Visible-Light-Induced ATRP under High-Pressure: Synthesis of Ultra-High-Molecular-Weight Polymers

Roksana Bernat^{a,b,c}, Grzegorz Szczepaniak^{d,e}, Kamil Kamiński^{a,b}, Marian Paluch^{a,b}, Krzysztof Matyjaszewski^{d*}, Paulina Maksym^{b,f*}

^aInstitute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland

^bSilesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland

^cDepartment of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland

^dDepartment of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213 USA

eFaculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland,

^fInstitute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland

Corresponding author Paulina Maksym (<u>paulina.maksym@us.edu.pl</u>); Krzysztof Matyjaszewski (km3b@andrew.cmu.edu)

Table of contents

Materials3
Instruments3
Nuclear magnetic resonance spectroscopy (NMR)3
Size exclusion chromatography Low-Angle Laser Light Scattering (SEC-LALLS)
Procedures
General procedures for EY/Cu-catalyzed ATRP of OEOMA ₅₀₀ 3
General procedures for EY/Cu-catalyzed ATRP of HEA5
Polymerizations
Chain-extension polymerization6
Figure S1. High-pressure setup7
Figure S2. ¹ H (a) and ¹³ C (b) NMR spectra of the synthesized P(OEOMA ₅₀₀) via HP&LI ATRP
Figure S3. The semilogarithmic kinetic plots as a function of time for OEOMA ₅₀₀ HP&LI ATRP at different pressure values
Figure S4. Conversion <i>vs</i> polymerization time plots for OEOMA ₅₀₀ HP&LI ATRP at different pressure values
Figure S5. Pressure dependence of K _{ATRP} for HP&LI ATRP of OEOMA ₅₀₀ 11
Figure S6. SEC-LALLS traces of the P(OEOMA ₅₀₀) synthesized via HP&LI ATRP12
Figure S7. SEC-LALLS traces of P(OEOMA ₅₀₀) (a) and P(OEOMA ₅₀₀)- <i>bl</i> -P(OEOMA ₅₀₀) (b) obtained <i>via</i> HP&LI ATRP
Figure S8. ¹ H NMR spectra of the chain-extension polymerization mixture of OEOMA ₅₀₀ -P(OEOMA ₅₀₀)
Table S1. Results of OEOMA ₅₀₀ HP&LI ATRP at different conditions15
Table S2. Results of HEA HP&LI ATRP at different conditions
Figure S9. ¹ H NMR spectra of the synthesized PHEA via HP&LI ATRP16
Figure S10. SEC-LALLS traces of the PHEA obtained <i>via</i> HP&LI ATRP with TPMA (a) and Me ₆ TREN (b) as a catalyst

Materials

All chemicals were purchased from Sigma-Aldrich. Tris(2-pyridylmethyl)amine (**TPMA**, 98%), tris[2-(dimethylamino)ethyl]amine (**Me**₆**TREN**), Eosin Y (**EYH**₂, 99%), copper (II) bromide (**CuBr**₂, 99%), ethyl α -bromoisobutyrate (**EBiB**, 98%) and Dulbecco's Phosphate Buffered Saline (**PBS**, pH=7.1 - 7.5) were purchased from *Sigma-Aldrich*. Poly(ethylene glycol) methyl ether methacrylate (average $M_n = 500$, **PEOMA**₅₀₀) and 2-hydroxyethyl acrylate (**HEA**) were purchased from *Sigma-Aldrich* and passed through a basic alumina column to remove the inhibitor prior to use. Dimethyl sulfoxide (**DMSO**, \geq 99.7%) were purchased from *Chempur*. Water was purified using automatic distillation apparatus (**DE** 5, *Polna*) prior to use.

Instruments

Nuclear magnetic resonance spectroscopy (NMR)

Nuclear magnetic resonance (¹H and ¹³C NMR) spectra were collected using a Bruker Ascend 500 MHz spectrometer in D_2O as a solvent. Standard experimental conditions and the standard Bruker program were used.

Size exclusion chromatography Low-Angle Laser Light Scattering (SEC-LALLS)

Molecular weights and dispersities were determined by size exclusion chromatography (SEC) with Viscotek GPC Max VE 2001 and a Viscotek TDA 305 triple detection system (refractometer, viscosimeter and low angle laser light scattering) was used for data collection and OmniSec 5.12 for processing. Two T6000M general mixed columns were used for separation. The measurements were carried out in DMF/LiBr (0.01M) as an eluent at 303 K with a flow rate of 0.7 mL/min. The apparatus was used in a triple detection mode, and the absolute molar mass (M_n and M_w) and the dispersity (D) were determined by triple detection (estimated dn/dc=0.05 for P[OEOMA]₅₀₀; dn/dc=0.079 for PHEA). Due to obtaining polymers with WHMW and UHMW before performing SEC-LALLS measurements, approximately 1 mg of polymer was dissolved in 1 mL of DMF+LiBr solution. We did double check of the MW using GPC-LALLS, analyzing the sample dissolved in DMF after several days and a month. This allowed us to obtain reliable data.

Procedures

General procedures for EY/Cu-catalyzed ATRP of OEOMA₅₀₀

[OEOMA₅₀₀]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀: 200/1/0.005/0.2/0.6; 10% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (16.75 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO) and EYH₂ (9.7 mg in 10 mL DMSO)

were prepared. The ATRP cocktail was then prepared as follows. In a 4 mL dark-glass vial, 600 mg of OEOMA₅₀₀ was weighed. Subsequently, CuBr₂ stock (160 μ L), TPMA stock (80 μ L), EBiB stock (100 μ L), EYH₂ stock (20 μ L), DMSO (40 μ L) and PBS solution (400 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were OEOMA₅₀₀ (300 mM), EBiB (1.5 mM), EYH₂ (7.5 μ M), CuBr₂ (0.3 mM), TPMA (0.9 mM), DMSO (10% v/v).

[OEOMA₅₀₀]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀: 1000/1/0.0025/1/1.5; 30% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO) and EYH₂ (9.7 mg in 10 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. In a 4 mL dark-glass vial, 600 mg of OEOMA₅₀₀ was weighed. Subsequently, CuBr₂ stock (100 μ L), TPMA stock (40 μ L), EBiB stock (20 μ L), EYH₂ stock (2 μ L), DMSO (1.040 mL) and PBS solution (80 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were OEOMA₅₀₀ (300 mM), EBiB (0.3 mM), EYH₂ (0.75 μ M), CuBr₂ (0.3 mM), TPMA (0.45 mM), DMSO (30% v/v).

[OEOMA₅₀₀]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀: 10000/1/0.0025/1/1.5; 30% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO) and EYH₂ (0.97 mg in 10 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. In a 4 mL dark-glass vial, 600 mg of OEOMA₅₀₀ was weighed. Subsequently, CuBr₂ stock (10 μ L), TPMA stock (4 μ L), EBiB stock (2 μ L), EYH₂ stock (2 μ L), DMSO (1.182 mL) and PBS solution (8 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were OEOMA₅₀₀ (300 mM), EBiB (0.03 mM), EYH₂ (0.075 μ M), CuBr₂ (0.03 mM), TPMA (0.045 mM), DMSO (30% v/v).

[OEOMA₅₀₀]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀: 30000/1/0.0025/1/1.5; 30% DMSO

Prior to polymerization, stock solutions of EBiB (0.88 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (1.31 mg in 1.0 mL DMSO) and EYH₂ (9.7 μ g in 1 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. In a 4 mL dark-glass vial, 600 mg of OEOMA₅₀₀ was weighed. Subsequently, CuBr₂ stock (3.33 μ L), TPMA stock (13.33 μ L), EBiB stock (6.67 μ L), EYH₂ stock (6.67 μ L), DMSO (1.184 mL) and PBS solution (8 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were OEOMA₅₀₀ (300 mM), EBiB (0.01 mM), EYH₂ (0.025 μ M), CuBr₂ (0.01 mM), TPMA (0.015 mM), DMSO (30% v/v).

General procedures for EY/Cu-catalyzed ATRP of HEA [HEA]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[Cat]₀: 200/1/0.005/0.2/0.6; 30% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO), Me₆TREN (12.06 μ L in 1.0 mL DMSO) and EYH₂ (9.7 mg in 10 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. 137.8 μ L of HEA was placed in a 4 mL dark-glass vial. Subsequently, CuBr₂ stock (100 μ L), TPMA/Me₆TREN stock (80 μ L), EBiB stock (100 μ L), EYH₂ stock (20 μ L), DMSO (900 μ L) and PBS solution (400 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were HEA (300 mM), EBiB (1.5 mM), EYH₂ (7.5 μ M), CuBr₂ (0.3 mM), TPMA/Me₆TREN (0.9 mM), DMSO (30% v/v).

[HEA]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[Cat]₀: 1000/1/0.0025/1/1.5; 30% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO), Me₆TREN (12.06 μ L in 1.0 mL DMSO) and EYH₂ (9.7 mg in 10 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. 137.8 μ L of HEA was placed in a 4 mL dark-glass vial. Subsequently, CuBr₂ stock (100 μ L), TPMA/Me₆TREN stock (40 μ L), EBiB stock (20 μ L), EYH₂ stock (2 μ L), DMSO (1.040 mL) and PBS solution (80 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were HEA (300 mM), EBiB (0.3 mM), EYH₂ (0.75 μ M), CuBr₂ (0.3 mM), TPMA/Me₆TREN (0.45 mM), DMSO (30% v/v).

[HEA]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀: 10000/1/0.0025/1/1.5; 30% DMSO

Prior to polymerization, stock solutions of EBiB (8.8 μ L in 1.0 mL DMSO), CuBr₂ (26.88 mg in 10.0 mL DMSO), TPMA (13.1 mg in 1.0 mL DMSO), Me₆TREN (12.06 μ L in 1.0 mL DMSO) and EYH₂ (0.97 mg in 10 mL DMSO) were prepared. The ATRP cocktail was then prepared as follows. 137.8 μ L of HEA was placed in a 4 mL dark-glass vial. Subsequently, CuBr₂ stock (10 μ L), TPMA/Me₆TREN stock (4 μ L), EBiB stock (2 μ L), EYH₂ stock (2 μ L), DMSO (1.182 mL) and PBS solution (8 μ L) were added. Finally, the vial was filled with distilled water and the reaction mixture was stirred on a vortex. The final concentrations were HEA (300 mM), EBiB (0.03 mM), EYH₂ (0.075 μ M), CuBr₂ (0.03 mM), TPMA/Me₆TREN (0.045 mM), DMSO (30% v/v).

Polymerizations

The ATRP cocktail was transferred to a quartz ampoule equipped with a magnetic stirrer and sealed with two Teflon caps (**Figure S1b**). The sealed ampoule was installed in the optical pressure chamber with **a** sapphire window (U103, *Unipress*) allowing compression in the range of 0.1 MPa – 250 MPa (**Figure S1a**). Then, the ampoule was compressed using a pressure generator (17-4 PH/AISI 316Ti, *Sitec*) to the determined pressure conditions (**Figure S1c**). The polymerization mixture was stirred at 750 rpm under green LED light ($\lambda = 530$ nm, 9.46 μ W/mm²). All experiments were carried out at 298.15 K with a constant 5 cm distance between the light source (M530L4, *ThorLabs*) and HP chamber's sapphire window (**Figure S1d**). Samples were taken and analyzed by ¹H NMR and SEC techniques.

Chain-extension polymerization

To confirm chain-end fidelity, a chain extension experiment was performed. The macroinitiator $P(OEOMA_{500})$ was synthesized with $[OEOMA_{500}]_0/[EBiB]_0/[EYH_2]_0/[CuBr_2]_0/[TPMA]_0$ molar ratios of 1000/1/0.0025/1/1.5 (conv. = 7 %, $M_{nSEC-LALLS} = 33~700$, D = 1.119, sample S6). Produced sample (MI) was used to prepare an ATRP "cocktail" with OEOMA_{500} monomer of $[OEOMA_{500}]_0/[MI]_0/[EYH_2]_0/[CuBr_2]_0/[TPMA]_0$ molar ratios of 10000/1/0.0025/1/1.5. The sample was taken from the reaction mixture after 6 h of green light irradiation which allowed for complete monomer conversion (**Figure S8**). SEC analysis demonstrated a clear shift towards higher MW without any shoulder or tailing at lower MW (**Figure 7b**) and the resulting copolymer had absolute $M_{nSEC-LALLS}=1~234~300$ g/mol and D=1.290.

Figure S1. High-pressure setup: (a) optical pressure chamber and light source, (b) quartz ampule with a stirrer, (c) pressure generator, (d) optical pressure chamber with sapphire windows.

Figure S2. ¹H (a) and ¹³C (b) NMR spectra of the synthesized P(OEOMA₅₀₀) via HP&LI ATRP.

Figure S3. The semilogarithmic kinetic plots as a function of time for OEOMA₅₀₀ HP&LI ATRP at different pressure values.

Figure S4. Conversion *vs* polymerization time plots for OEOMA₅₀₀ HP&LI ATRP at different pressure values.

Figure S5. Pressure dependence of K_{ATRP} for HP&LI ATRP of OEOMA₅₀₀. Reaction conditions: [OEOMA₅₀₀]₀/[EBiB]₀/[EYH₂]₀/[CuBr₂]₀/[TPMA]₀ = 1000/1/0.0025/1/3. [OEOMA₅₀₀] = 300 mM, in PBS with DMSO (30% ν/ν) without deoxygenation of the reaction mixture, under green LEDs irradiation (530 nm, 370 mW/cm²) at 0.1–150 MPa.

Figure S6. SEC-LALLS traces of the P(OEOMA₅₀₀) synthesized *via* HP&LI ATRP. Reaction conditions: $[OEOMA_{500}]_0/[EBiB]_0/[EYH_2]_0/[CuBr_2]_0/[TPMA]_0 = 200/1/0.01/0.2/0.6$ 10% v/v DMSO (sample S1), 1000/1/0.0025/1/3 30% v/v DMSO (sample 5), 1000/1/0.0025/1/3 10% v/v DMSO (sample 3), 1000/1/0.0025/1/1.5 30% v/v DMSO; $[OEOMA_{500}] = 300$ mM in PBS without deoxygenation of the reaction mixture, under green LEDs irradiation (530 nm, 370 mW/cm²) at 0.1-125 MPa.

Figure S7. SEC-LALLS traces of P(OEOMA₅₀₀) (a) and P(OEOMA₅₀₀)-*bl*-P(OEOMA₅₀₀) (b) obtained *via* HP&LI ATRP with molar ratios of: $[OEOMA_{500}]_0/[EBiB]_0/[EYH_2]_0$ / $[CuBr_2]_0/[TPMA]_0 = 1000/1/0.0025/1/3$ (sample 4), 1000/1/ 0.0025/1/1.5 (sample 8), 10000/1/0.0025/ 1/1.5 (sample 1), 30000/1/0.0025/1/1.5 (sample 2). Sample S6 (M_n=33700, D=1.119) was used as MI instead of EBiB in chain extension reaction with molar ratios of: $[OEOMA_{500}]_0/[MI]_0/[EYH_2]_0/[CuBr_2]_0/[TPMA]_0$: 10000/1 /0.0025/1/1.5. $[OEOMA_{500}] = 300$ mM, in PBS with DMSO (30% v/v) without deoxygenation of the reaction mixture, under green LEDs irradiation (530 nm, 370 mW/cm²) at 0.1-225 MPa.

Figure S8. ¹H NMR spectra of the chain-extension polymerization mixture of OEOMA₅₀₀- $P(OEOMA_{500})$.

No	[OEOMA ₅₀₀] ₀ /[EBiB] ₀ /[EYH ₂] ₀ /[CuBr ₂] ₀ /[TPMA] ₀	DMSO v/v [%]	Time [h]	p [MPa]	Conv.ª [%]	DPa	M _{nth} ^a	$\underset{b}{M_{nSEC\text{-LALLS}}}$	Đ♭
S1	200/1/0.01/0.2/0.6	10	0.5	125	>99	200	100 000	121 970	1.473
S2	200/1/0.005/0.2/0.6	10	0.5	250	>99	200	100 000	101 100	1.512
S3	1000/1/0.005/1/3	10	1	0.1	63	630	315 000	65 554	1.544
S4	1000/1/0.0025/1/3	10	2	0.1	42	420	210 000	27 000	1.222
S5	1000/1/0.0025/1/3	10	2	125	79	790	395 000	59 100	1.405
S6	1000/1/0.0025/1/1.5	30	0.16	75	7	70	35 000	33 700	1.119
S7*	10000/1/0.0025/1/1.5	30	6	150	>99	9900 +70	4 985 000	1 234 300	1.290

Table S1. Results of OEOMA₅₀₀ HP&LI ATRP at different conditions.

^adetermined with ¹H NMR spectroscopy; ^bdetermined by SEC with low angle light scattering detector triple detection (SEC-LALLS) assuming 100% mass recovery (DMF+LiBr); sample S6 was used instead of EBiB as the macroinitiator for HP&LI chain extension experiment with OEOMA₅₀₀ macromonomer (dn/dc=0.031)

Table S2. Results of HEA HP&LI ATRP at different conditions.

No	[HEA] ₀ /[EBiB] ₀ /[EYH ₂] ₀ /[CuBr ₂] ₀ /[Cat] ₀	Catalyst	DMSO v/v [%]	Time [h]	p [MPa]	Conv.ª [%]	DPa	M _{nth} ^a	M _{nSEC-LALLS}	Đb
S1	200/1/0.005/0.2/0.6	TPMA	30	1	225	81	162	18 811	24 850	1.295
S2	200/1/0.005/0.2/0.6	Me ₆ TREN	30	1	225	>99	200	23 224	35 680	1.644
S3	200/1/0.01/0.2/0.3	Me ₆ TREN	10	0.5	225	51	102	11 844	12 560	1.591
S4	1000/1/0.0025/1/1.5	TPMA	30	1	0.1	10	100	11 612	10 300	1.329
S5	1000/1/0.0025/1/1.5	TPMA	30	1	225	51	510	59 221	68 950	1.288
S6	1000/1/0.0025/1/1.5	Me ₆ TREN	30	1	0.1	49	490	56 899	97 200	1.336
S7	1000/1/0.0025/1/1.5	Me ₆ TREN	30	1	225	94	940	109 153	149 900	1.380
S8	1000/1/0.0025/1/1.5	TPMA	100	1	225	-	-	-	-	-
S9	10000/1/0.0025/1/1.5	TPMA	30	70	225	41	4100	476 092	566 670	1.647
S10	10000/1/0.0025/1/1.5	Me ₆ TREN	30	70	225	31	3100	359 972	1 134 000	1.699

^adetermined with ¹H NMR spectroscopy; ^bdetermined by SEC with low angle light scattering detector triple detection (SEC-LALLS) assuming 100% mass recovery (DMF+LiBr).

Figure S9. ¹H NMR spectra of the synthesized PHEA *via* HP&LI ATRP.

Figure S10. SEC-LALLS traces of the PHEA obtained *via* HP&LI ATRP with TPMA (a) and Me₆TREN (b) as a catalyst. Reaction conditions: $[HEA]_0/[EBiB]_0/[EYH_2]_0/[CuBr_2]_0/[Cat]_0 = 200/1/0.01/0.2/0.6$ (sample S1&S2), 1000/1/0.0025/1/3 (sample S5&S7), 10000/1/0.0025/1/3 10% v/v DMSO (sample S9&S10); 30% v/v DMSO; [HEA] = 300 mM in PBS without deoxygenation of the reaction mixture, under green LEDs irradiation (530 nm, 370 mW/cm²) at 225 MPa.