Artificial nucleotide codons for enzymatic DNA synthesis

Nazarii Sabat,^a Andreas Stämpfli,^b Marie Flamme,^a Steven Hanlon,^c Serena Bisagni,^c Filippo Sladojevich,^b Kurt Püntener^c and Marcel Hollenstein^{a*}

^a Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France

^b Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland

^c Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland

* Corresponding Author: marcel.hollenstein@pasteur.fr

Contents

. Materials and methods	2
. Experimental section	3
2.1 Synthesis of trinucleotide triphosphates. General procedure	. 3
2.2 Copies of NMR Spectra	. 8
2.3 Copies of HRMS Spectra	11
. Enzymatic reactions	14
3.1 Template-independent DNA extension reactions (TdT, PUP)	14
3.2 Template-dependent PEX reactions	15
3.3 Evaluation of stability of trinucleotide triphosphate dT_3TP 4c	19
. LCMS analyses of enzymatic reactions	23

1. Materials and methods

All reactions were performed under argon in flame-dried glassware. Anhydrous solvents and reagents for reactions were purchased from Sigma Aldrich and Alfa Aesar. Thymidine on solid support (5'-O-DMT-thymidine-3'-Icaa-CPG) was ordered from Biosynth. Thymidine phosphoramidite was purchased from ChemGenes and LNA-T phosphoramidite was obtained from Roche. NMR spectra were recorded on a Bruker Avance 500 spectrometer (500.1 MHz for ¹H, 125.8 MHz for ¹³C, and 202.5 MHz for ³¹P), and all spectra were referenced to the signals of the corresponding solvent. Chemical shifts are given in ppm (δ scale) and coupling constants (J) in Hz. The NMR signals were assigned using a combination of ¹H and ³¹P experiments. High-resolution electrospray ionization (ESI) mass spectra (MS, m/z) were recorded on a Waters Q-Tof Micro MS in the positive-ion electrospray ionization (ESI+) mode. Solutions were prepared using 1:1 MeCN/H₂O containing 0.1% formic acid or MeOH/water containing 10 mM ammonium acetate in the case of sensitive compounds. HPLC purification was performed using an Äkta[™] pure system (GE Healthcare) equipped with Thermo Scientific[™] DNAPac[™] PA100 preparative ion exchange column (13 µm, 250 x 22.0 mm). Oligonucleotides were purchased from Microsynth or Integrated DNA Technologies (IDT) companies. All the DNA and RNA polymerases (TdT, PUP, Hemo KlenTag, Tag, Bst 2.0, Sulfolobus DNA Polymerase IV (Dpo4), Vent (exo), Deep Vent (exo), Klenow (exo), were purchased from New England Biolabs as well as the natural dNTPs. Acrylamide/bisacrylamide (29:1, 40%) was obtained from Fisher Scientific. Visualization of PAGE gels was performed by fluorescence imaging using Amersham Typhoon phosphorimager with the ImageQuantTL software (v.10.2) (both from Cytiva). The Amicon centrifuge filters (10 kDa) were purchased from Sigma Aldrich. Chromatographic separations for LCMS experiments were performed on a Thermo Scientific[™] Vanquish[™] Flex Binary UHPLC system (Thermo Fisher Scientific, Reinach, Switzerland). The column used for all separations was a Waters Aguity Premier BEH C18 Peptide 2.1*50mm 1.7µm 300A (Waters (CH) AG, Baden-Dättwil, Switzerland).

2. Experimental section.

2.1 Synthesis of trinucleotide triphosphates. General procedure.

5'-DMTr-protected thymidine on solid support **1** (1067.5 mg, 0.05 mmol) was loaded on the short column attached to the collecting waste flask under argon. All reagent solutions were flushed through the column by using controlled vacuum under argon flow (see Figure SI1). The synthesis started with the preparation of trinucleotide 5'-d(TTT)-3' **3a**, followed by triphosphorylation, and finished with simultaneous global deprotection and solid support removal (see Figure 2).

Prior to the synthetic sequence, all of the following reagent solutions, as well as solvents, were prepared and kept dried under argon and molecular sieves:

Deblocking solution (1X): TFA 3% (0.3 mL TFA in 9.7 ml MeCN);

Coupling solution (1X): Phosphoramidite reagent 100 mM (0.5 mmol (10 equiv.) in 5 mL MeCN);

Coupling activator solution (1X): 5-(Ethylthio)-1H-tetrazole (ETT), 250 mM (0.5 mmol (10 equiv.) in 2 mL MeCN);

Oxidation solution (1X): I₂ (10 equiv.) 127 mg in 5 mL THF/Py/H₂O (7:2:1);

Sulfurization solution (1X): Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide) (10 equiv.) 100 mg in 5 mL of Py;

Monophosphorylation solution: 2-Chloro-1,3,2-benzodioxaphosphorin-4-one (10 equiv.) 101 mg in 5 mL MeCN;

Triphosphorylation solution: Tributylammonium pyrophosphate (10 equiv.) 274 mg in 3 mL of Bu₃N/DMF (1:2).

The synthetic sequence (Figure 2) was performed as follows:

- 1. Thymidine on solid support 1 (0.05 mmol) was washed with 10-20 mL of MeCN.
- 2. 1st Deblocking step to remove DMTr group. The column was slowly (10 min) flushed with 3% TFA solution in MeCN (10 mL). Then carefully washed with 10-20 mL of MeCN.
- 1st Coupling step. Nucleoside phosphoramidite reagent (0.5 mmol in 5 mL of MeCN, 100 mM solution) was mixed with ETT activator (0.5 mmol in 2 mL of MeCN, 250 mM solution) under argon and subsequently added to the column. The column was slowly (10 min) flushed with this solution. Then washed with 10-20 mL of MeCN.
- Oxidation or Sulfurization. The column was flushed with the oxidation solution (5 mL of I₂ solution in THF/Py/H₂O (7:2:1) or sulfurization solution (5 mL of Beaucage reagent solution in Py). Then washed with 10-20 mL of MeCN.
- 5. 2nd Deblocking step to remove DMTr group. The column was slowly (10 min) flushed with 3% TFA solution in MeCN (10 mL). Then carefully washed with 10-20 mL of MeCN.
- 2nd Coupling step. Nucleoside phosphoramidite reagent (0.5 mmol in 5 mL of MeCN, 100 mM solution) was mixed with ETT activator (0.5 mmol in 2 mL of MeCN, 250 mM solution) under argon and subsequently added to the column. The column was slowly (10 min) flushed over with this solution. Then washed with 10-20 mL of MeCN.
- Oxidation or Sulfurization. The column was flushed with the oxidation solution (5 mL of I₂ solution in THF/Py/H₂O (7:2:1) or sulfurization solution (5 mL of Beaucage reagent solution in Py). Then washed with 10-20 mL of MeCN.
- 3rd Deblocking step to remove DMTr group. The column was slowly (10 min) flushed with 3% TFA solution in MeCN (10 mL). Then carefully washed with 10-20 mL of MeCN. *Monophosporylation* step. The column was slowly (10 min) flushed with 5 mL of Py/MeCN (1:5). Then, slowly (10 min) flushed with *monophosphorylation solution* (2-Chloro-1,3,2-benzodioxaphosphorin-4-one in 5 mL MeCN);

Triphosphorylation step. The column was washed with 5 mL of DMF. Then slowly (10 min) flushed with *triphosphorylation solution* (Tributylammonium pyrophosphate in 3 mL of Bu₃N/DMF (1:2)). Then washed with 10-20 mL of MeCN.

- 9. Oxidation. The column was flushed with the oxidation solution (5 mL of I_2 solution in THF/Py/H₂O (7:2:1). Then washed with 10-20 mL of MeCN.
- 10. Global deprotection and solid support removal. The trinucleotide triphosphate on solid support was removed from the column and stirred for 2 hours in the mixture of aqueous NH₄OH/MeNH₂ (10 mL, 1:1). The mixture was filtered on sintered glass filters and refiltered via a syringe filter, then concentrated under vacuum.
- 11. HPLC Purification. The crude was re-dissolved in water (2 mL) and purified by HPLC using a preparative ion exchange column (Buffer A: 10 mM TEAB to Buffer B: 1 M TEAB). Finally, the collected aqueous solution was freeze-dried, yielding the corresponding trinucleotide triphosphate as yellowish solids.

Solid-phase synthesis of trimer triphosphates (dT₃TPs)

Figure 2. Solid-phase synthesis of trimer triphosphates (dT₃TPs).

Trinucleotide-5'-O-triphosphate 4a

Trinucleotide triphosphate **4a** (10.4 mg, 10 μ mol, 19%) was prepared according to the general procedure. ¹H NMR (500 MHz, D₂O) 7.57 (d, *J* = 1.0 Hz, 1H), 7.55 (d, *J* = 1.5 Hz, 1H), 7.51 (d, *J* = 1.0 Hz, 1H), 6.19 - 6.12 (m, 3H), 4.27 - 4.24 (m, 2H), 4.19 - 4.16 (m, 2H), 4.07 - 4.05 (m, 2H), 4.02 - 3.94 (m, 6H), 2.38 - 2.36 (m, 3H), 2.23 - 2.20 (m, 3H), 1.78 (d, *J* = 1.2 Hz, 3H), 1.76 (d, *J* = 1.1 Hz, 3H), 1.74 (d, *J* = 1.1 Hz, 3H). ³¹P NMR (203 MHz, D₂O) δ -1.23 (s,1P); -

1.36 (s, 1P), -6.28 (d, J = 18.5 Hz, 1P), -11.57 (d, J = 19.1 Hz, 1P), -22.19 (m, 1P). HRMS calcd. for $C_{30}H_{41}N_6O_{28}P_5$ [M-2H]²⁻: 1088.0668, found: 1088.0680.

LNA-trinucleotide-5'-O-triphosphate 4b

Trinucleotide triphosphate **4b** (11.2 mg, 10 μ mol, 20%) was prepared according to the general procedure. ¹H NMR (500 MHz, D₂O) 7.65 (d, *J* = 1.3 Hz, 1H), 7.63 (d, *J* = 1.5 Hz, 1H), 7.50 (d, *J* = 1.7 Hz, 1H), 6.19 - 6.16 (m, 2H), 5.53 (s, 1H), 4.84 - 4.82 (m, 1H), 4.56 (s, 1H), 4.42 - 4.39 (m, 2H), 4.32 (d, *J* = 5.5 Hz, 1H), 4.30 - 4.29 (m, 1H), 4.26 - 4.23 (m, 2H), 4.08 - 4.06 (m, 2H), 4.04 - 4.01 (m, 2H), 3.98 - 3.93 (m, 2H), 2.42 - 2.37 (m, 3H), 2.24 - 2.19 (m, 1H),

2.15–2.10 (m, 1H), 1.77 (d, J = 1.0 Hz, 3H), 1.73 (d, J = 1.2 Hz, 3H), 1.69 (d, J = 1.1 Hz, 3H). ³¹P NMR (203 MHz, D₂O) δ -1.32 (s,1P); -2.00 (s, 1P), -9.73 (m, 1P), -11.63 (d, J = 19.2 Hz, 1P), -22.68 (m, 1P). HRMS calcd. for C₃₁H₄₁N₆O₂₉P₅ [M-2H]²⁻: 1116.0617, found: 1116.0622.

Phosphorothioate-trinucleotide-5'-O-triphosphate 4c

Trinucleotide triphosphate **4c** (8.4 mg, 8 µmol, 15%) was prepared according to the general procedure. ¹H NMR (500 MHz, D₂O) 7.66 – 7.60 (m, 3H), 6.19 – 6.14 (m, 3H), 4.98 – 4.92 (m, 2H), 4.46 – 4.45 (m, 1H), 4.29 – 4.26 (m, 2H), 4.08 – 4.02 (m, 7H), 2.43 – 2.38 (m, 3H), 2.25 – 2.18 (m, 3H), 1.81 – 1.78 (m, 9H), ³¹P NMR (203 MHz, D₂O) δ 55.21 (m,1P); 54.96 (m, 1P), 0.45 (d, *J* = 20.4 Hz, 1P), -11.87 (d, *J* = 18.9 Hz, 1P), -22.84 (t, *J* = 20.1 Hz, 1P). HRMS calcd. for

 $C_{30}H_{41}N_6O_{26}P_5S_2 \ \mbox{[M-2H]}^2\hdots 1120.0211, found: 1120.0208.$

2.2 Copies of NMR Spectra

¹H NMR (D₂O, 500 MHz) spectrum of Trinucleotide-5'-O-triphosphate 4a

³¹P NMR (D₂O, 203 MHz) spectrum of Trinucleotide-5'-O-triphosphate 4a

¹H NMR (D₂O, 500 MHz) spectrum of LNA-trinucleotide-5'-O-triphosphate 4b

³¹P NMR (D₂O, 203 MHz) spectrum of LNA-trinucleotide-5'-O-triphosphate 4b

¹H NMR (D₂O, 500 MHz) spectrum of Thioate-trinucleotide-5'-O-triphosphate 4c

³¹P NMR (D₂O, 203 MHz) spectrum of Thioate-trinucleotide-5'-O-triphosphate 4c

2.3 Copies of HRMS Spectra

Trinucleotide-5'-O-triphosphate 4a

HRMS calcd. for $C_{30}H_{41}N_6O_{28}P_5$ [M-2H]²⁻: 1088.0668, found: 1088.0680.

LNA-trinucleotide-5'-O-triphosphate 4b

HRMS calcd. for $C_{31}H_{41}N_6O_{29}P_5$ [M-2H]²⁻: 1116.0617, found: 1116.0622.

Phosphorothioate trinucleotide-5'-O-triphosphate 4c

HRMS calcd. for $C_{30}H_{41}N_6O_{26}P_5S_2$ [M-2H]²⁻: 1120.0211, found: 1120.0208.

3. Enzymatic reactions

3.1 Template-independent DNA extension reactions (TdT, PUP)

TdT reactions of DNA primer P1 with dT3TPs 4a-c

DNA primer P1: 5'- FAM-TAC GAC TCA CTA TAG CCT C -3' (19 nt); MW: 6244.

Figure SI2. Gel image (PAGE 20%) for analysis of TdT reactions. (-) – negative control in the absence of TdT enzyme; first from the left (+) – positive control using dTTP; second from the left (+) – positive control using (LNA-T)TP; (**4a-c**) – dT₃TPs (200 μ M final).

Analytical scale reaction conditions (10 μ L): DNA Primer P1 10 μ M (1 μ L), dT₃TPs 4a-c 1mM (2 μ L), TdT buffer 10X (1 μ L), Water (4 μ L), TdT enzyme (0.5 μ L), TIPP (0.5 μ L), MnCl₂ 10 mM (1 μ L). Reaction mixtures were incubated at 37 °C for 3 hours.

PUP reactions of RNA primer P2 with dT3TPs 4a-c

RNA primer P2: 5'- FAM-rCrArG rUrCrG rGrArU rCrGrC rArGrU rCrArG (18 nt), MW: 6308.

Figure SI3. Gel image (PAGE 20%) for analysis of PUP reactions. (-) – negative control in the absence of PUP enzyme; first from the left (+) – positive control using UTP; second from the left (+) – positive control using (LNA-T)TP; (**4a-c**) – dT_3TPs (200 µM final).

Analytical scale reaction conditions (10 μ L): RNA Primer P2 10 μ M (2 μ L), dT₃TPs 4a-c 1mM (2 μ L), NEBuffer 2 10X (1 μ L), Water (3 μ L), PolyU Polymerase (0.5 μ L), RNAse Inhibitor Murine (0.5 μ L), MnCl₂ 10 mM (1 μ L). Reaction mixtures were incubated at 37 °C for 3 hours.

3.2 Template-dependent PEX reactions

PEX reactions of DNA primer P3 on DNA templates T1-T2 with dT3TPs 4a-c

DNA primer P3: 5'- FAM-CAT GGG CGG CAT GGG -3' (15 nt); MW: 5211.

DNA Template T1: 5'- (AAA)₄ CCC ATG CCG CCC ATG -3' (27 nt); MW: 8228.

DNA Template **T2**: 5'- GTC <u>AAA</u> CCC TGG <u>AAA</u> CGT <u>AAA</u> CGC <u>AAA</u> GG <u>AAA</u> CCC ATG CCG CCC ATG -3' (47 nt); MW: 14405.

Analytical scale general reaction conditions (10 μ L): DNA Primer P3 10 μ M (1 μ L), DNA Template T1-T2 10 μ M (1.5 μ L), Water (0.5 μ L) were mixed and hybridized. Next, other components of the reaction were added depending on the DNA polymerase used:

- a) HemoKlen Taq polymerase (1 μL), Hemo KlenTaq buffer 5X (2 μL), dT₃TPs 4a-c 1mM (2 μL), Water (2 μL). Reaction mixtures were incubated at 60 °C for 30 min;
- b) Bst 2.0 polymerase (1 μ L), Isothermal buffer 10X (1 μ L), dT₃TPs 4a-c 1mM (2 μ L), Water (2 μ L). Reaction mixtures were incubated at 60 °C for 30 min;
- **c)** Vent (exo⁻) polymerase (1 μL), Thermopol buffer 10X (1 μL), dT₃TPs **4a-c** 1mM (2 μL), Water (2 μL). Reaction mixtures were incubated at 60 °C for 30 min;
- **d)** *Taq* polymerase (1 μL), Standard *Taq* buffer 10X (1 μL), dT₃TPs **4a-c** 1mM (2 μL), Water (2 μL). Reaction mixtures were incubated at 60 °C for 30 min;
- e) Sulfolobus polymerase (1 μ L), Thermopol buffer 10X (1 μ L), dT₃TPs 4a-c 1mM (2 μ L), Water (2 μ L). Reaction mixtures were incubated at 55 °C for 30 min;
- f) Deep Vent (exo⁻) polymerase (1 μL), Thermopol buffer 10X (1 μL), dT₃TPs 4a-c 1mM (2 μL), Water (2 μL). Reaction mixtures were incubated at 55 °C for 30 min;
- g) Klenow (exo⁻) polymerase (1 μL), NEBuffer 2 10X (1 μL), dT₃TPs 4a-c or dTTP or αthio-TTP 1mM (2 μL), Water (2 μL). Reaction mixtures were incubated at 37 °C for 30 min.

Preparative scale general reaction conditions (100 \muL): DNA Primer P3 100 μ M (5 μ L), DNA Template T1-T2 100 μ M (7.5 μ L), Water (5.0 μ L) were mixed and hybridized. Next, other components of the reaction were added depending on the DNA polymerase used:

- **a)** *Taq* polymerase (20 μL), Standard *Taq* buffer 10X (10 μL), dT₃TPs **4a-c** 5mM (20 μL), Water (32.5 μL). Reaction mixtures were incubated at 60 °C for 30 min;
- b) Klenow (*exo*⁻) polymerase (20 μ L), NEBuffer 2 10X (10 μ L), dT₃TPs 4a-c or dTTP or α -thio-TTP 5mM (20 μ L), Water (32.5 μ L). Reaction mixtures were incubated at 37 °C for 30 min.

After incubation, the reaction mixture was diluted with water to 500 μ L final volume. Then washed and concentrated using an Amicon Ultra centrifugal filter (10kDa). The resulting DNA concentrate was used for further LCMS analysis.

Figure SI4A. Gel image (PAGE 20%) for analysis of PEX reactions of DNA primer **P3** on DNA template **T1** with dT₃TP **4a** (200 μ M final) over 30 minutes. (-) – negative control in the absence of DNA polymerase; first from the left (+) – positive control using dTTP (Klenow *exo*⁻); second from the left (+) – positive control using α -thio-TTP (Klenow *exo*⁻).

Figure SI4B. Gel image (PAGE 20%) for analysis of PEX reactions of DNA primer **P3** on DNA template **T1** with dT₃TP **4b** (200 μ M final) over 30 minutes. (-) – negative control in the absence of DNA polymerase; first from the left (+) – positive control using dTTP (Klenow *exo*⁻); second from the left (+) – positive control using α -thio-TTP (Klenow *exo*⁻).

Figure 3A-B. Gel image (PAGE 20%) for analysis of PEX reactions of DNA primer **P3** on DNA Templates **T1-T2** with dT₃TP **4c** (200 μ M final) over 30 minutes. (-) – negative control in the absence of DNA polymerase; first from the left (+) – positive control using dTTP (Klenow *exo*⁻); second from the left (+) – positive control using α -thio-TTP (Klenow *exo*⁻).

Figure SI5. Gel image (PAGE 20%) for analysis of PEX reactions of DNA primer **P3** on DNA Template **T1** with dT₃TP **4c** (10 and 50 μ M final) over 1-15 min timeframe. (-) – negative control in the absence of DNA polymerase; first from the left (+) – positive control using dTTP (Klenow *exo*⁻); second from the left (+) – positive control using α -thio-TTP (Klenow *exo*⁻).

Figure SI6. Gel image (PAGE 20%) for analysis of PEX reactions of DNA primer **P3** on DNA Template **T2** with dT_3TP **4c** (10 and 50 μ M final) over 1-15 min timeframe. (-) – negative control in the absence of DNA polymerase; first from the left (+) – positive control using dTTP (Klenow *exo*⁻); second from the left (+) – positive control using α -thio-TTP (Klenow *exo*⁻).

3.3 Evaluation of stability of trinucleotide triphosphate dT₃TP 4c

We first analyzed pure dTTP and dT₃TP **4c** by running analytical ion exchange HPLC (using an ÄktaTM pure system GE Healthcare equipped with Thermo ScientificTM DNAPacTM PA100 column, Buffer A: 10 mM TEAB to 100% Buffer B: 1 M TEAB) (Figures SI7-8). We next incubated a 10 µL of a 1 mM solution of dT₃TP **4c** in the presence of 5 µL of the (Klenow *exo*⁻) DNA polymerase and 5 µL of NEB2 buffer at 37°C for either 5 min or 1 hour. Then we analyzed directly the crude rection mixtures by analytical ion exchange HPLC (Figures SI9-10). To conclude, under these reaction conditions, we did not observe the formation of dTTP or other degradation products suggesting that dT₃TP **4c** is not readily degraded.

Figure SI7. HPLC trace of dTTP. Peak A (100%), RT (15.5 min). (Y-Axis): Buffer A (10 mM TEAB) to 100% Buffer B (1 M TEAB).

Figure SI8. HPLC trace of dT_3TP **4c** as a mixture of Rp and Sp stereoisomers. Peak A (100%), RT (22.0 min). (Y-Axis): Buffer A (10 mM TEAB) to 100% Buffer B (1 M TEAB).

Figure SI9. HPLC trace of crude reaction mixture (*5 minutes*) of dT_3TP **4c**, (Klenow *exo*⁻) polymerase and NEB2 buffer. Peak A (100%), RT (22.0 min). (Y-Axis): Buffer A (10 mM TEAB) to 100% Buffer B (1 M TEAB).

Figure SI10. HPLC trace of crude reaction mixture (*1 hour*) of dT₃TP **4c**, (Klenow *exo*) polymerase and NEB2 buffer. Peak A (93%), RT (22.0 min). (Y-Axis): Buffer A (10 mM TEAB) to 100% Buffer B (1 M TEAB).

4. LCMS analyses of enzymatic reactions

LCMS settings and method

Chromatographic separations for LC–MS experiments were performed on a Thermo Scientific[™] Vanquish[™] Flex Binary UHPLC system (Thermo Fisher Scientific, Reinach, Switzerland).

The column used for all separations was a Waters Aquity Premier BEH C18 Peptide 2.1*50 mm 1.7 μ m 300A (Waters (CH) AG, Baden-Dättwil, Switzerland). The solvents were A: 15 mM Amylamine (ALDRICH, W424201 (in-house re-distilled), CAS 110-58-7, SIGMA-ALDRICH CHEMIE GMBH (CH), Buchs Switzerland) and 50 mM 1,1,1,3,3,3-HEXAFLUORO-2-PROPANOL (HFIP, ACROS ORGANICS, ACR14754 (99.5+%, PURE), CAS 920-66-1, ThermoFisher Scientific, Reinach Switzerland) in water (Milli-Q® IQ 7000, Millipore, Merck & Cie, Schafhausen, Switzerland) and B: methanol/acetonitrile (9/1;v/v) both gradient grade. Both solvents contained 1 μ M Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA), SIGMA, E5134-100G (99.0-101.0%, titration)), CAS 6381-92-6, SIGMA-ALDRICH CHEMIE GMBH (CH), Buchs Switzerland helping to suppress metal adducts forming in the mass spectrometer. A flow rate of 400 μ L min⁻¹ was applied, and the column compartment was held at 80°C. The gradient system was A vs B starting at 5%B with a hold for 0.2 min before a linear raise to 45%B at.5 min followed by a 0.5 min step to 100% B for flushing the column for 1 min before coming back to the initial 5% B for reinjection.

For mass spectrometric data acquisition, a Thermo Scientific[™] Fusion Lumos[™] Hybrid Quadrupole-Orbitrap mass spectrometer equipped with a heated electrospray ionization-II (HESI-II) probe in a standard Thermo Scientific[™] Ion Max[™] ion source (Thermo Fisher Scientific, San José, CA, USA) was used. Data acquisition was performed with Thermo Scientific[™] Xcalibur 4.5. HR LC–MS measurements were performed under Thermo Scientific[™] Xcalibur [™] Orbitrap Fusion Lumos Tune Application 3.5. The mass range was 600-2000 Da at a resolution of 120K. In addition, the full DAD but also a 260 nm UV trace were acquired.

MS raw files were exported to ThermoFisher Scientific BioPharma Finder (BPF) 5.1 software and analyzed using the Intact Mass Analysis deconvolution feature either against the full structure of the compounds or just against the molecular mass. All data evaluation was done based on the Thermo Scientific BioPharma Finder User Guide Software Version 5.1, XCALI-98492 Revision A, July 2022.

Name	m/z calc.	m/z found	Interpretation of the reaction products
PEX of dTTP	8857,4821	8857,5017	Mass of 12T additions (expected)
Klenow (exo-)	9161,5281	9161,5503	Mass of 12T+1 additions
(Positive control)	9465,5742	9465,5964	Mass of 12T+2 additions
	9769,6202	9769,6468	Mass of 12T+3 additions
PEX of 4c	8985,2994	8977,3241	Mass distribution resulted in two masses found
With <i>Taq</i>		8995,3220	(average 8986.3230).
PEX of 4c	8985,2994	8977,3019	Mass distribution resulted in two masses found
With <i>Kf (exo-)</i>		8995,3158	(average 8986.3088).

Table SI1. Summary of PEX reactions of DNA primer P3 on DNA Template T1

Table SI2. Summary of PEX reactions of DNA primer P3 on DNA Template T2

Name	m/z calc.	m/z found	Interpretation of the reaction products
PEX of dTTP	15035,4853	Not found	Mass of expected product
Klenow (exo-)	15916,6162	15916,5680	Mass of expected product +CCT addition
(Positive control)	15940,6275	15940,5543	Mass of expected product +CTA addition
	16229,6738	16229,6121	Mass of expected product +CCTA addition
PEX of 4c	15155,4853	15145,1574	Mass distribution resulted in a slightly lower mass
With <i>Taq</i>			
PEX of 4c	15155,4853	15145,1764	Mass distribution resulted in a slightly lower mass
With <i>Kf (exo-)</i>	15458,2889	15458,2295	Mass of expected product +T addition

LCMS analysis chromatogram of PEX reaction of DNA primer P3 on the DNA template T1 with dTTP and Klenow (*exo*⁻) polymerase (positive control reaction)

Figure SI11. LC chromatogram of PEX (P3, T1, dTTP, Klenow).

RT (3.68-3.81)

(*Row 6, 17*) - DNA template T1 (calc. 8228,4713; found 8203,4713; 8228,4637); (*Row 4*) - DNA template T1 (+T addition) (calc. 8532,5173; found 8532,5261); (*Row 2*) - DNA template T1 (+TT addition) (calc. 8836,5634; found 8836,5826).

RT (4.13-4.19)

(Row 5) - Expected DNA product (+one T addition) (calc. 9161,5281; 9161,5503);

(Row 1) - Expected DNA product (+two T additions) (calc. 9465,5742; found 9465,5964);

(Row 3) - Expected DNA product (+three T additions) (calc. 9769,6202; found 9769,6468).

Section Street and Advanced Street																				
Row Handay	Garganyan Natur	Hoffical (II)	Management States Management	Henseekk; of Phase (TM)	Hatted Hast Trop (004)	Anterior	Sara Televille	Ratellari A Teoriari e	Frantaesal Abharettere	numieri H Daripi Timi	Owner National Homos	Handor af Detyclini Detyclini	Deta Marc	Joan Binge	Start Texe (1990)	5840 Titeer (#941)	April ST			
î.			9465.596 497	0.00800	0.0	9479.21	14619462 8.04	100.00	14.99	ିନ୍ତି	5 - 13	21	4.00000	586 - 616	4,087	4287	4,110			
2			MD6,582 56	0.0000	0.0	5540,01	10330460	20.71	10.57		5 - 13	16	-629,013 04	536 - 560	3.748	1.548	3.814			
			8768.646 75	11.008100	.008	1774.45	85640313 ,23	58.50	8.76		5-13	19	304,0903	592 - 621	4,127	4394	4.187			
*			6532.526 67	0.0000	36.0	8136-03	67%6387 .23	49.42	6.52	160	5-12	12	-433.070 33	521 - 958	3,754	3.895	3.224			
5			9163.550 31	11,00000	8.8	9366.42	48640962 .31	33.25	4.97	. 9	5 - 13	v	-304.1466 168	580 - 607	8.048	4,127	4.134			
6			8203,471 54	а.теке	0,0	6217/47	35432112 45	24.24	1.67	a.	5 - 12	14	1262.12 486	577 - 548	3.687	3.828	3,747			
1			1831.396 41	0.00500	100	1032.20	27185863 .70	38.33	2.77	.	1-3	п	-7634.28 596	263 - 270	1.012	1.911	1.662			
0			11673.68 347	1.00000	160	90678.59	20434777 .61	13,99	2,00	(e)	6-11	u.	606.0000 7	596 - 41A	6,153	4.369	4,202			
			1056,582 109	11.000000	8.0	8854.00	16323043 .04	11.17	1.67	9	6-13	13	-821.094 30	542 - 562	3.788	3.903	3.941			
10			30327.72 372	1.000	8.0	01382.78	13316mm8 28	9.11	1.16	9,1	6+14	16	912.1253	6811-626	4,584	430	4.233			
п.			3403.892 33	0.00000	-5.0	5478.30	13017658	8.50	1,39		3:7	- 32	4389.70	108-538	3.558	3.701	1.653			
12			13314.14 943	0.00800	300	11120.54	12714200 .59	8.70	1.50	п	7 17	u.	3648.552 64	623 - 644	4.135	4.676	4.382			
19			3346,545 56	0.0000	8.0	3348.18	10959565	7,58	1.12	4	2-5	14	-6119.05 083	451 - 451	5.015	3.355	3,054			
цс.			11680.76 466	0.00000	300	10686.07	10091819 .96	7.45	1.11	. 9	6-11	15	1316.048 27	604-626	6.247	4.355	4253			
15			12810.09 \$79	0.00000	36.0	12816.34	10131933 _33	4.86	1.09	11	2 - 17	- 13	3344.499 40	629-640	6,314	4.449	6395			
10			3042,590 79	11,000,000	8.8	3043.99	9296285. 70	6.25	0.94	4	2.5	34	-6423.09 560	415 - 425	2.633	2.560	2,000			
17			6228.463 73	a.memi	0,0	1232,40	11428FE. 31	6.27	0.94	7	5 - 11	п	1217.13	575 - 540	3.674	3.794	1,728			

LCMS analysis chromatogram of PEX reaction of DNA primer **P3** on the DNA template **T1** with dT_3TP **4c** and **Taq** polymerase

Figure SI12. LC chromatogram of PEX (P3, T1, dT₃TP 4c, Taq).

RT (3.73-3.77)

(Rows 4-5) - DNA template T1 (calc. 8228,4713; found 8227,4833; 8238,4777; 8252,4769).

RT (4.28-4.33)

(Rows 3, 8) - Expected DNA product (calc. 8985,2994; found 8977,3241; 8995,3220).

	Since Weak State 1 Marsh																
Rom Number	Segurer Name	Molificadi (M)	Network Opt Mass	Theoretic al Mass (Da)	Matchell Matt Error (opm)	Average Hall	Sem Interacty	Relativo A fixediance	Fractional Aburstanc 4	Nation of Charge States	Charge State cost relation	Ranches of Detectori Bittervida	Defin Mass	Scan Kange	There (men)	(initi)	Apre 81
ï			1816.252 64	0.00000	8,0	3811.31	30957563 3.74	100.00	17.21	3	1-3	22	0.00000	259 - 292	1.777	1.997	1.670
20			2226.063 67	0.00000	8,6	2227.37	27971308 3.36	90.35	15.55		2 - 3	21	415.8110 4	694 · 637	4.139	4.329	4.210
3			8977.324 (18	9,00004	\$1,51	8962.35	16123902 #146	\$2.08	8.96		5 - 12	38	7167,071 44	622 - 650	4.229	4.415	4,282
4			8238.477 23	0.00000	6.6	8240.11	15846888 0.27	51.19	8.81	9	5-11	16	6428.225 10	543 - 567	3.701	3.860	3,754
5			8217,483 32	0.00000	8.0	8232.11	73358342 .21	23.70	4.98		5 - 11	- 16	6417,230 68	539+563	3.674	3.833	3.734
6			2210.006 62	8.0000	8,0	2211.38	70353496 _36	22.73	3.91		2 - 3	19	399.8339 8	593 - 621	4,036	4.223	4.137
×.			2248.042 37	0.00000	8,6	2249-36	60087423 _70	19.41	3.34	- 12	2-3	15	437.7897 3	605 - 628	4.117	4.289	6.210
			8995.321 96	0.90000	9.6	9000,36	51296253 .58	16.57	2.85	8	5 - 12	34	7185.069 32	625 - 676	4.249	4.590	4.312

LCMS analysis chromatogram of PEX reaction of DNA primer **P3** on the DNA template **T1** with dT_3TP **4c** and **Klenow** (*exo*⁻) polymerase

Figure SI13. LC chromatogram of PEX (P3, T1, dT₃TP 4c, Klenow).

RT (3.71-3.73)

(Rows 2, 4) - DNA template T1 (calc. 8228,4713; found 8227,4952; 8228,4968).

RT (4.20-4.31)

(*Rows 3, 8*) - Expected DNA product (calc. 8985,2994; found 8977,3019; 8995,3158).

						98	g Windows A	itori Massen	Triffe							
lices Burnher	Sequence fueror	 Honosot Igni Hass	Theoretic of Mess (Dat)	Mutched Mass Emar (port)	Average Hass	Sum Ditensity	Relative A bordare e	Tractional Abundani	Nutter of Durge States	Charge State Did ribution	Number of Detected Intervals	Della Neti	Scat Kange	Mar Tine (min)	Shap Time (Inin)	Apra RT
I		18101.251 40	0.00000	0.0	1811.21	71028546 2.74	100.00	42.63	3	1-3	20	0,00000	256 - 285	1.771	1.964	1.864
2		8227,495 15	0.00000	0.0	8232.12	13206836 9.62	18.59	7.93	3	5 - 11	п	6417.243 54	537 - 563	3.671	3,843	3.737
3		#977.301 92	0.00000	0.0	8982.33	11962198 5,67	16.84	7.18	8	5 - 12	19	7167,160 32	620 · 647	4,223	4,403	4.283
4		8228.496 75	0.00000	n.0	8233.12	82469766 .41	11.61	4.95	7	5 - 11	9	6418.245 15	538 - 560	3.677	3.823	3.719
5		1826,230 17	0.00000	8.0	1827.30	72287132 .73	10.18	4.34	3	1+3	14	15.97056	276 - 299	1.903	2.058	1.977
6		3917.733 86	0.00000	8.0	3919.97	33489396 ,28	4.71	2.01	5	2+6-	n	2107,402 25	480 - 550	3.285	3,429	3.346
7		3371.556 25	0.00000	8.0	3373.52	32968640 .47	4.64	1.98	4	2 - 5	14	1561.304 65	436 - 457	2,988	3.129	3.048
8		8995.315 80	0.0000	0,0	9000,35	329((2883 .31	4.63	1.97	7	5 - 11	29	7185.064 20	626 · 670	4.263	4.559	4,313

LCMS analysis chromatogram of PEX reaction of DNA primer P3 on the DNA template T2 with dTTP and Klenow (*exo*⁻) polymerase (positive control reaction)

Figure SI14. LC chromatogram of PEX (P3, T2, dTTP, Klenow).

RT (2.53-2.57) - DNA template T2 (calc. 14406,4745)

(Row 6) - DNA template T2 (+GG addition) (calc. 15063,5717; found 15063,4807);

(Rows 4) - DNA template T2 (+GGT addition) (calc. 15367,6177; found 15367,5532).

RT (2.67-2.70) - Expected DNA product (calc. 15035,4853)

(*Row 1*) - Expected DNA product (+CCT addition) (calc. 15916,6162; 15916,5680);

(Row 2) - Expected DNA product (+CCTA addition) (calc. 16229,6738; found 16229,6121);

(Row 3) - Expected DNA product (+CTA addition) (calc. 15940,6275; found 15940,5543).

	Stating Worklows Street Planses Table																
ficw Number	Sequence Rate	Nodekow (H)	Monstart opt Nasi	Husents of Plans (Da)	Matchevi Manu Estit (piper)	Alexant Plan	Sum homely	Robellov A. Tegedenne	Frantismad Abrendant B	Nember of Oberge States	Charge State Dial citation	Number of Detocled Little valu	Delta Phase	Sar Lunge	Mat Time (min)	Mop: Tanja (huint)	Agent II T
t.			15916.56 803	0.00005	0.0	15924.37	13423663 .83	100.90	38,84	0	11 - 19	5	0.00000	196 - 207	2.623	2.771	2.670
1			16229,61 208	0.00000	0.0	16237.57	9601512. 95	77.28	14.50		12 - 29		313,0440 4	198 - 204	2.650	2,795	2.697
3			15040.55 430	0.00000	0.0	15948.30	6443823. 55	51.87	9.27	.18	11 - 19	4	23,98627	196 - 205	2.623	2.744	2,670
- 4			15367.55 316	0.00000	0.0	15375.00	4642428. 21	37.37	7.04	- U - S	11 - 19	ai.	-549.014 82	108 - 195	2.516	2.619	2.563
5			0062.337 39	0.00000	0.0	8056.30	3071417, 98	29.55	5.57	1.00	5 - 20	3	-7854.33 064	156 - 163	2.086	2.180	2.133
6			15063.48 066	(1.00001)	0.0	15070.67	3546261. S1	28.54	1.38		11 - 18	3	-853.087 38	186 - 193	2,4893	2.583	2,536
15			8395.3%6 95	0.00000	0.0	8399.51	3292448. 25	26.50	4.99	6	5 - 10	4	-7521.17 107	100 - 169	2.140	2.261	2.187
			13925.54 582	0.00000	0.0	15933.35	2700678. 84	25.79	4.13	5	14 - 18	a;	8.97789	196 - 209	2.623	2,744	3,697
			8724.438 71	0.00009	0.0	8728.71	2234311. 02	17:98	1.39	6	5 - 10	4	-7192.12 932	163 - 171	2.167	2.287	2.214
10			9053.490 26	0.00000	0.0	0057.32	2168133. 11	17.81	3.32		8-11	4	-4603.07 777	100 - 175	1.220	230	2.267

LCMS analysis chromatogram of PEX reaction of DNA primer **P3** on the DNA template **T2** with dT_3TP **4c** and **Taq** polymerase

Figure SI15. LC chromatogram of PEX (P3, T2, dT₃TP 4c, Taq).

RT (2.48-2.51) - DNA template T2 (calc. 14406,4745)

(Row 5) - DNA template T2 (+G addition) (calc. 14735,5270; found 14775,4430);

(*Row 1*) - DNA template T2 (+GGA addition) (calc. 15377,6371; found 15385,5663).

RT (2.77-2.83)

(Row 3) - Expected DNA product (calc. 15155,4853; found 15145,1574);

(Row 2) - Expected DNA product (+T*T*T addition) (calc. 16099,3431; found 16084,3163).

	Biday Walson Xited Hanes Table																
Now Painter	Segaran Aano	Hodiford 00	Handiard upis, Mea	Thurstan al Plans (Da)	Makateri Masa Estar (gent)	Average Mass	Sun bitmAy	listerne A fundation	Fractional Absorberst W	Nordos ni Chatga States	Changa Stabi Diat ributtan	Number of Detocted Intervals	Delta Hine	Scali Range	Start Time (min)	Map Tane (Jawi)	Agen II.T
1			15385.56 632	0.00000	0,0	15393-11	13845123 .00	100,00	26.75	10	$10\cdot 10$	a:	0.90000	184 - 193	2.462	2,583	2.509
2			16084.31 628	0.00000	0.0	10092.20	9349394. 04	07.53	18.07	10	10 - 19	13	608.7400 6	206 - 239	2,758	3.201	2,832
3			15145-15 743	9,80000	8.0	15152.59	7703900. 26	55.64	14.89		10 - 18	- A)	-240,408 89	204 - 213	2,731	2.852	2.778
4			9082.333 18	0.00000	0.0	8086.29	3013177. 63	21.76	5.82	6	5 - 10	Эř.	-7303.23 515	160 - 167	2.140	2.234	2.187
<u>8</u> 0			.14775,44 302	0.00000	0.0	14782.00	2153404. 28	15.55	4.16		10 (17)	3):	-610.123 30	187 - 389	2,435	2.529	2.482
6			9053.484 .4H	0.00000	0.0	9057.92	1925518. 56	13.91	3.72	0	6 - 11		-6332.08 [40	105 - 175	2.247	2.341	2.294
÷.			\$724,444 04	0.00006	0.0	8728.71	1833368. 59	13.24	134		5 - 10	3	-6001.12 229	105 - 173	2.220	2.334	2.267
8			#516.372 51	0,00000	0.0	8320.45	1850073. 09	13.92	3.19	6	5 · 10	3	-7069.19 382	100 - 167	2.199	2.234	2.187
n			9306.545 90	0,00000	0.0	9371.13	1519789. 76	10.9H	2,94	6	8 - 11	3	-6019.62 043	170 - 177	2.274	2.368	2.321
10			8974,480 .06	0.00000	0.0	8979.88	1385710. 09	10.01	2.68	6	6 - 31	3	-5411.08 626	165 - 173	2,220	2.314	2,267

LCMS analysis chromatogram of PEX reaction of DNA primer **P3** on the DNA template **T2** with dT_3TP **4c** and **Klenow** (*exo*⁻) polymerase

Figure SI16. LC chromatogram of PEX (P3, T2, dT₃TP 4c, Klenow).

RT (2.47-2.49)

(Row 3) - DNA template T2 (calc. 14406,4745; found 14446,3894);

(Row 1) - DNA template T2 (+G addition) (calc. 14735,5270; found 14759,4390).

RT (2.77-2.80)

(Row 2) - Expected DNA product (calc. 15155,4853; found 15145,1764);

(Row 6) - Expected DNA product (+T addition) (calc. 15458,2889; found 15458,2295).

	Skiller Wirden XXX1 Maters Liber																
Row Norther	Sequence Norte	Mostican	Periodal que Hes	Deserts al Plans (De)	Hatchird Matte (mor (ppm)	Arenage Hann	Sum Driemsky	Relative A Instalative	Tractional Abundane e	Norther of Charge Statis	Charge State Dist (Bution	fumber of Detected Intervals	Deta Hes	Scan Range	Skart Time: (min)	Stap Time (min)	Apex III
1			14759.43 898	0.00000	0.0	14768.68	118(25)(1 .00	100,00	19.76	. 9	9-14	æ	0.00000	182 - 191	2.435	2.556	2,492
2			15145.17 641	0,083000	6,6	15152.60	11727678 .52	99.36	19.63	9	10 - 18	4	385.7374 3	204 - 213	2,731	2.852	2,778
э			14446.38 941	0.00000	6.0	14453.48	6762609. 96	57.30	11.32	.9	10-18	3	-113.049 57	102 - 109	2.435	2.529	2,482
- 40			14831.14 357	0.00000	9,0	14838.42	3291840. 63	32.13	6.35	9	10-18	3	71.70459	202 - 209	2.704	2,798	2.751
5			8082,354 49	0.000000	8.8	0086.30	3246475. 47	27.51	5.44	. 6	5 - 10		-6677,10 449	160 - 169	2.149	2.261	2.187
6			15458.22 952	0,00000	0.0	15465.80	3070778. 79	26.02	5,14	7	12 - 18	3	698.7905 4	216 - 213	2.758	2.852	2.815
			8395.395 75	0,00000	9,6	8399.51	2434969, 85	29.63	4.08	6	5-10	3	-6364/04 323	164 - 171	2.194	2.208	2.241
8 8 0			9653.487 79	0.00000	3.8	9057.92	2065420, 41	17.50	3.46	. 6	6 - 11	3	-5205,95 119	168 - 175	2,247	2.341	2.254
9			8724.444 36	0,00000	6,8	8728.71	1883296. 14	15.96	3.15	6	5 - 10	3	-6034.99 462	166 - 173	2.220	2.314	2.267
10			8348.380 94	0.00000	100	8352,47	1966387.	15.01	1.12		5-10	3	-6411/05 814	160 - 167	2.140	2.234	2.187