7, 35.4, 29.9.

2-[2-(Phenylthio)ethyl]-1H-indole (3am). The representative procedure was followed using 1,2-diphenyldisulfane **(1a)** (43.7 mg, 0.2 mmol) and bis(2-(1H-indol-3-yl)ethyl) carbonate **(2m)** (139.3 mg, 0.4 mmol). Isolation by column chromatography (*n*-hexane: ethyl acetate = 4 : 1) yielded **3am** (43.53 mg, 43%) as a colorless oil. ¹H NMR (500

MHz, CDCl₃) δ 7.83 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H),7.24 – 7.19 (m, 2H), 7.14 – 7.08 (m, 2H), 7.05 – 7.02 (m, 1H), 6.92(s, 1H), 3.17 (t, J = 8.5 Hz, 2H), 3.01 (t, J = 8.5 Hz, 2H); ¹³C **NMR (125 MHz, CDCl₃)** δ 136.6, 136.2, 129.0, 128.9, 127.1, 125.8, 122.1, 121.7, 119.4, 118.6, 114.6, 111.2, 34.2, 25.3. HRMS (ESI) m/z ([M+H]+) Calcd. for C₁₆H₁₅NS 254.0998, found: 254.0999.

Isopropyl(phenyl)sulfane (3an).²⁵ The representative procedure was followed using 1,2-diphenyldisulfane (1a) (43.7 mg, 0.2 mmol) and di-isopropyl carbonate (2h) (58.4 mg, 0.4 mmol) at 180 °C. Isolation by column chromatography (*n*-hexane) yielded **3an** (38.3 mg, 63%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.24 – 7.21 (m, 2H), 7.17 – 7.14 (m, 1H), 3.33 – 3.28 (m, H), 1.22 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 135.5, 131.9, 128.8, 126.7, 38.2, 23.1.

To a 10 mL Schlenk tube was added sequentially **3aa** (0.2 mmol) and DCM (0.4 mL) via syringe. Then *m*-CPBA (41.4 mg, 0.24 mmol, 1.2 equiv) was added. The resulting mixture was stirred at room temperature for 3 h. After the reaction was completed, the reaction was quenched with NaOH (1.0 M, 2.0 mL) and the crude mixture was extracted with DCM. The organic layer was dried, filtered, and concentrated. The residue was purified the residue was purified by column chromatography to afford product **4** as a colorless oil.²⁵ ¹H NMR (**500** MHz, CDCl₃) δ 7.58 – 7.56 (m, 2H), 7.47 – 7.42 (m, 3H), 2.64 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 130.9, 129.2, 123.4, 43.8.²⁷

To a 10 mL Schlenk tube was added sequentially **3aa** (0.2 mmol) and DCM (0.4 mL) via syringe. Then *m*-CPBA (76 mg, 0.44 mmol, 2.2 equiv.) was added. The resulting mixture was stirred at room temperature for 3 h. After the reaction was completed, the reaction was quenched with NaOH (1.0 M, 2.0 mL) and crude mixture was extracted with DCM. The organic layer was dried, filtered, and concentrated. The residue was purified by column chromatography to afford product **5** as a colorless oil.²⁶ ¹H NMR (**500 MHz, CDCl₃**) δ 7.87 – 7.85 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.50 – 7.47 (m, 2H), 2.97 (s, 3H); ¹³C NMR (**125 MHz, CDCl₃**) δ 140.4, 133.6, 129.2, 127.1, 44.3.

To a 10 mL Schlenk tube was added **3aa** (0.2 mmol) and MeOH (0.4 mL) via syringe. Then (NH₄)₂CO₃ (28.8mg, 0.3 mmol, 1.5 equiv) was added, followed by the PhI(OAc)₂ (148.1 mg, 0.46 mmol, 2.3 equiv) in one portion. The resulting mixture was stirred at room temperature for 0.5 h. After the reaction was completed, the solvent was removed under reduced pressure. Then, H₂O (5 mL) was added into the reaction mixture and extracted with ethyl acetate (5 mL x 3). The organic layer was dried, filtered, and concentrated. The residue was purified by column chromatography to afford product **6** as a colorless oil.²⁵ **1H NMR (500 MHz, CDCl₃)** δ 7.93 – 7.89 (m, 2H), 7.53 – 7.43 (m, 3H), 3.01 – 2.99 (s, 3H), 2.78 (br, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.1, 132.7, 128.9, 127.3, 45.9.

To a 10 mL Schlenk tube was added sequentially **3aa** (0.2 mmol) and MeOH (0.4 mL) via syringe. Then H₂NCN (11.0 mg, 0.26 mmol, 1.3 equiv) was added, followed by the 'BuOK (27 mg, 0.24 mmol, 1.2 equiv) in one portion. Subsequently NBS (53.4 mg, 1.5 equiv) was added. After the reaction was completed, the solvent was removed under reduced pressure. Then saturated aqueous Na₂S₂O₃ was added. The crude mixture was extracted with DCM. The organic layer was dried, filtered, and concentrated. The residue was purified by column chromatography to afford product **7** as a colorless oil.²⁸ ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.71 (m, 2H), 7.56 – 7.52 (m, 3H), 2.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 132.8, 130.0, 125.6, 120.3, 36.3.

To a 10 mL Schlenk tube was added sequentially 3a'a (0.2 mmol) and DCM (0.4 mL) via syringe. Then m-CPBA (76 mg, 0.44 mmol, 2.2 equiv.) was added. The resulting mixture was stirred at room temperature for 3 h. After the reaction was completed, the reaction was quenched with NaOH (1.0 M, 2.0 mL) and crude mixture was extracted with DCM. The organic layer was dried, filtered, and concentrated. The residue purified by column chromatography was to afford product (methylselenonyl)benzene as a colorless oil.²⁹ ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.67 – 7.58 (m, 3H), 3.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.5, 134.4, 130.3, 126.5, 44.3.

4. References

- [1] S. J. Kempel, T.-W. Hsu, J. L. Nicholson and Q. Michaudel, J. Am. Chem. Soc., 2023, 145, 12459–12464.
- [2] R.-G. Miao, X. Qi and X.-F. Wu, Eur. J. Org. Chem., 2021, 37, 5219-5221.
- [3] X. Wu and Y. Wang, Tetrahedron Letters., 2018, 59, 1240–1243.
- [4] H.-L. Li, Y. Kuninobu and M. Kanai, Angew. Chem., Int. Ed., 2017, 56, 1495–1499.
- [5] R. J. K. Taylor, W. P. Unsworth and J. A. Rossi-Ashton, ACS Catal., 2020, 10, 5814–5820.
- [6] M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson and F. Glorius, Angew. Chem., Int. Ed., 2017, 56, 902–906.
- [7] H. Ishikawa, N. Nakatani, S. Yamaguchi, T. Mizugaki and T. Mitsudome, *ACS Catal.*, 2023, 13, 5744–5751.
- [8] J. Spencer, R. P. Rathnam, H. Patel and N. Anjum, Tetrahedron, 2008, 64, 10195–10200.
- [9] S. Enthaler, Catal. Sci. Technol., 2011, 1, 104–110.
- [10] M. J. Burk, A. Gerlach, and D. Semmeril, J. Org. Chem., 2000, 65, 8933-8939.
- [11] S. Barata-Vallejo, C. Ferreri, A. Postigo and C. Chatgilialoglu, *Chem. Res. Toxicol.*, 2010,23, 258–263.
- [12] Q. Liang, J. Zhang, W. Quan, Y. Sun, X. She and X. Pan, J. Org. Chem., 2007, 72, 2694–2697.
- [13] I. Burkhardt, L. Lauterbach, N. L. Brockb and J. S. Dickschat, *Org. Biomol. Chem.*, 2017, 15, 4432–4439.
- [14] S. K. Kristensen, S. L. R. Laursen, E. Taarning and T. Skrydstrup, *Angew. Chem., Int. Ed.*, 2018, 57, 13887–13891.
- [15] A. Toutchkine, D. Aebisher and E. L. Clennan, J. Am. Chem. Soc., 2001, 123, 4966–4973.
- [16] R. J. Cohen, D. L. Fox and R. N. Salvatore, J. Org. Chem., 2004, 69, 4265-4268.
- [17] S. Anselmi, S. Liu, S.-H. Kim, S. M.Barry, T. S. Moody and D. Castagnolo, Org. Biomol. Chem., 2021, 19, 156–161.
- [18] S. Vijaikumar and K. Pitchumani, J. Mol. Catal. A-Chem., 2004, 217, 117-120.
- [19] V. K. Akkilagunta and R. R. Kakulapati, J. Org. Chem., 2011, 76, 6819-682.
- [20] T. Liu, R. Qiu, L. Zhu, S.-F. Yin, C.-T. Au and N. Kambe, Chem. Asian J., 2018, 13, 3833-

3837.

- [21] O. G. Manchenao, O. Bistri and C. Bolm, Org. Lett., 2007, 9, 3809-3811.
- [22] J. Cheng, J. Wu and S. Cao, Tetrahedron Letters, 2011, 52, 3481-3484.
- [23] I. Sorribes and A. Corma, Chem. Sci., 2019, 10, 3130–3142.
- [24] Y. Fang, T. Rogge, L. Ackermann, S.-Y Wang and S.-J. Ji, Nat. Commun., 2018, 9, 2240.
- [25] N Kennedy, P. Liu and T. Cohen, Angew. Chem., Int. Ed., 2016, 55, 383-386.
- [26] P. Pei, M. Zhao, D. Lin, Z. Dong, L. Song and L.-A. Chen, *Angew. Chem., Int. Ed.*, 2023, 62, e202305510.
- [27] J. A. Johnson, X. Zhang, T. C. Reeson, Y.-S. Chen and J. Zhang, J. Am. Chem. Soc., 2014, 136, 15881–15884.
- [28] Y. Xie, B. Zhou, S. Zhou, S. Zhou, W. Wei, J. Liu, Y. Zhan, D. Cheng, M. Chen, Y. Li, B.
- Wang, X.-S. Xue and Z. Li, ChemistrySelect, 2017, 2, 1620-1624.
- [29] D. Antoniak and M.Barbasiewicz, Org. Lett., 2019, 21, 9320-9325.

5. NMR Spectra

100 90 f1 (ppm)

S24

77.25
77.00
76.75

- 15.86

3fa ¹³C NMR, 125 MHz CDCl₃

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

6. MS Spectra

S72

S74

S75

