Supplementary Information for

Synthesis of 1,4-Epoxy-2-aryltetrahydro-1-benzazepines via Rhodium(III)-Catalyzed C-H Allylation/Intramolecular 1,3dipolar Cycloaddition

Xuan Wang, s^{ab} Jianlong Li, s^{ac} Haifang Du, Weihong Liang, Cheng Luo, Yunshan Wu, Cheng Liu, s^{ac} Bo Liu, s^{acd}

^a Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.

^b Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China.

^c Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, PR China.

^d State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, 510006, PR China.

§*These authors contributed equally to this work.*

E-mail: Bo Liu, doctliu@263.net; Yunshan Wu, wysh2005@hotmail.com.

Table of contents

Abbreviations	S3
General remarks	S4
General procedure for the preparation of catalysts and nitrones	S4
List of nitrones :	S6
Optimization of reaction conditions	S17
Table S1. Optimization of reaction conditions ^a	S17
General procedure for the synthesis of 3 (taking 3a as an example):	S21
Experimental procedure for the synthesis of double molecular allylation product 5a	S31
Experimental procedure for N-O cleavage of 3a	S32
Preliminary mechanistic studies	\$33
Scheme S1. Experiments for mechanistic studies.	S33
Kinetic Isotope Effect Experiments: intermolecular competitive reactions	S33
Competition between nitrones	S34
Scheme S2 Plausible catalytic mechanism	S35
References	S36
¹ H NMR and ¹³ C NMR Spectra	S37
Crystallographic Data	.S107

Abbreviations

- THF: Tetrahydrofuran
- CH₂Cl₂: Dichlormethane
- CHCl₃: Chloroform
- DMSO: Dimethyl sulfoxide
- DMF: N,N-Dimethylformamide
- PE: Petroleum ether
- EA: Ethyl acetate
- EtOH: Ethanol
- CH₃CN: Acetonitrile
- TFEA: 2,2,2-Trifluoroethanol
- PhCl: Chlorobenzene
- PhCF₃:Trifluoromethylbenzene
- CDCl₃: Deuterated chloroform
- equiv: equivalents
- TLC: Thin layer chromatography
- HRMS: High resolution mass spectrometry
- r.t.: room temperature
- h: hours
- Hz : Hertz
- kV : Kilovolt
- µA: Microampere
- MHz : Megahertz

General remarks

Reagents were purchased from commercial suppliers (Macklin, Aladdin, Bidepharm, Energy Chemical, etc.) and used without further purification, unless noted otherwise. Solvents were obtained in analytical grade and used as received for reactions, extractions, eluents, precipitation, solid washing etc. unless indicated otherwise. Dry DCE, benzotrifluoride, chlorobenzene, 1,4-dioxane, CH₃CN, DMSO, DMF for reactions were purchased in a dry form from J&K Scientific,Macklin, Energy Chemical and stored over molecular sieves as well as under an atmosphere of dry N₂. Deuterated solvents for NMR were obtained from Macklin, and Energy Chemical, in the indicated purity grade and used as received for NMR spectroscopy.

¹HNMR spectra were recorded on Bruker 600 MHz (with cryoprobe) spectrometers in the indicated deuterated solvents. Data are reported as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant(s) (*J*, Hz), integration. All signals were referenced to the internal solvent signal as standard (CDCl₃, δ 7.26). ¹³C NMR spectra were recorded with ¹Hdecoupling on Bruker 151 MHz (with cryoprobe) spectrometers in the indicated deuterated solvent. Mass spectra were recorded on a Thermo LTQ Orbitrap xl with an ESI probe (capillary temperature: 350 °C, sheath gas flow: 40.00 arb, aux gas flow: 10.00 arb, sweep gas flow: 2.00 arb, spray voltage: 5.00 kV, source current: 100 μ A, capillary voltage: 6.00 V, tube lens: 90.00 V). Column chromatography (petroleumether/ethyl acetate) was performed on silica gel (200-300 mesh).

General procedure for the preparation of catalysts and nitrones

[Cp*RhCl₂]₂,^[1] [Cp*Rh(CH₃CN)₃](SbF₆)₂,^[2] nitrones^[3] were synthesized according to published procedures.

[Cp*RhCl₂]₂: The known title complex was prepared as follows. To RhCl₃•3H₂O (1.0 g, 3.8 mmol) in 25 mL of methanol was added excess pentamethylcyclopentadiene (0.9 mL, 5.7 mmol, 1.5 equiv). The mixture was stirred under reflux for 20 h. After the mixture was cooled to room temperature, the product was isolated by filtration and washing with ether. Yield 858 mg (73%).

$$[Cp*RhCl_2]_2 \xrightarrow{AgSbF_6} [Cp*Rh(CH_3CN)_3][SbF_6]_2$$

[Cp*Rh(CH₃CN)₃][SbF₆]₂: To the suspension of [Cp*RhCl₂]₂ (700 mg, 1.13 mmol) in dried CH₃CN (9 mL), the solution of AgSbF₆ (1.9 g, 5.53 mmol, 4.9 equiv) in dried CH₃CN (10 mL) was added. Then the white solid precipitated immediately. The reaction was stirred at r.t. for another 3 h. Then the solid was removed by filtration on celite and washed with CH₃CN (10 mL x 3). The filtrate was evaporated in *vacuo* to 10 mL, Et₂O (15 mL) was added dropwise and the pale yellow solid precipitated. The pale yellow solid was collected by filtration, washed with EtOAc (10 mL x 3) and Et₂O (10 mL), dired in *vacuo* to afford [Cp*Rh(CH₃CN)₃][SbF₆]₂ (858 mg, 76% yield).

One-pot synthesis

Nitroarene (1.0 equiv), aldehyde (1.1 equiv) and NH₄Cl (1.2 equiv) were added to a mixture of EtOH (2 mL/mmol of starting material) and H₂O (2 mL/mmol of starting material). Then the resulting mixture was cooled to 0 °C. Zinc powder (2.0 equiv) was added with several batches over 4 hours at 0 °C, and the reaction mixture was allowed to warm to room temperature and stirred for 16 hours. The reaction mixture was filtered through a pad of celite and washed with CH₂Cl₂. The filtrate was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, filtered and

concentrated to give the crude nitrones. Pure nitrones were obtained by recrystallization from ethanol or column chromatagraphy with silica gel.

List of nitrones:

For those nitrones (**1j-1m**, **1o-1q**, **1t-1u**, **1x**, **1ae**) whose analytical data can be easily found in other literature, only ¹H-NMR and LRMS data would be supplied below. For others, ¹H-NMR, ¹³C-NMR and HRMS data would be reported in the following part.

Compound **1a**: Yield 60% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.39 (dd, J = 7.1, 1.9 Hz, 2H), 7.90 (s, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.50 – 7.44 (m, 3H), 7.27 (d, J = 7.9 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 146.8, 140.2, 134.1, 130.8, 130.8, 129.6, 129.0, 128.6, 121.5, 21.1; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NO: 212.1070, found: 212.1076.

Compound **1b**: Yield 52% from recrystallization; ¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.34 (m, 2H), 7.92 (s, 1H), 7.82 – 7.70 (m, 2H), 7.47 (dtd, J = 8.0, 5.5, 4.9, 2.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 149.0, 134.6, 130.9, 130.5, 129.9, 129.1, 129.0, 128.6, 121.7; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₃H₁₂NO: 198.0913, found: 198.0909.

Compound **1c**: Yield 55% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.43 – 8.30 (m, 2H), 7.87 (s, 1H), 7.77 – 7.66 (m, 2H), 7.53 – 7.39 (m, 3H), 6.98 – 6.84 (m, 2H), 3.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 141.3, 132.7, 129.7, 127.9, 127.6, 121.9, 112.9, 54.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NO₂: 228.1019, found: 228.1011.

Compound 1d: Yield 58% from recrystallization; ¹H NMR (600 MHz, CDCl₃) δ 8.42 – 8.34 (m, 2H), 7.91 (s, 1H), 7.73 – 7.65 (m, 2H), 7.46 (dd, J = 5.2, 2.0 Hz, 3H), 7.32 – 7.24 (m, 2H), 2.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 141.3, 133.9, 130.8, 130.5, 128.9, 128.5, 125.9, 121.8, 15.3; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NOS: 244.0791, found: 244.0796.

Compound **1e**: Yield 46% from recrystallization; ¹H NMR (600 MHz, CDCl₃) δ 8.47 – 8.33 (m, 2H), 7.87 (s, 1H), 7.82 – 7.72 (m, 2H), 7.51 – 7.41 (m, 3H), 7.19 – 7.06 (m,

2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, J = 250.7 Hz), 145.1 (d, J = 3.0 Hz), 134.5, 131.0, 130.4, 129.0, 128.6, 123.6 (d, J = 8.8 Hz),115.9 (d, J = 23.3 Hz); HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₁₁FNO: 216.0819, found: 216.0812.

Compound **1f**: Yield 65% from recrystallization, ¹H NMR (600 MHz, CDCl₃) δ 8.42 – 8.35 (m, 2H), 7.90 (s, 1H), 7.76 – 7.70 (m, 2H), 7.49 – 7.46 (m, 3H), 7.46 – 7.42 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 147.3, 135.7, 134.6, 131.2, 130.3, 129.2, 129.0, 128.6, 123.0; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₃H₁₁ClNO: 232.0524, found: 232.0518.

Compound **1g**: Yield 53% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.44 – 8.31 (m, 1H), 7.90 (s, 1H), 7.71 – 7.63 (m, 1H), 7.63 – 7.55 (m, 1H), 7.48 (dd, J = 4.8, 1.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 147.8, 134.6, 132.2, 131.2, 130.3, 129.1, 128.7, 123.8, 123.2; HRMS (ESI⁺) m/z:calcd for [M+H]⁺ C₁₃H₁₁BrNO: 276.0019, found: 276.0028.

Compound **1h**: Yield 45% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.37 (m, 2H), 8.18 – 8.08 (m, 2H), 7.98 (s, 1H), 7.88 – 7.81 (m, 2H), 7.47 (dd, J = 5.1, 1.9 Hz, 3H), 4.39 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.3, 150.7, 134.3, 130.7, 130.4, 129.6, 129.3, 128.2, 127.7, 120.7, 60.5, 13.3;HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅NO₃: 270.1125, found: 270.1133.

Compound **1i**: Yield 42% from recrystallization;¹H NMR (600 MHz, CDCl₃) δ 8.41 (dd, J = 6.8, 2.9 Hz, 2H), 8.06 (d, J = 8.3 Hz, 2H), 7.99 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.57 – 7.44 (m, 3H), 2.64 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 151.7, 137.9, 135.4, 131.5, 130.2, 129.4, 129.3, 128.7, 122.0, 26.8; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₅H₁₄NO₂: 240.1019, found: 240.1026.

Compound **1j**: Yield 56% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 8.1 Hz, 2H), 7.89 (s, 1H), 7.78 (dd, J = 8.1, 1.6 Hz, 2H), 7.48 (qd, J = 7.6, 6.5, 3.8 Hz, 3H), 7.30 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₃NO: 212.1, found: 212.2.

Analytical data of compound 1j were identical to previously reported values.[4]

Compound 1k: Yield 41% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 8.7 Hz, 2H), 7.85 (s, 1H), 7.76 (dq, J = 7.9, 1.5 Hz, 2H), 7.45 (dddd, J = 13.7, 7.1, 3.6, 2.0 Hz, 3H), 6.98 (dt, J = 9.0, 1.7 Hz, 2H), 3.87 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄NO₂: 228.1, found: 228.1.

Analytical data of compound 1k were identical to previously reported values.[3]

Compound 11: Yield 43% from recrystallization, ¹H NMR (600 MHz, CDCl₃) δ 8.35 – 8.10 (m, 2H), 7.89 (s, 1H), 7.83 – 7.70 (m, 2H), 7.65 – 7.54 (m, 2H), 7.47 (dd, J = 5.3, 2.0 Hz, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₃H₁₁BrNO: 276.0, found: 276.1.

Analytical data of compound 11 were identical to previously reported values.^[5]

Compound **1m**: Yield 47% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.43 (d, J = 8.4 Hz, 2H), 8.17 – 8.08 (m, 2H), 7.99 (s, 1H), 7.82 – 7.71 (m, 2H), 7.57 – 7.41 (m, 3H), 3.93 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄NO₃: 256.1, found: 256.1.

Analytical data of compound 1m were identical to previously reported values.[3]

Compound **1n**: Yield 57% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 8.1 Hz, 2H), 8.00 (s, 1H), 7.83 – 7.65 (m, 4H), 7.58 – 7.35 (m, 3H);¹³C NMR (151 MHz, CDCl₃) δ 148.8, 133.6, 133.1, 131.7 (q, J = 32.5 Hz), 130.4, 129.2, 128.9,125.5 (q, J = 3.8 Hz), 123.7 (q, J = 272.3 Hz), 121.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₀F₃NO: 266.0787, found: 266.0792.

Compound **10**: Yield 52% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 8.4 Hz, 2H), 8.00 (s, 1H), 7.92 – 7.71 (m, 4H), 7.52 (h, J = 2.7 Hz, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₁N₂O: 223.1, found: 223.1. Analytical data of compound **1n** were identical to previously reported values.^[4]

Compound **1p**: Yield 63% from column chromatography (SiO₂, PE/EA = 5:1 v/v),¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 8.12 (d, *J* = 7.9 Hz, 1H), 7.88 (s, 1H), 7.84 – 7.72 (m, 2H), 7.47 (d, *J* = 7.6 Hz, 3H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 2.42 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₄H₁₄NO: 212.1, found: 212.2.

Analytical data of compound 1p were identical to previously reported values.[6]

Compound **1q**: Yield 55% from column chromatography (SiO₂, PE/EA = 5:1 v/v),¹H NMR (600 MHz, CDCl₃) δ 8.38 (dd, J = 2.7, 1.5 Hz, 1H), 7.92 (s, 1H), 7.85 – 7.69 (m, 2H), 7.65 (dt, J = 7.8, 1.1 Hz, 1H), 7.55 – 7.43 (m, 3H), 7.37 (t, J = 8.0 Hz, 1H), 7.04 (ddd, J = 8.2, 2.7, 0.9 Hz, 1H), 3.89 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₄H₁₄NO₂: 228.1, found: 228.3.

Analytical data of compound 1q were identical to previously reported values.[4]

Compound **1r**: Yield 49% from recrystallization, ¹H NMR (600 MHz, CDCl₃) δ 8.56 (s, 1H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.90 (s, 1H), 7.80 – 7.69 (m, 2H), 7.47 (d, *J* = 5.3 Hz, 3H), 7.40 (dt, *J* = 15.5, 8.0 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 148.8, 134.6, 133.2, 132.1, 130.7, 130.2, 129.7, 129.2, 128.3, 127.0, 121.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₁₁CINO: 232.0524, found: 232.0521.

Compound **1s**: Yield 56% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.69 (t, J = 1.8 Hz, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.88 (s, 1H), 7.78 – 7.68 (m, 2H), 7.63 – 7.52 (m, 1H), 7.47 (dd, J = 5.1, 2.0 Hz, 3H), 7.32 (t, J = 7.9 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.7, 133.6, 133.0, 132.3, 131.2, 130.2, 130.0, 129.2, 127.4, 122.7, 121.6;HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₁₁BrNO: 276.0019, found: 276.0025.

Compound **1t**: Yield 51% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 9.56 – 9.26 (m, 1H), 8.07 (s, 1H), 7.86 – 7.68 (m, 2H), 7.64 – 7.45 (m, 3H), 7.45 – 7.30 (m, 2H), 2.45 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NO: 212.1, found: 212.2.

Analytical data of compound 1t were identical to previously reported values.[7]

Compound **1u**: Yield 60% from column chromatography (SiO₂, PE/EA = 5:1 v/v),¹H NMR (600 MHz, CDCl₃) δ 9.48 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.40 (s, 1H), 7.78 (dt, *J* = 6.5, 1.4 Hz, 2H), 7.55 – 7.36 (m, 4H), 7.09 (t, *J* = 7.7 Hz, 1H), 7.00 – 6.76 (m, 1H), 3.87 (s, 3H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NO₂: 228.1, found: 228.2. Analytical data of compound **1u** were identical to previously reported values.^[4]

Compound **1v**: Yield 42% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 9.54 (td, J = 8.7, 6.8 Hz, 1H), 8.14 (s, 1H), 7.85 – 7.66 (m, 2H), 7.56 – 7.43 (m, 3H), 7.01 (td, J = 8.6, 2.5 Hz, 1H), 6.88 (ddd, J = 11.0, 8.5, 2.6 Hz, 1H); ¹³C NMR (151 MHz,

CDCl₃) δ 163.7 (dd, J = 256.2, 12.6 Hz), 161.9 (dd, J = 256.6, 11.7 Hz), 148.9, 130.2 (dd, J = 8.6, 2.3 Hz), 130.2, 129.6, 129.4, 129.2, 125.8 (d, J = 6.9 Hz), 121.6,115.9 (dd, J = 8.8, 3.9 Hz), 111.6 (dd, J = 20.8, 3.6 Hz), 103.6 (dd, J = 25.7, 25.7 Hz); HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₉F₂NO: 234.0725, found: 234.0728.

Compound **1w**: Yield 48% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.80 (dd, J = 7.6, 2.1 Hz, 2H), 7.51 – 7.44 (m, 3H), 7.39 (tt, J = 8.4, 6.2 Hz, 1H), 6.98 (t, J = 8.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6 (dd, J = 255.6, 7.2 Hz), 148.0, 131.7 (t, J = 10.4Hz), 130.5, 129.0, 123.9, 121.8, 111.7 (dd, J = 21.2, 3.6 Hz), 108.4 (d, J = 3.1 Hz); HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₃H₉F₂NO: 234.0725, found: 234.0726.

Compound **1x**: Yield 58% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.06 (s, 1H), 7.86 – 7.79 (m, 2H), 7.55 – 7.47 (m, 3H), 7.46 – 7.39 (m, 2H), 7.33 (dd, J = 8.7, 7.4 Hz, 1H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₃H₁₀Cl₂NO: 266.0, found: 266.3.

Analytical data of compound 1x were identical to previously reported values.[8]

Compound **1y**: Yield 55% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.36 (dd, J = 6.7, 3.0 Hz, 2H), 7.57 (s, 1H), 7.51 – 7.44 (m, 3H), 7.38 (dd, J = 7.7, 1.3 Hz, 1H), 7.34 (td, J = 7.5, 1.3 Hz, 1H), 7.32 – 7.25 (m, 2H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.5, 137.5, 131.6, 131.4, 130.8, 130.2, 129.3, 128.7, 128.6, 126.6, 123.3, 17.0; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NO: 212.1070, found: 212.1073.

Compound **1z**: Yield 59% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.31 (m, 2H), 7.93 (s, 1H), 7.63 – 7.51 (m, 2H), 7.48 (m, 3H), 7.44 (td, *J* = 8.1, 5.8 Hz, 1H), 7.17 (td, *J* = 8.3, 1.9 Hz, 1H);¹³C NMR (151 MHz, CDCl₃) δ 162.6 (d, *J* = 249.2 Hz), 161.7, 150.2 (d, *J* = 9.1 Hz), 134.9, 131.3, 130.4 (d, *J* = 7.6 Hz), 130.2, 129.2, 128.7, 117.1 (d, *J* = 3.0 Hz), 117.0 (d, *J* = 21.1 Hz), 109.9 (d, *J* = 25.7).HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₁₁FNO: 216.0819, found: 216.0827.

Compound **1aa**: Yield 65% from column chromatography (SiO₂, PE/EA = 5:1 v/v),¹H NMR (600 MHz, CDCl₃) δ 8.42 – 8.34 (m, 2H), 7.90 (s, 1H), 7.59 (d, *J* = 1.9 Hz, 1H), 7.52 (dd, *J* = 8.0, 2.1 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 139.3, 134.5, 130.8, 130.5, 128.9, 128.8, 128.5, 122.3, 118.6, 21.3; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₄H₁₄NO: 212.1070, found: 212.1076.

Compound **1ab**: Yield 56% from column chromatography (SiO₂, PE/EA = 2:1 v/v),¹H NMR (600 MHz, CDCl₃) δ 8.40 (dd, J = 6.8, 3.1 Hz, 2H), 8.34 (t, J = 1.9 Hz, 1H), 8.06 – 8.01 (m, 2H), 8.00 (s, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.51 – 7.46 (m, 3H), 2.65 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 149.1, 137.7, 135.0, 131.3, 130.2, 129.6, 129.5, 129.2, 128.7, 126.1, 121.2, 26.8.; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₅H₁₄NO₂: 240.1019, found: 240.1025.

Compound **1ac**: Yield 47% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.45 – 8.33 (m, 2H), 7.90 (s, 1H), 7.75 (ddd, J = 10.4, 6.9, 2.7 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.53 – 7.47 (m, 3H), 7.32 – 7.27 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 151.0 (dd, J = 252.8, 12.5 Hz), 150.0 (dd, J = 251.2, 12.9 Hz), 145.1 (dd, J = 6.6, 3.4 Hz), 134.7, 131.4, 130.1, 129.1, 128.7, 117.6 (dd, J = 6.9, 3.9 Hz), 117.5 (d, J = 18.9 Hz), 112.1 (d, J = 21.1 Hz); HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₃H₁₀F₂NO: 234.0725, found:234.0732.

Compound **1ad**: Yield 53% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 7.80 (dd, J = 9.7, 0.9 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.58 (dd, J = 16.2, 9.7 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.48 – 7.39 (m, 3H), 7.10 (d, J = 16.2 Hz, 1H), 6.93 – 6.86 (m, 2H), 3.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 147.3, 139.9, 136.7, 129.7, 129.1, 129.0, 128.8, 121.3, 116.9, 114.3, 55.3; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₆H₁₆NO₂: 254.1176, found: 254.1179.

Compound **1ae**: Yield 42% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 8.09 (s, 1H), 8.04 – 7.97 (m, 2H), 7.90 (d, J = 8.7 Hz, 1H), 7.84 (ddd, J = 8.0, 6.3, 1.3 Hz, 3H), 7.60 – 7.46 (m, 6H); LRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₇H₁₄NO: 248.1, found: 248.3.

Analytical data of compound lae were identical to previously reported values.[4]

Compound 1af: Yield 51% from recrystallization, ¹H NMR (600 MHz, CDCl₃) & 8.15

(s, 1H), 8.00 (d, *J* = 3.6 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.57 (s, 1H), 7.52 – 7.36 (m, 3H), 6.63 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 147.4, 147.1, 144.6, 129.9, 129.1, 124.3, 120.9, 116.4, 112.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₁H₉NO₂: 188.0706, found: 188.0709.

Compound **1ag**: Yield 53% from recrystallization,¹H NMR (600 MHz, CDCl₃) δ 9.15 (s, 1H), 8.06 (s, 1H), 7.76 (d, *J* = 7.3 Hz, 2H), 7.45 (p, *J* = 6.3, 5.5 Hz, 4H), 7.36 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 131.4, 129.8, 129.8, 129.1, 128.1, 125.4, 121.4; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₁H₉NOS: 204.0478, found: 204.0475.

Optimization of reaction conditions

Table S1. Optimization of reaction conditions^a

Allyl		Catalanta	A 11:4:	G 1 (T (0C)	Yield
Entry	precursor	ursor Additive (equiv.)		Solvent	I (°C)	(%)°
1 ^b	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	r.t.	0
2 ^b	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	80	43
3 ^b	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	120	55
4 ^b	2b	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	120	49
5 ^b	2c	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	120	30
6	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (2.0)	DCE	120	61
7	2a	2.5% [Cp*RhCl ₂] ₂ /10% AgSbF ₆	AgOAc (2.0)	DCE	120	56
8	2a	-	AgOAc (2.0)	DCE	120	0
9	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	-	DCE	120	0
10	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	$Cu(OAc)_2(2.0)$	DCE	120	0
11	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (2.0)	DCE	120	< 10
12	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ O (2.0)	DCE	120	< 10
13	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgF (2.0)	DCE	120	< 5
14	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	CsOAc (2.0)	DCE	120	20
15	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	PivOH (2.0)	DCE	120	< 10
16	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	NaOAc (2.0)	DCE	120	18
17	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (0.5)	DCE	120	28
18	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.0)	DCE	120	54
19	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	DCE	120	61
20	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	toluene	120	41
21	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	PhCF ₃	120	47
22	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	PhCl	120	65
23	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	1,4-dioxane	120	46
24	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	CH ₃ CN	120	< 10
25	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	TFE	120	19
26	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	DMF	120	< 10
27	2a	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	AgOAc (1.5)	DMSO	120	< 10

[a] Reaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), additive (0.3 mmol) and solvent (2 mL) was stirred at indicated temperature for 10 h; [b] 1a (0.2 mmol), 2 (0.3 mmol), catalyst (5 mol%), additive (0.4 mmol) and solvent (2 mL) was stirred at indicated temperature for 10 h; [c] Yield of isolated product. PhCF₃: benzotrifluoride; PhCl: chlorobenzene.

Table S1-1. Screening of temperature^a

H H 1a	2a, R = COOEt	$5\% [Cp*Rh(CH_{3}CN)_{3}](SbF_{6})_{2}$ 2.0 equiv AgOAc $DCE, T ^{\circ}C, 10 h$ $3a$	
Entry	<i>T</i> (°C)	Yield (%) ^c	
1	r.t.	0	
2	80	43	
3	120	55	

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), [Cp*Rh(CH₃CN)₃](SbF₆)₂(5 mol%), AgOAc (0.4 mmol) and DCE (2 mL) was stirred at indicated temperature for 10 h; [b] Yield of isolated product.

Table S1-2.Screening of allylprecursor^a

[a] Reaction conditions: 1a (0.2 mmol), 2 (0.3 mmol), [Cp*Rh(CH₃CN)₃](SbF₆)₂(5 mol%), AgOAc (0.4 mmol) and DCE (2 mL) was stirred at120 °C for 10 h; [b] Yield of isolated product.

Table S1-3.Screening of substrate ratio^a

Entry	1a (mmol)	2a (mmol)	Yield (%) ^b
3	0.2	0.3	55

6	0.3	0.2	61

[a] Reaction conditions: 1a , 2a, $[Cp*Rh(CH_3CN)_3](SbF_6)_2(5 \text{ mol}\%)$, AgOAc (0.4 mmol) and DCE (2 mL) was stirred at 120 °C for 10 h; [b] Yield of isolated product.

Table S1-4.Screening of catalyst^a

) +O	5% catalyst 2.0 equiv AgOAc	
Н	2a , R = COOEt	DCE, 120 °C ,10 h	
1a			3a

Entry	Catalyst	Yield (%) ^c
6	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	61
7	$2.5\% \ [Cp*RhCl_2]_2/10\% \ AgSbF_6$	56
8	none	0

[a] Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), catalyst(5 mol%), AgOAc (0.4 mmol) and DCE (2 mL) was stirred at 120 °C for 10 h; [b] Yield of isolated product.

Table S1-5. Screening of additive^a

Entry	additive	Yield (%) ^b
6	AgOAc	61
9	none	0
10	Cu(OAc) ₂	0
11	Ag ₂ CO ₃	< 10
12	Ag ₂ O	< 10
13	AgF	< 5
14	CsOAc	20
15	PivOH	< 10
16	NaOAc	18

[a] Reaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), $[Cp*Rh(CH_3CN)_3](SbF_6)_2(5 mol\%)$, additive (0.4 mmol) and DCE (2 mL) was stirred at 120 °C for 10 h; [b] Yield of isolated product.

Table S1-6.Screening of AgOAc equivalent^a

[a] Reaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), $[Cp*Rh(CH_3CN)_3](SbF_6)_2(5 mol\%)$, AgOAc and DCE (2 mL) was stirred at 120 °C for 10 h; [b] Yield of isolated product.

Table S1-7. Screening of solvent^a

Entry	Solvent	Yield (%) ^b
19	DCE	61
20	toluene	41
21	PhCF ₃	47
22	PhCl	65
23	1,4-dioxane	46
24	CH ₃ CN	< 10
25	TFE	19
26	DMF	< 10
27	DMSO	< 10

[a] Reaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), [Cp*Rh(CH₃CN)₃](SbF₆)₂(5 mol%), AgOAc (0.3 mmol) and solvent (2 mL) was stirred at 120 °C for 10 h; [b] Yield of isolated product.

 $[Cp*Rh(CH_3CN)_3](SbF_6)_2$ (8 mg, 0.01 mmol, 5% equiv), AgOAc (50 mg, 0.3 mmol, 1.5 equiv), nitrone **1a** (63 mg, 0.3 mmol, 1.5 equiv), the allyl precursor **2a** (26 mg, 0.2 mmol, 1.0 equiv) and chlorobenzene (2 mL) were added to a test tube. The reaction mixture was stirred at 120 °C for 10 h. After cooling to room temperature, the reaction mixture was filtered through a pad of celite washing with CH₂Cl₂. The solvents was removed under reduced pressure and the crude reaction mixture was purified by column chromatography on silica gel using PE/EA (20:1) as eluents to afford the title compound **3a**.

Compound **3a**: Yield 65%, ¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.41 (m, 2H), 7.41 – 7.32 (m, 2H), 7.27 – 7.24 (m, 1H), 6.97 (d, J = 1.2 Hz, 2H), 6.94 (q, J = 1.1 Hz, 1H), 4.98 – 4.90 (m, 1H), 4.63 – 4.53 (m, 1H), 3.38 (dd, J = 16.5, 5.4 Hz, 1H), 2.68 – 2.57 (m, 2H), 2.51 (d, J = 16.5 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 143.9, 135.5, 130.3, 128.5, 127.2, 126.9, 126.4, 124.9, 121.8, 75.5, 75.1, 42.5, 34.7, 21.0; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺C₁₇H₁₈NO: 252.1383, found: 252.1391.

Compound **3b**: Yield 57%,¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.21 – 7.11 (m, 3H), 7.11 – 7.06 (m, 1H), 4.97 (ddd, J = 8.0, 4.7, 2.6 Hz, 1H), 4.63 (dd, J = 7.7, 3.6 Hz, 1H), 3.43 (dd, J = 16.5, 5.3 Hz, 1H), 2.66 – 2.58 (m, 2H), 2.56 (d, J = 16.5 Hz, 1H); ¹³C NMR (151

MHz, CDCl₃) δ 150.6, 143.7, 129.8, 128.5, 126.9, 126.6, 126.4, 125.9, 125.2, 122.0, 75.4, 75.1, 42.5, 34.7; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₆NO: 238.1226, found: 238.1253.

Compound **3c**: Yield 47%, ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.43 (m, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.31 – 7.21 (m, 1H), 7.02 (d, J = 8.6 Hz, 1H), 6.71 (dd, J = 8.6, 2.9 Hz, 1H), 6.67 (d, J = 2.8 Hz, 1H), 4.94 (td, J = 5.8, 3.8 Hz, 1H), 4.56 (dd, J = 6.9, 4.5 Hz, 1H), 3.79 (s, 3H), 3.40 (dd, J = 16.6, 5.4 Hz, 1H), 2.64 – 2.56 (m, 2H), 2.53 (d, J = 16.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 157.5, 143.8, 143.8, 128.4, 126.9, 126.4, 126.3, 122.9, 114.6, 112.0, 75.5, 74.8, 55.4, 42.5, 35.0;HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO₂: 268.1332, found: 268.1266.

Compound **3d**: Yield 44%, ¹H NMR (600 MHz, CDCl₃) δ 7.46 (dd, J = 8.0, 1.4 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.32 – 7.21 (m, 1H), 7.08 (dd, J = 8.3, 2.1 Hz, 1H), 7.06 – 6.96 (m, 2H), 4.95 (ddd, J = 7.6, 5.4, 2.3 Hz, 1H), 4.58 (dd, J = 8.2, 3.2 Hz, 1H), 3.39 (dd, J = 16.6, 5.4 Hz, 1H), 2.66 – 2.55 (m, 2H), 2.53 (d, J = 16.6 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 143.6, 135.5, 128.5, 128.2, 127.0, 126.4, 126.0, 125.3, 122.5, 75.4, 74.9, 42.5, 34.7, 16.4; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺C₁₇H₁₇NOSNa: 306.0923, found: 306.0934.

Compound **3e**: Yield 63%,¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.36 (dd, J = 8.5, 7.0 Hz, 2H), 7.32 – 7.25 (m, 1H), 7.05 (dd, J = 8.5, 5.2 Hz, 1H), 6.90 – 6.82 (m, 2H), 5.03 – 4.88 (m, 1H), 4.58 (dd, J = 8.3, 3.1 Hz, 1H), 3.41 (dd, J = 16.8, 5.5 Hz, 1H), 2.66 – 2.56 (m, 2H), 2.58 – 2.51 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.45(d, J = 244.0 Hz),146.4(d, J = 2.7 Hz), 143.5, 128.5, 127.3(d, J = 8.3 Hz), 127.0, 126.3, 123.5(d, J = 8.5 Hz), 116.1(d, J = 22.7 Hz), 113.5(d, J = 22.7 Hz), 75.4, 74.5, 42.5, 34.8; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅FNO: 256.1132, found: 256.1121.

Compound **3f**: Yield 66%, ¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.36 (dd, J = 8.5, 7.0 Hz, 2H), 7.29 – 7.26 (m, 1H), 7.17 – 7.11 (m, 2H), 7.02 (d, J = 8.1 Hz, 1H), 4.95 (ddd, J = 7.5, 5.3, 2.0 Hz, 1H), 4.58 (dd, J = 8.5, 2.9 Hz, 1H), 3.39 (ddd, J = 16.8, 5.5, 1.2 Hz, 1H), 2.67 – 2.55 (m, 2H), 2.53 (d, J = 16.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.10, 142.34, 130.12, 128.62, 127.50, 126.22, 126.07, 125.76, 125.33, 122.33, 74.35, 73.60, 41.48, 33.56; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅CINO: 272.0837, found: 272.0842.

Compound **3g**: Yield 61%, ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.42 (m, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.32 – 7.24 (m, 3H), 7.06 – 6.93 (m, 1H), 5.05 – 4.76 (m, 1H), 4.58 (dd, J = 8.5, 2.9 Hz, 1H), 3.40 (ddd, J = 16.7, 5.4, 1.2 Hz, 1H), 2.73 – 2.46 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 143.3, 132.6, 129.7, 128.5, 127.7, 127.1, 126.3, 123.7, 118.9, 75.3, 74.6, 42.5, 34.5; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₆H₁₅BrNO: 316.0332, found: 316.0338.

Compound **3h**: Yield 63%, ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H), 7.51 – 7.44 (m, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.13 (d, J = 8.0 Hz, 1H), 4.99 (ddd, J = 7.4, 5.3, 1.9 Hz, 1H), 4.64 (dd, J = 8.6, 2.6 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.55 – 3.39 (m, 1H), 2.66 (dddd, J = 12.9, 7.7, 2.8, 1.2 Hz, 1H), 2.63 – 2.55 (m, 2H), 1.39 (dd, J = 7.4, 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 154.6, 143.2, 131.4, 128.5, 128.2, 128.1, 127.1, 126.3, 125.5, 121.9, 75.3, 74.8, 61.0, 42.5, 34.6, 14.3; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₉H₂₀NO₃: 310.1438, found: 310.1483.

Compound **3i**: Yield 67%, ¹H NMR (600 MHz, CDCl₃) δ 7.87 – 7.70 (m, 2H), 7.55 – 7.43 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 – 7.25 (m, 1H), 7.21 – 7.12 (m, 1H), 5.00 (ddd, *J* = 7.5, 5.3, 1.9 Hz, 1H), 4.64 (dd, *J* = 8.6, 2.7 Hz, 1H), 3.52 – 3.42 (m, 1H), 2.67 (dddd, *J* = 12.8, 7.7, 2.8, 1.2 Hz, 1H), 2.65 – 2.55 (m, 5H); ¹³C NMR (151 MHz, CDCl₃) δ 197.4, 154.9, 143.1, 134.9, 130.2, 128.5, 127.2, 127.1, 126.3, 125.8, 122.0, 75.2, 74.8, 42.4, 34.7, 26.6; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺C₁₈H₁₇NO₂Na: 302.1152, found: 302.1156.

Compound **3j**: Yield 70%, ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.33 (m, 2H), 7.23 – 7.12 (m, 5H), 7.08 (dd, J = 7.3, 1.3 Hz, 1H), 4.97 (ddd, J = 7.7, 5.4, 2.4 Hz, 1H), 4.60 (dd, J = 8.1, 3.2 Hz, 1H), 3.42 (dd, J = 16.5, 5.3 Hz, 1H), 2.66 – 2.57 (m, 2H), 2.55 (d, J = 16.5 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 140.8, 136.6, 129.8, 129.1, 126.5, 126.3, 125.9, 125.2, 121.9, 75.3, 75.0, 42.4, 34.7, 21.0; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO: 252.1383, found: 252.1358.

Compound **3k**: Yield 46%, ¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.35 (m, 2H), 7.21 – 7.11 (m, 3H), 7.09 (dd, *J* = 7.3, 1.3 Hz, 1H), 6.95 – 6.81 (m, 2H), 4.98 (ddd, *J* = 7.5, 5.3, 2.3 Hz, 1H), 4.58 (dd, *J* = 8.1, 3.0 Hz, 1H), 3.81 (s, 3H), 3.51 – 3.28 (m, 1H), 2.77 – 2.38 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.57, 150.53, 135.98, 129.88, 129.78, 127.64, 126.53, 125.89, 125.19, 121.94, 113.80, 75.07, 55.31, 42.36, 34.68; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO₂: 268.3353, found: 268.3368.

Compound **3I**: Yield 57%, ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.40 – 7.30 (m, 2H), 7.23 – 7.10 (m, 3H), 7.06 (dd, *J* = 7.2, 1.6 Hz, 1H), 4.95 (ddd, *J* = 7.5, 5.3, 2.0 Hz, 1H), 4.57 (dd, *J* = 8.5, 2.8 Hz, 1H), 3.42 (dd, *J* = 16.6, 5.4 Hz, 1H), 2.65 – 2.50 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.2, 142.8, 131.5, 129.8, 128.2, 126.6, 126.1, 125.2, 121.9, 120.8, 75.1, 74.7, 42.5, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅BrNO: 316.0332, found: 316.0349.

Compound **3m**: Yield 72%, ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.16 (dtd, J = 13.8, 7.1, 4.8 Hz, 3H), 7.11 – 7.03 (m, 1H), 4.96 (ddd, J = 7.7, 5.4, 1.7 Hz, 1H), 4.66 (dd, J = 8.7, 2.8 Hz, 1H), 3.92 (d, J = 0.8 Hz, 3H), 3.43 (dd, J = 16.6, 5.4 Hz, 1H), 2.72 – 2.50 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 150.2, 148.8, 129.8, 128.7, 126.6, 126.4, 126.1, 125.2, 121.9, 77.0, 75.1, 74.9, 52.0, 42.6, 34.6; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺C₁₈H₁₇NO₃Na: 318.1101, found: 318.1112.

Compound **3n**: Yield 69%, ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.54 (m, 4H), 7.22 – 7.11 (m, 3H), 7.07 (dd, J = 7.1, 1.8 Hz, 1H), 4.97 (ddd, J = 7.5, 5.2, 1.9 Hz, 1H), 4.67 (dd, J = 8.7, 2.7 Hz, 1H), 3.43 (dd, J = 16.6, 5.4 Hz, 1H), 2.66 (ddd, J = 12.7, 8.7, 2.0 Hz, 1H), 2.61 – 2.54 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 147.6, 129.9, 129.1 (q, J = 32.5 Hz), 126.7, 126.7, 126.2, 125.4 (q, J = 3.8 Hz), 125.2, 124.2 (q, J = 271.8 Hz), 121.9, 75.2, 74.7, 42.6, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₅F₃NO: 306.1101, found: 306.1125.

Compound **30**: Yield 73%, ¹H NMR (600 MHz, CDCl₃) δ 7.66 – 7.63 (m, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.22 – 7.11 (m, 3H), 7.11 – 7.02 (m, 1H), 4.96 (ddd, J = 7.5, 5.3, 1.7 Hz, 1H), 4.65 (dd, J = 8.8, 2.7 Hz, 1H), 3.43 (dd, J = 16.7, 5.4 Hz, 1H), 2.66 (ddd, J = 12.7, 8.8, 1.9 Hz, 1H), 2.60 – 2.51 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 148.9, 132.3, 129.9, 127.1, 126.7, 126.3, 125.1, 121.8, 118.9, 110.7, 75.2, 74.6, 42.6, 34.5; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₅N₂O: 263.1179, found: 263.1185.

Compound **3p**: Yield 41%, ¹H NMR (600 MHz, CDCl₃) δ 7.33 (dq, J = 1.9, 1.0 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.19 – 7.15 (m, 1H), 7.15 – 7.12 (m, 2H), 7.08 (dd, J = 7.2, 1.3 Hz, 2H), 4.97 (ddd, J = 7.6, 5.4, 2.4 Hz, 1H), 4.59 (dd, J = 8.1, 3.3 Hz, 1H), 3.43

(dd, J = 16.5, 5.4 Hz, 1H), 2.67 – 2.57 (m, 2H), 2.55 (d, J = 16.5 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 143.7, 138.2, 129.8, 128.4, 127.7, 127.0, 126.6, 125.9, 125.3, 123.5, 122.0, 75.4, 75.1, 42.5, 34.7, 21.5; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO: 252.1383, found: 252.1326.

Compound **3q**: Yield 49%, ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, J = 7.9 Hz, 1H), 7.20 – 7.14 (m, 1H), 7.16 – 7.10 (m, 2H), 7.08 (dt, J = 7.7, 1.5 Hz, 2H), 7.02 (dp, J = 7.6, 0.7 Hz, 1H), 6.81 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 4.96 (ddd, J = 7.9, 5.5, 3.0 Hz, 1H), 4.67 – 4.54 (m, 1H), 3.84 (s, 3H), 3.42 (dd, J = 16.5, 5.4 Hz, 1H), 2.66 – 2.57 (m, 2H), 2.55 (d, J = 16.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.8, 151.6, 146.4, 130.8, 130.5, 127.6, 127.0, 126.2, 123.0, 119.7, 113.5, 113.0, 76.3, 76.0, 56.3, 43.6, 35.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO₂: 268.1333, found: 268.1358.

Compound **3r**: Yield 61%, ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 2.0 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.22 – 7.13 (m, 2H), 7.13 – 7.03 (m, 3H), 6.99 (dd, J = 7.3, 1.6 Hz, 1H), 4.89 (td, J = 7.1, 6.4, 2.5 Hz, 1H), 4.50 (dd, J = 8.1, 3.4 Hz, 1H), 3.35 (dd, J = 16.6, 5.4 Hz, 1H), 2.62 – 2.36 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.2, 145.7, 134.4, 129.8, 129.7, 127.1, 126.7 126.7, 126.1, 125.2, 124.6, 121.9, 75.1, 74.7, 42.5, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅CINO: 272.0837, found: 272.0825.

Compound **3s**: Yield 64%, ¹H NMR (600 MHz, CDCl₃) δ 7.66 (t, J = 1.9 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.22 (t, J = 7.8 Hz, 1H), 7.20 – 7.12 (m, 3H), 7.07 (dd, J = 7.2, 1.6 Hz, 1H), 4.96 (ddd, J = 7.3, 5.4, 2.4 Hz, 1H), 4.58 (dd, J = 8.1, 3.3 Hz, 1H), 3.42 (dd, J = 16.6, 5.4 Hz, 1H), 2.65 – 2.47 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 146.0, 130.0, 129.8, 129.5, 126.7, 126.1, 125.1, 125.1, 122.6, 121.9, 75.1, 74.7, 42.5, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₅BrNO: 317.2053, found: 317.2073.

Compound **3t**: Yield 56%, ¹H NMR (600 MHz, CDCl₃) δ 7.76 (dd, J = 7.8, 1.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.21 – 7.12 (m, 5H), 7.07 (dd, J = 6.8, 1.5 Hz, 1H), 4.94 (ddd, J = 7.6, 5.4, 1.9 Hz, 1H), 4.73 (dd, J = 8.7, 2.8 Hz, 1H), 3.43 (dd, J = 16.6, 5.4 Hz, 1H), 2.63 (ddd, J = 12.4, 8.6, 1.9 Hz, 1H), 2.56 (d, J = 16.5 Hz, 1H), 2.46 (dddd, J = 12.2, 7.8, 2.9, 1.3 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.8, 141.8, 134.0, 130.0, 129.8, 126.8, 126.6, 126.2, 125.9, 125.8, 125.3, 121.9, 75.0, 72.5, 42.1, 34.7, 19.7; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₇H₁₈NO: 252.1383, found: 252.1394.

Compound **3u**: Yield 59%, ¹H NMR (600 MHz, CDCl₃) δ 7.75 (ddd, J = 7.5, 1.8, 0.7 Hz, 1H), 7.25 (td, J = 7.8, 1.7 Hz, 1H), 7.19 – 7.11 (m, 3H), 7.07 (dt, J = 7.5, 1.1 Hz, 1H), 7.01 (td, J = 7.5, 1.1 Hz, 1H), 6.86 (dd, J = 8.2, 1.1 Hz, 1H), 4.89 (td, J = 7.9, 7.2, 2.0 Hz, 2H), 3.81 (s, 3H), 3.41 (dd, J = 16.5, 5.4 Hz, 1H), 2.71 – 2.33 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.8, 150.8, 131.9, 129.7, 127.8, 126.7, 126.4, 125.7, 125.4, 122.0, 120.5, 109.9, 74.8, 70.0, 55.2, 42.1, 34.8; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄F₂NO: 268.1332, found: 268.1354.

Compound **3v**: Yield 68%, ¹H NMR (600 MHz, CDCl₃) δ 7.74 (td, J = 8.6, 6.5 Hz, 1H), 7.23 – 7.11 (m, 3H), 7.06 (dd, J = 7.2, 1.7 Hz, 1H), 6.90 (tdd, J = 8.5, 2.6, 1.1 Hz, 1H), 6.78 (ddd, J = 10.3, 8.8, 2.5 Hz, 1H), 4.94 (ddd, J = 7.5, 5.3, 1.8 Hz, 1H), 4.83 (dt, J = 8.7, 1.9 Hz, 1H), 3.50 – 3.34 (m, 1H), 2.63 (ddd, J = 12.8, 8.6, 1.9 Hz, 1H), 2.56 (d, J = 16.6 Hz, 1H), 2.50 (dddt, J = 12.9, 7.7, 2.7, 1.3 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.9 (dd, J = 247.6, 12.1 Hz), 159.6 (dd, J = 247.6, 12.1 Hz), 150.1, 129.8, 128.8 (dd, J = 9.1, 4.5 Hz), 126.7 (dd, J = 13.6, 4.5 Hz), 126.7, 126.2, 125.1, 122.0, 111.1 (dd, J = 21.1, 3.0 Hz), 103.3 (dd, J = 25.7, 25.7 Hz), 75.0, 68.5 (d, J = 1.5 Hz), 41.9, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄F₂NO: 274.1038, found: 274.1045.

Compound **3w**: Yield 54%, ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 7.21 (ddd, J = 9.5, 5.8, 2.3 Hz, 1H), 7.18 – 7.13 (m, 3H), 6.98 – 6.85 (m, 2H), 5.12 (ddd, J = 7.6, 5.1, 2.2 Hz, 1H), 4.99 (dd, J = 8.9, 2.2 Hz, 1H), 3.46 (dd, J = 16.4, 5.2 Hz, 1H), 3.14 – 2.99 (m, 1H), 2.58 (d, J = 16.3 Hz, 1H), 2.41 (ddq, J = 12.9, 8.9, 2.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.1 (dd, J = 249.9, 7.8 Hz), 150.1, 129.8, 129.3 (t, J = 10.6 Hz), 126.6, 126.1, 125.3, 122.0, 117.7 (t, J = 16.0 Hz), 111.8,(dd, J = 22.5, 4.8 Hz), 75.4, 66.3, 37.9 (d, J = 2.9 Hz), 34.9; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄F₂NO: 274.1038, found: 274.1047.

Compound **3x**: Yield <5%, HRMS (ESI⁺) m/z: calcd for $[M+H]^+C_{16}H_{14}Cl_2NO$: 306.0447, found: 306.0451.

Compound **3**x': Yield 60%, ¹H NMR (600 MHz, CDCl₃) δ 7.71 (s, 1H), 7.67 – 7.56 (m, 1H), 7.50 (dd, J = 7.9, 1.3 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.36 – 7.28 (m, 2H), 6.83 (dq, J = 15.7, 1.8 Hz, 1H), 6.36 (dq, J = 15.7, 6.6 Hz, 1H), 1.91 (dd, J = 6.7, 1.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.9, 134.7, 133.0, 130.8, 130.1, 129.0, 128.8, 127.2, 126.8, 126.4, 125.3, 123.9, 123.0, 17.8; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄Cl₂NO: 306.0447, found: 306.0453.

Compound **3y**: Yield 53%, ¹H NMR (600 MHz, CDCl₃) δ 7.51 (dd, J = 7.9, 1.4 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.34 – 7.23 (m, 1H), 7.11 – 6.99 (m, 2H), 6.98 (dd, J = 7.0, 2.2 Hz, 1H), 4.96 (ddd, J = 7.5, 5.3, 2.1 Hz, 1H), 4.55 (dd, J = 8.4, 2.9 Hz, 1H),

3.42 (dd, J = 16.5, 5.5 Hz, 1H), 2.68 – 2.56 (m, 2H), 2.53 (d, J = 16.5 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.6, 143.6, 130.6, 128.5, 128.0, 127.3, 126.9, 126.4, 125.3, 124.8, 73.5, 42.6, 34.8, 17.0; HRMS (ESI⁺)m/z: calcd for [M+H]⁺C₁₇H₁₈NO: 252.1383, found: 252.1371.

Compound **3z**: Yield 71%, ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.33 – 7.26 (m, 1H), 7.16 (td, J = 8.0, 6.0 Hz, 1H), 6.96 – 6.86 (m, 2H), 5.00 (ddd, J = 7.5, 5.3, 1.9 Hz, 1H), 4.63 (dd, J = 8.6, 2.8 Hz, 1H), 3.30 (dd, J = 17.0, 5.5 Hz, 1H), 2.75 – 2.46 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.3 (d, J = 246.7 Hz), 152.0 (d, J = 6.0 Hz), 143.3, 128.5, 127.4 (d, J = 9.4 Hz), 127.1, 126.3, 117.5 (d, J = 3.2 Hz), 113.2 (d, J = 20.2 Hz), 112.4(d, J = 21.4 Hz), 75.3, 74.1, 42.7, 29.3 (d, J = 2.3 Hz); HRMS (ESI⁺)m/z: calcd for [M+H]⁺C₁₆H₁₄FNO: 256.1132, found: 256.1148.

Compound **3aa**: Yield 56%, ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.29 – 7.26 (m, 1H), 7.02 (d, *J* = 7.7 Hz, 1H), 6.96 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.91 (d, *J* = 1.8 Hz, 1H), 4.96 (ddd, *J* = 8.4, 4.9, 2.7 Hz, 1H), 4.71 – 4.54 (m, 1H), 3.38 (dd, *J* = 16.4, 5.4 Hz, 1H), 2.67 – 2.55 (m, 2H), 2.51 (d, *J* = 16.4 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.3, 143.8, 136.4, 129.5, 128.4, 126.9, 126.7, 126.4, 122.4, 121.9, 75.4, 75.1, 42.5, 34.3, 21.0; HRMS (ESI⁺)m/z: calcd for [M+H]⁺C₁₇H₁₈NO: 252.1383, found: 252.1401.

Compound **3ab**: Yield 68%,¹H NMR (600 MHz, CDCl₃) δ 7.76 (dd, J = 7.9, 1.8 Hz, 1H), 7.66 (d, J = 1.8 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.40 – 7.36 (m, 2H), 7.30 – 7.27 (m, 1H), 7.24 (d, J = 7.8 Hz, 1H), 4.99 (ddd, J = 7.6, 5.3, 1.9 Hz, 1H), 4.65 (dd, J = 8.6, 2.8 Hz, 1H), 3.45 (ddt, J = 17.2, 5.4, 1.2 Hz, 1H), 2.69 – 2.59 (m, 3H), 2.57 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.4, 150.7, 143.2, 135.8, 131.4, 130.1, 128.5,

127.1, 126.3, 125.6, 122.2, 75.2, 74.7, 42.7, 34.9, 26.6; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺C₁₈H₁₇NO₂Na: 302.1152, found: 302.1163.

Compound **3ac**: Yield 52%,¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 7.3 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.31 – 7.25 (m, 1H), 6.99 (q, J = 8.8 Hz, 1H), 6.86 (ddd, J = 8.7, 4.2, 1.7 Hz, 1H), 4.99 (t, J = 6.2 Hz, 1H), 4.58 (dd, J = 8.6, 2.7 Hz, 1H), 3.32 (dd, J = 17.2, 5.4 Hz, 1H), 2.71 – 2.48 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.9 (dd, J = 247.6, 13.6 Hz), 148.2(dd, J = 246.1, 13.6 Hz), 146.7 (dd, J = 3.0, 3.0 Hz), 143.1, 128.5, 127.2, 126.3,117.4 (dd, J = 3.0, 3.0 Hz), 115.5 (d, J = 16.6 Hz), 114.6 (d, J = 18.1 Hz), 75.3, 73.5, 42.7, 29.4;HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₆H₁₄F₂NO: 274.1038, found: 274.1023.

Compound **3ad**: Yield 41%,¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 (t, J = 9.7 Hz, 2H), 7.21 – 7.04 (m, 4H), 6.85 (d, J = 8.4 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 6.24 (dd, J = 15.9, 7.6 Hz, 1H), 4.92 (s, 1H), 4.26 – 4.13 (m, 1H), 3.81 (s, 3H), 3.39 (dd, J = 16.5, 5.2 Hz, 1H), 2.50 (d, J = 16.5 Hz, 1H), 2.38 (tt, J = 12.5, 6.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 150.0, 129.8, 129.5, 129.3, 129.2, 127.6, 126.5, 125.9, 125.1, 121.9, 113.9, 74.8, 74.7, 55.2, 40.7, 34.7; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₉H₂₀NO₂: 294.1489, found: 294.1502.

Compound **3ae**: Yield 46%, ¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.89 – 7.74 (m, 3H), 7.57 (dt, *J* = 8.5, 1.5 Hz, 1H), 7.47 (dq, *J* = 8.6, 7.0 Hz, 2H), 7.25 – 7.04 (m, 4H), 5.02 (td, *J* = 6.5, 2.4 Hz, 1H), 4.80 (dd, *J* = 8.0, 3.5 Hz, 1H), 3.46 (dd, *J* = 16.5, 5.5 Hz, 1H), 2.79 – 2.64 (m, 2H), 2.59 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 141.0, 133.3, 132.5, 129.8, 128.3, 128.0, 127.5, 126.6, 126.0, 126.0, 125.7, 125.3, 124.8, 124.8, 122.0, 75.5, 75.2, 42.6, 34.7; HRMS (ESI⁺) m/z:calcd for [M+H]⁺C₂₀H₁₈NO: 288.1383, found: 288.1372.

Compound **3af**: Yield 37%, ¹H NMR (600 MHz, CDCl₃) δ 7.40 (dd, J = 1.8, 0.9 Hz, 1H), 7.22 – 7.09 (m, 4H), 6.38 – 6.30 (m, 2H), 4.99 (ddd, J = 7.5, 5.3, 1.9 Hz, 1H), 4.64 (dd, J = 8.7, 2.6 Hz, 1H), 3.46 – 3.37 (m, 1H), 2.78 (dddd, J = 12.8, 7.8, 2.7, 1.2 Hz, 1H), 2.54 (d, J = 16.5 Hz, 1H), 2.42 (ddd, J = 12.7, 8.7, 2.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 155.2, 149.9, 142.0, 129.8, 126.7, 126.2, 125.1, 122.1, 110.3, 106.4, 74.8, 69.5, 38.6, 34.6; HRMS (ESI⁺) m/z: calcd for [M+H]⁺ C₁₄H₁₄NO₂: 228.1019, found: 228.1025.

Compound **3ag**: Yield 32%, ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.21 – 7.07 (m, 5H), 4.97 (ddd, J = 7.5, 5.2, 2.0 Hz, 1H), 4.67 (dd, J = 8.5, 2.5 Hz, 1H), 3.55 – 3.33 (m, 1H), 2.61 (dddd, J = 12.6, 7.8, 2.5, 1.2 Hz, 1H), 2.57 – 2.46 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 150.2, 144.8, 129.8, 126.6, 126.6, 126.0, 126.0, 125.1, 122.0, 120.9, 74.9, 71.9, 41.7, 34.7; HRMS (ESI⁺) m/z: calcd for [M+H]⁺C₁₄H₁₄NOS: 244.0791, found: 244.0801.

Experimental procedure for the synthesis of double molecular allylation product 5a

[Cp*Rh(CH₃CN)₃](SbF₆)₂ (8 mg, 0.01 mmol, 5% equiv), AgOAc (50 mg, 0.3 mmol, 1.5 equiv), nitrone **1a** (63 mg, 0.2 mmol, 1.0 equiv), the allyl precursor **2a** (53 mg, 0.4 mmol, 2.0 equiv) and DCE (2 mL) were added to a test tube. The reaction mixture was stirred at 120 °C for 10 h. After cooling to room temperature, the reaction mixture was filtered through a pad of celite washing with CH_2Cl_2 . The solvents was removed under reduced pressure and the crude reaction mixture was purified by column chromatography on silica gel using PE/EA (30:1) as eluents to afford double allylation product **5a**.

Compound **5a**:Yield 20%,¹H NMR (600 MHz, CDCl₃) δ 7.47 (dd, J = 7.9, 1.4 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.33 – 7.25 (m, 1H), 7.19 – 7.08 (m, 1H), 6.93 – 6.77 (m, 2H), 6.17 (dq, J = 15.8, 6.6 Hz, 1H), 4.96 (ddd, J = 7.5, 5.2, 1.9 Hz, 1H), 4.50 (dd, J = 8.7, 2.5 Hz, 1H), 3.39 (dd, J = 16.4, 5.4 Hz, 1H), 2.64 (dddd, J = 12.7, 7.8, 2.7, 1.2 Hz, 1H), 2.54 (ddd, J = 12.7, 8.6, 2.0 Hz, 1H), 2.48 (d, J = 16.4 Hz, 1H), 2.30 (s, 3H), 1.82 (dd, J = 6.6, 1.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.6, 143.5, 134.8, 130.7, 128.8, 128.4, 126.9, 126.8, 126.7, 126.1, 124.7, 123.7, 75.2, 74.2, 42.0, 34.9, 21.1, 18.8; HRMS (ESI⁺) m/z: calcd for [M+Na]⁺: 314.1515, found: 314.1527

Experimental procedure for N-O cleavage of 3a

To a stirred and cooled (ice-bath) solutions of 1,4-epoxy-cycloadducts 3a/3f (0.1 mmol, 1.0 equiv) in MeOH (1 mL), were added glacial acetic acid (90 µl, 1.5 mmol, 15 equiv), zinc powder (131 mg, 2 mmol, 20 equiv), and hydrochloric acid (37% HCl, 125 μ l, 1.5 mmol, 15 equiv). The resulting reaction mixtures were then stirred at 0 °C under sonication for additional 1-2 h until the starting material was completely consumed (TLC control: for **3a**, 1 h; for **3f**, 2 h). Afterwards, the reaction mixture was filtered and the filtrate was neutralized with a 25% ammonium hydroxide solution to pH = 8, and then extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄, filtered, and then concentrated under reduced pressure. The remaining crude material was purified by column chromatography on silica gel using PE/EA (4:1) as eluent to afford the desired compound 4a/4f in a yield of 85%/80%. Compound 4a: Yield 85%,¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.41 (m, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.36 - 7.30 (m, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.89 (dd, J = 7.9, 2.0Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 3.93 (dd, J = 11.4, 2.1 Hz, 1H), 3.87 (tdd, J = 10.1, 3.8, 2.2 Hz, 1H), 3.11 (dd, J = 13.5, 10.4 Hz, 1H), 2.97 (dt, J = 13.6, 2.3 Hz, 1H), 2.28 (s, 3H), 2.20 (ddt, J = 12.9, 4.2, 2.2 Hz, 1H), 2.12 (ddd, J = 12.7, 11.3, 9.9 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 146.8, 144.8, 132.2, 131.1, 128.9, 127.9, 127.9, 127.8, 126.4, 120.1, 61.4, 48.6, 44.5, 20.5; HRMS (ESI⁺) m/z: calcd for [M+H]⁺: 254.1539, found: 254.1549.

Compound **4f**: Yield 80%, ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.36 (m, 4H), 7.34 (ddt, J = 6.8, 5.4, 2.4 Hz, 1H), 7.14 (d, J = 2.5 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.61 (d, J = 8.3 Hz, 1H), 3.91 (dd, J = 11.5, 2.1 Hz, 1H), 3.84 (tdd, J = 10.1, 4.0, 2.4 Hz, 1H), 3.06 (dd, J = 13.6, 10.2 Hz, 1H), 2.95 (dt, J = 13.7, 2.3 Hz, 1H), 2.22 – 2.15 (m, 1H), 2.15 – 2.06 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 147.7, 144.3, 131.1, 129.7, 128.9, 127.9, 127.1, 126.3, 126.2, 121.3, 69.5, 61.1, 48.1, 44.1; HRMS (ESI⁺) m/z: calcd for [M+H]⁺: 274.0993, found: 274.0996.

Preliminary mechanistic studies

Scheme S1. Experiments for mechanistic studies.

Kinetic Isotope Effect Experiments: intermolecular competitive reactions

A mixture of nitrone **1b** (0.3 mmol), nitrone **1b**- d_5 (0.3 mmol), [Cp*Rh (CH₃CN)₃](SbF₆)₂ (0.01 mmol), and AgOAc (0.3 mmol) were dissolved in chlorobezene (2 mL) in a pressure tube and stirred for seconds, to which was added the allyl precursor **2a** (0.2 mmol). The reaction mixture was stirred at 120 °C for 2 h. After that, the reaction mixture was filtered through a pad of celite, and washed with CH₂Cl₂ (10 mL x 3). Organic solvents were removed underreduced pressure and the residue was purified by silica gel chromatography using PE/EA (20:1) to afford the mixture of **3b/3b**- d_4 (10 mg, yield: ca. 21%). A KIE value of 2.3 was obtained on the

basis of ¹H NMR analysis. This result suggests that the *ortho* C(sp²)-H bond cleavage might be related to the rate-limiting step.

A mixture of nitrone **1a** (0.2 mmol), nitrone **1f** (0.2 mmol), [Cp*Rh (CH₃CN)₃](SbF₆)₂ (0.01 mmol), and AgOAc (0.3 mmol) were dissolved in chlorobezene (2 mL) in a pressure tube and stirred for seconds, to which was added the allyl precursor **2a** (0.2 mmol). The reaction mixture was stirred at 120 °C for 2 h. After that, the reaction mixture was filtered through a pad of celite, and washed with CH₂Cl₂ (10 mL x 3). Organic solvents were removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA (20:1) to afford the mixture of **3a/3f** (11 mg, yield: 20-22%). The ratio of **3a:3f** = 2.2:1 was determined on the basis of ¹H NMR analysis, which indicated that the reaction favored the electron-rich arene, implying that arene activation occurs likely by a variant of the classical electrophilic aromatic substitution mechanism (SEAr), namely electrophilic

metalation.

Scheme S2 Plausible catalytic mechanism

References

[1] Fujita, K.-i.; Takahashi, Y.; Owaki, M.; Yamamoto, K. and Yamaguchi, R., Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative N-Heterocyclization of Amino Alcohols. *Org. Lett.* **2004**, *6*, 2785-2788.

[2] Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K. and Shi, Z.-J., Rhodium-Catalyzed Direct Addition of Aryl C□H Bonds to N-Sulfonyl Aldimines. *Angew. Chem. Int. Ed.* 2011, 50, 2115-2119.

[3] Duguet, N.; Slawin, A. M. Z. and Smith, A. D., An Asymmetric Hetero-Claisen Approach to 3-Alkyl-3-aryloxindoles. *Org. Lett.* **2009**, *11*, 3858-3861.

[4] Liu, T.; Liu, Z.; Liu, Z.; Hu, D. and Wang, Y., Coupling of N-Nosylhydrazones with Nitrosoarenes: Transition-Metal-Free Approach to (*Z*)-N-Arylnitrones. *Synthesis* **2018**, *50*, 1728-1736.

[5] a) Choi, M.; Viji, M.; Kim, D.; Lee, Y. H.; Sim, J.; Kwak, Y.-S.; Lee, K.; Lee, H. and Jung, J.-K., Metal-free approach for the L-proline mediated synthesis of nitrones from nitrosobenzene. *Tetrahedron* **2018**, *74*, 4182-4187; b) Tian, Z.; Xu, J.; Liu, B.; Tan, Q. and Xu, B., Copper-Catalyzed Synthesis of Polysubstituted Pyrroles through [3+1+1] Cycloaddition Reaction of Nitrones and Isocyanides. *Org. Lett.* **2018**, *20*, 2603-2606.

[6] Riesco-Domínguez, A.; van de Wiel, J.; Hamlin, T. A.; van Beek, B.; Lindell, S. D.; Blanco-Ania, D.; Bickelhaupt, F. M. and Rutjes, F. P. J. T., Trifluoromethyl Vinyl Sulfide: A Building Block for the Synthesis of CF3S-Containing Isoxazolidines. *J. Org. Chem.* **2018**, *83*, 1779-1789.

[7] Poulsen, P. H.; Vergura, S.; Monleón, A.; Jørgensen, D. K. B. and Jørgensen, K. A., Controlling Asymmetric Remote and Cascade 1,3-Dipolar Cycloaddition Reactions by Organocatalysis. *J. Am. Chem. Soc.* **2016**, *138*, 6412-6415.

[8] Maiuolo, L.; De Nino, A.; Merino, P.; Russo, B.; Stabile, G.; Nardi, M.; D'Agostino, N. and Bernardi, T., Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. *Arabian Journal of Chemistry* **2016**, *9*, 25-31.
¹H NMR and ¹³C NMR Spectra

¹H NMR (600 MHZ, CDCl₃) of compound 1a

¹³C NMR (151 MHZ, CDCl₃) of compound 1a

¹³C NMR (151 MHZ, CDCl₃) of compound **1b**

¹H NMR (600 MHZ, CDCl₃) of compound 1c

¹³C NMR (151 MHZ, CDCl₃) of compound 1c

¹H NMR (600 MHZ, CDCl₃) of compound 1d

¹³C NMR (151 MHZ, CDCl₃) of compound 1e

¹H NMR (600 MHZ, CDCl₃) of compound **1f**

f1 (ppm)

¹³C NMR (151 MHZ, CDCl₃) of compound 1g

¹H NMR (600 MHZ, CDCl₃) of compound 1j

¹H NMR (600 MHZ, CDCl₃) of compound **1m**

¹H NMR (600 MHZ, CDCl₃) of compound **1n**

 ^1H NMR (600 MHZ, CDCl_3) of compound 1q

¹H NMR (600 MHZ, CDCl₃) of compound 1r

¹³C NMR (151 MHZ, CDCl₃) of compound 1r

¹³C NMR (151 MHZ, CDCl₃) of compound 1s

S53

¹H NMR (600 MHZ, CDCl₃) of compound 1w

¹³C NMR (151 MHZ, CDCl₃) of compound 1y

S57

 $^1\mathrm{H}$ NMR (600 MHZ, CDCl_3) of compound 1aa

¹³C NMR (151 MHZ, CDCl₃) of compound 1aa

¹H NMR (600 MHZ, CDCl₃) of compound **1ab**

¹H NMR (600 MHZ, CDCl₃) of compound **1ac**

¹H NMR (600 MHZ, CDCl₃) of compound 1ad

¹H NMR (600 MHZ, CDCl₃) of compound **1af**

¹³C NMR (151 MHZ, CDCl₃) of compound 1af

¹H NMR (600 MHZ, CDCl₃) of compound **1ag**

¹H NMR (600 MHZ, CDCl₃) of compound **3a**

2D NOE experiment of compound 3a

¹³C NMR (151 MHZ, CDCl₃) of compound **3b**

S69

S70

S72

S74

S76

S80

S81

S87

3000

2000

1000

-1000

¹³C NMR (151 MHZ, CDCl₃) of compound **3af**

¹³C NMR (151 MHZ, CDCl₃) of compound **3ag**

Crystallographic Data

Figure S1. Crystal XRD image of **3w**

Table S2 Crystal data and structure refinement of 3w.

Identification code	3w
Empirical formula	$C_{16}H_{13}F_2NO$
Formula weight	273.27
Temperature/K	170.00(18)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.1690(2)
b/Å	10.8560(2)
c/Å	12.0502(3)
$\alpha/^{\circ}$	90
β/°	102.790(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1297.27(5)
Ζ	4
$\rho_{calc}g/cm^3$	1.399

μ/mm^{-1}	0.900			
F(000)	568.0			
Crystal size/mm ³	$0.15\times0.13\times0.1$			
Radiation	Cu Ka ($\lambda = 1.54184$)			
20 range for data collection/° 10.32 to 147.42				
Index ranges	$-12 \le h \le 12, -8 \le k \le 13, -14 \le l \le 14$			
Reflections collected	4569			
Independent reflections	2541 [$R_{int} = 0.0202, R_{sigma} = 0.0245$]			
Data/restraints/parameters	2541/0/182			
Goodness-of-fit on F ²	1.047			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0388, wR_2 = 0.0998$			
Final R indexes [all data]	$R_1 = 0.0428, wR_2 = 0.1028$			
Largest diff. peak/hole / e Å ⁻³ 0.22/-0.21				

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3w. U_{eq} is defined as 1/3 of the trace of the orthogonalised

U _{IJ} tensor.						
Atom	x	у	Z	U(eq)		
F1	6018.2(8)	3473.4(9)	6839.5(7)	43.7(3)		
F2	1666.8(9)	3950.6(11)	4534.5(8)	52.2(3)		
01	1446.0(9)	3500.1(9)	6869.7(8)	31.3(2)		
N1	2848.6(10)	3450.0(10)	7441.4(9)	25.3(3)		
C1	2027.7(14)	4707.0(12)	8874.2(12)	32.7(3)		
C2	2181.0(17)	5044.8(14)	10006.5(14)	42.9(4)		
C3	3218.3(18)	4573.6(16)	10841.6(14)	47.7(4)		
C4	4130.5(17)	3756.0(16)	10558.9(13)	42.9(4)		
C5	3998.8(14)	3398.2(13)	9435.0(13)	33.3(3)		
C6	2951.5(13)	3868.9(11)	8600.6(11)	26.9(3)		
C7	905.1(15)	5203.9(14)	7948.1(14)	39.8(4)		
C8	1132.3(14)	4807.9(14)	6799.8(13)	35.8(3)		
С9	2390.4(14)	5408.2(13)	6530.7(13)	35.6(3)		
C10	3452.7(12)	4371.5(12)	6786.2(11)	26.7(3)		
C11	3822.0(12)	3785.3(11)	5758.3(11)	26.2(3)		
C12	5134.8(13)	3376.9(12)	5820.0(12)	28.7(3)		
C13	5600.6(14)	2884.3(13)	4927.9(13)	34.9(3)		
C14	4719.9(15)	2789.4(13)	3886.6(13)	37.0(3)		
C15	3389.0(16)	3148.5(15)	3760.6(13)	38.4(3)		
C16	2984.6(13)	3624.3(13)	4690.6(12)	32.6(3)		
1	1		L		12]	
------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	29.5(4)	59.8(6)	38.3(5)	-5.1(4)	-0.3(4)	10.2(4)
F2	28.9(4)	78.6(7)	45.0(5)	-1.5(5)	-0.9(4)	14.0(4)
01	24.5(5)	32.2(5)	36.4(5)	1.1(4)	5.1(4)	-0.6(4)
N1	24.0(5)	22.9(5)	29.2(6)	0.8(4)	6.1(4)	0.9(4)
C1	39.6(7)	23.6(7)	39.6(8)	-0.9(5)	18.6(6)	-1.8(5)
C2	57.4(9)	32.3(8)	46.3(9)	-9.0(6)	27.4(8)	-7.6(7)
C3	62.5(10)	48.2(9)	35.2(8)	-11.1(7)	17.1(7)	-21.8(8)
C4	45.4(8)	47.1(9)	33.4(8)	2.1(6)	2.8(6)	-15.0(7)
C5	32.4(7)	32.1(7)	35.0(7)	3.0(6)	6.8(6)	-4.6(5)
C6	30.8(6)	21.5(6)	30.0(7)	-0.3(5)	10.2(5)	-4.1(5)
C7	40.3(8)	34.0(8)	51.4(9)	5.4(6)	23.5(7)	10.9(6)
C8	30.8(7)	35.8(8)	42.8(8)	8.7(6)	12.2(6)	11.4(6)
С9	42.5(8)	26.2(7)	43.1(8)	7.5(6)	20.6(6)	9.4(6)
C10	27.7(6)	23.2(6)	30.7(7)	0.8(5)	9.7(5)	0.6(5)
C11	26.6(6)	22.6(6)	30.6(7)	2.0(5)	9.3(5)	1.5(5)
C12	26.6(6)	28.1(7)	31.6(7)	1.3(5)	6.6(5)	1.5(5)
C13	33.5(7)	32.1(7)	43.4(8)	1.7(6)	17.8(6)	4.4(6)
C14	49.1(8)	31.4(7)	35.8(7)	-1.3(6)	20.8(6)	0.0(6)
C15	45.0(8)	39.6(8)	29.5(7)	0.6(6)	5.4(6)	-2.3(6)
C16	26.7(6)	36.1(7)	34.2(7)	3.3(6)	5.2(5)	4.4(5)

Table S4 Anisotropic Displacement Parameters (Å²×10³) for 3w. The Anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁+2hka*b*U₁₂+...].

Table S5 Bond Lengths for 3w.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
F1	C12	1.3560(15)	C5	C6	1.3900(19)
F2	C16	1.3584(16)	C7	C8	1.515(2)
01	N1	1.4411(14)	C8	C9	1.5331(19)
01	C8	1.4535(17)	C9	C10	1.5431(17)
N1	C6	1.4507(17)	C10	C11	1.5120(18)
N1	C10	1.4887(16)	C11	C12	1.3930(18)
C1	C2	1.388(2)	C11	C16	1.3878(19)
C1	C6	1.3986(18)	C12	C13	1.375(2)
C1	C7	1.508(2)	C13	C14	1.375(2)
C2	C3	1.385(3)	C14	C15	1.384(2)
C3	C4	1.380(3)	C15	C16	1.377(2)
C4	C5	1.387(2)			

Ator	n Ator	n Atom	Angle/°	Aton	n Aton	1 Atom	Angle/°
N1	01	C8	104.24(9)	C7	C8	С9	112.07(13)
01	N1	C6	107.53(9)	C8	С9	C10	103.17(11)
01	N1	C10	101.66(9)	N1	C10	С9	104.07(10)
C6	N1	C10	110.47(10)	N1	C10	C11	110.98(10)
C2	C1	C6	117.94(14)	C11	C10	C9	115.68(11)
C2	C1	C7	122.32(14)	C12	C11	C10	119.94(12)
C6	C1	C7	119.74(13)	C16	C11	C10	126.85(11)
C3	C2	C1	121.23(15)	C16	C11	C12	113.17(12)
C4	C3	C2	120.25(15)	F1	C12	C11	117.30(12)
C3	C4	C5	119.77(15)	F1	C12	C13	117.68(12)
C4	C5	C6	119.76(14)	C13	C12	C11	125.02(13)
C1	C6	N1	121.46(12)	C14	C13	C12	118.37(13)
C5	C6	N1	117.49(12)	C13	C14	C15	120.17(13)
C5	C6	C1	121.05(13)	C16	C15	C14	118.51(14)
C1	C7	C8	109.32(11)	F2	C16	C11	118.66(12)
01	C8	C7	107.46(11)	F2	C16	C15	116.64(13)
01	C8	С9	104.16(10)	C15	C16	C11	124.70(13)

Table S6 Bond Angles for 3w.

Table S7 Torsion Angles for 3w.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
F1	C12	2 C13	C14	-179.50(12)	C7	C1	C6	N1	-0.73(19)
01	N1	C6	C1	-28.56(15)	C7	C1	C6	C5	179.80(13)
01	N1	C6	C5	150.93(11)	C7	C8	C9	C10	101.55(13)
01	N1	C10	C9	38.15(12)	C8	01	N1	C6	67.32(11)
01	N1	C10	C11	-86.93(11)	C8	01	N1	C10	-48.76(11)
01	C8	C9	C10	-14.32(14)	C8	C9	C10)N1	-14.38(14)
N1	01	C8	C7	-79.73(12)	C8	C9	C10)C11	107.64(13)
N1	01	C8	C9	39.33(13)	C9	C10)C11	C12	145.91(12)
N1	C10	C11	C12	-95.83(14)	C9	C10)C11	C16	-31.96(19)
N1	C10	C11	C16	86.29(16)	C10)N1	C6	C1	81.57(14)
C1	C2	C3	C4	0.3(2)	C10)N1	C6	C5	-98.94(13)
C1	C7	C8	01	47.17(15)	C10)C11	C12	2F1	3.24(18)
C1	C7	C8	C9	-66.68(15)	C10)C11	C12	2 C 1 3	-176.80(13)
C2	C1	C6	N1	178.83(12)	C10)C11	C16	5F2	-4.1(2)
C2	C1	C6	C5	-0.6(2)	C10)C11	C16	5C15	176.06(13)
C2	C1	C7	C8	171.90(13)	C11	C12	2 C13	3 C14	0.5(2)
C2	C3	C4	C5	-0.6(2)	C12	2 C 1 1	C16	5F2	177.87(12)
C3	C4	C5	C6	0.2(2)	C12	2 C 1 1	C16	5C15	-1.9(2)
C4	C5	C6	N1	-179.10(12)	C12	2 C 1 3	8 C14	4C15	-2.0(2)
C4	C5	C6	C1	0.4(2)	C13	8 C14	C15	5C16	1.5(2)
C6	N1	C10	C9	-75.76(13)	C14	4C15	5 C16	5F2	-179.18(13)
C6	N1	C10	C11	159.16(10)	C14	4C15	5 C16	5C11	0.6(2)
C6	C1	C2	C3	0.3(2)	C16	5C11	C12	2F1	-178.61(12)
C6	C1	C7	C8	-8.56(19)	C16	6C11	C12	2 C 1 3	1.3(2)
C7	C1	C2	C3	179.85(14)					

Atom	x	y	z	U(eq)
H2	1562.54	5609.93	10212.4	51
Н3	3302.38	4814.09	11612.16	57
H4	4846.08	3439.32	11132.29	51
Н5	4622.14	2833.39	9235.97	40
H7A	886.27	6114.21	7990.47	48
H7B	27.15	4885.99	8050.43	48
H8	317.36	4977.26	6183.17	43
H9A	2677.09	6133.71	7022.61	43
H9B	2226	5665.72	5723.59	43
H10	4290.55	4708.23	7290.83	32
H13	6508.65	2616.28	5028.76	42
H14	5025.58	2476.54	3251.73	44
H15	2768.42	3068.44	3048.46	46

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3w.

Figure S2. Crystal XRD image of **3ac**

Identification code	3ac
Empirical formula	$C_{16}H_{13}F_2NO$
Formula weight	273.27
Temperature/K	170.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.7065(3)
b/Å	11.7198(4)
c/Å	12.0290(4)

Table S9 Crystal data and structure refinement for 3ac.

Temperature/R	170.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.7065(3)
b/Å	11.7198(4)
c/Å	12.0290(4)
$\alpha/^{\circ}$	77.710(3)
β/°	89.322(3)
γ/°	71.433(3)
Volume/Å ³	1265.13(8)
Z	4
$ ho_{calc}g/cm^3$	1.435
μ/mm^{-1}	0.923
F(000)	568.0

Crystal size/mm ³	$0.17 \times 0.14 \times 0.12$				
Radiation	Cu Kα (λ = 1.54184)				
20 range for data collection/°	7.536 to 147.088				
Index ranges	$\text{-10} \le h \le 12, \text{-13} \le k \le 14, \text{-14} \le l \le 14$				
Reflections collected	8430				
Independent reflections	4941 [$R_{int} = 0.0289, R_{sigma} = 0.0300$]				
Data/restraints/parameters	4941/0/361				
Goodness-of-fit on F ²	1.059				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0517, wR_2 = 0.1352$				
Final R indexes [all data]	$R_1 = 0.0557, wR_2 = 0.1391$				
Largest diff. peak/hole / e Å ⁻³ 0.30/-0.45					

Table S10 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3ac. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	y	z	U(eq)
F1	11190.3(11)	4985.4(9)	8606.9(10)	44.2(3)
F2	13256.3(11)	4967.1(9)	10075.0(10)	43.1(3)
01	7001.8(11)	8498.2(10)	8864.5(10)	29.5(3)
N1	8134.3(12)	8929.4(11)	9204.6(10)	22.3(3)
C1	6921.8(14)	11081.1(13)	8162.1(12)	20.9(3)
C2	6718.8(16)	12047.3(13)	7209.7(13)	24.5(3)
C3	5613.5(16)	13158.2(14)	7137.2(13)	28.0(3)
C4	4691.7(16)	13329.3(14)	8019.1(14)	29.3(3)
C5	4882.0(16)	12376.7(15)	8970.2(14)	29.3(3)
C6	5989.0(16)	11258.6(14)	9043.9(13)	25.3(3)
C7	8143.8(14)	9883.6(13)	8185.7(12)	21.4(3)
C8	7991.6(18)	9274.4(14)	7195.2(13)	30.5(3)
С9	7401.1(17)	8237.7(15)	7758.4(15)	31.9(4)
C10	8543.9(17)	6963.7(14)	7972.8(15)	32.5(4)
C11	9678.3(16)	6931.3(13)	8834.5(13)	24.6(3)
C12	9483.2(15)	7909.1(13)	9380.9(12)	22.8(3)
C13	10565.0(17)	7920.0(14)	10115.6(13)	29.1(3)
C14	11852.9(18)	6936.2(15)	10351.7(14)	32.3(4)
C15	12027.8(16)	5950.7(14)	9850.4(14)	29.6(3)
C16	10961.4(17)	5953.4(14)	9102.0(14)	28.2(3)
F3	12598.2(12)	4926.0(9)	5710.0(10)	47.0(3)
F4	10982.8(11)	5046.5(8)	3877.0(10)	41.8(3)
O4	8741.9(11)	9378.1(9)	2250.6(8)	24.6(2)
N2	8813.7(12)	9446.1(11)	3436.5(10)	21.0(3)
C17	9819.7(15)	7186.5(13)	3664.3(13)	24.0(3)
C18	10821.2(17)	6092.6(13)	4242.8(14)	29.5(3)
C19	11648.1(16)	6032.5(14)	5186.4(15)	31.0(3)
C20	11520.4(16)	7070.0(15)	5595.0(14)	29.2(3)
C21	10563.1(15)	8191.9(13)	5013.3(13)	24.6(3)
C22	9734.9(14)	8248.5(13)	4057.2(12)	21.5(3)
C23	8892.9(17)	7241.4(14)	2653.4(13)	28.1(3)
C24	7897.1(16)	8558.3(14)	2223.5(13)	26.2(3)
C25	6667.2(16)	8976.8(14)	3007.7(14)	28.7(3)
C26	7260.8(14)	9684.2(13)	3732.2(12)	21.6(3)
C27	6427.4(14)	11053.8(13)	3490.1(12)	22.7(3)
C28	6420.2(17)	11829.6(15)	2435.1(14)	30.6(3)

Table S10 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3ac. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

x	У	Z	U(eq)
5569.5(18)	13065.4(15)	2217.1(15)	35.4(4)
4708.5(17)	13541.1(14)	3047.1(16)	34.8(4)
4716.0(17)	12784.2(15)	4098.4(15)	33.0(4)
5571.1(16)	11546.1(14)	4318.1(13)	27.1(3)
	x 5569.5(18) 4708.5(17) 4716.0(17) 5571.1(16)	x y 5569.5(18) 13065.4(15) 4708.5(17) 13541.1(14) 4716.0(17) 12784.2(15) 5571.1(16) 11546.1(14)	xyz5569.5(18)13065.4(15)2217.1(15)4708.5(17)13541.1(14)3047.1(16)4716.0(17)12784.2(15)4098.4(15)5571.1(16)11546.1(14)4318.1(13)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	42.4(6)	27.6(5)	60.4(7)	-25.8(5)	-5.7(5)	2.3(4)
F2	31.1(5)	32.5(5)	52.9(7)	-8.3(5)	-8.1(4)	6.9(4)
01	22.1(5)	28.3(5)	40.5(6)	-9.1(5)	5.9(4)	-10.8(4)
N1	23.0(6)	21.9(6)	22.3(6)	-7.2(5)	2.0(4)	-6.2(5)
C1	19.1(6)	21.0(7)	24.3(7)	-8.5(5)	0.2(5)	-6.5(5)
C2	24.7(7)	25.1(7)	24.6(7)	-6.8(6)	3.6(5)	-8.6(6)
C3	29.0(7)	22.1(7)	31.2(8)	-4.4(6)	-2.5(6)	-6.8(6)
C4	24.0(7)	24.4(7)	38.3(9)	-11.9(6)	-2.1(6)	-2.8(6)
C5	26.0(7)	31.2(8)	33.2(8)	-14.6(6)	8.3(6)	-7.9(6)
C6	27.9(7)	25.2(7)	23.9(7)	-7.8(6)	3.8(6)	-8.7(6)
C7	21.2(6)	21.9(7)	21.5(7)	-6.4(5)	3.8(5)	-6.5(5)
C8	40.3(8)	25.9(7)	19.5(7)	-8.4(6)	-0.5(6)	-0.5(6)
C9	26.6(7)	29.8(8)	40.3(9)	-16.3(7)	-7.9(6)	-4.6(6)
C10	31.3(8)	24.5(8)	44.5(10)	-15.3(7)	-6.0(7)	-7.5(6)
C11	25.6(7)	21.4(7)	26.8(7)	-7.4(5)	0.8(6)	-6.4(6)
C12	25.5(7)	20.6(7)	21.3(7)	-5.5(5)	2.2(5)	-5.4(5)
C13	33.9(8)	25.5(7)	26.9(8)	-9.0(6)	-4.9(6)	-5.9(6)
C14	30.5(8)	32.7(8)	30.8(8)	-7.1(6)	-8.2(6)	-5.7(6)
C15	24.8(7)	24.4(7)	32.6(8)	-3.9(6)	-1.4(6)	0.3(6)
C16	31.0(8)	21.1(7)	32.4(8)	-11.2(6)	3.4(6)	-4.9(6)
F3	41.7(6)	26.5(5)	57.1(7)	1.0(5)	-10.0(5)	4.4(4)
F4	46.2(6)	20.6(5)	58.1(7)	-16.4(4)	2.1(5)	-5.0(4)
O4	28.0(5)	27.1(5)	21.2(5)	-7.0(4)	4.7(4)	-11.5(4)
N2	20.1(6)	21.7(6)	20.9(6)	-6.5(4)	1.6(4)	-5.3(4)
C17	23.5(7)	21.2(7)	27.9(8)	-7.5(6)	5.7(6)	-6.7(5)
C18	28.6(7)	19.4(7)	39.8(9)	-9.5(6)	7.6(6)	-5.3(6)
C19	24.3(7)	22.2(7)	38.8(9)	-1.1(6)	0.3(6)	-0.6(6)
C20	23.3(7)	31.6(8)	29.6(8)	-4.3(6)	-1.3(6)	-5.9(6)
C21	20.9(6)	24.0(7)	28.8(8)	-8.8(6)	2.0(5)	-5.4(5)
C22	17.9(6)	20.0(7)	26.5(7)	-7.1(5)	4.1(5)	-5.0(5)
C23	32.8(8)	26.2(7)	29.9(8)	-13.8(6)	4.3(6)	-10.9(6)
C24	29.4(7)	29.0(8)	24.3(7)	-10.0(6)	0.4(6)	-12.2(6)
C25	24.0(7)	30.6(8)	36.4(8)	-13.1(6)	3.2(6)	-12.0(6)
C26	19.4(6)	22.0(7)	23.0(7)	-5.9(5)	2.7(5)	-5.5(5)
C27	18.0(6)	23.5(7)	25.6(7)	-6.6(5)	-3.4(5)	-4.4(5)
C28	25.9(7)	29.4(8)	31.1(8)	-2.2(6)	1.0(6)	-4.3(6)
			S118			

Table S11 Anisotropic Displacement Parameters (Å2×103) for 3ac. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S11 Anisotropic Displacement Parameters (Å²×10³) for 3ac. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C29	30.9(8)	28.8(8)	40.2(9)	3.5(7)	-4.7(7)	-7.7(7)
C30	27.0(7)	19.7(7)	54.8(11)	-7.9(7)	-9.3(7)	-3.2(6)
C31	28.7(7)	29.4(8)	40.9(9)	-18.0(7)	-1.0(6)	-2.5(6)
C32	25.8(7)	26.9(7)	26.6(8)	-9.3(6)	-1.4(6)	-3.5(6)

Table S12 Bond Lengths for 3ac.

Atom	n Atom	Length/Å	Aton	n Atom	Length/Å
F1	C16	1.3473(17)	F3	C19	1.3540(17)
F2	C15	1.3504(17)	F4	C18	1.3516(18)
01	N1	1.4435(15)	O4	N2	1.4492(15)
01	C9	1.449(2)	O4	C24	1.4534(17)
N1	C7	1.4750(17)	N2	C22	1.4482(17)
N1	C12	1.4459(17)	N2	C26	1.4961(17)
C1	C2	1.395(2)	C17	C18	1.384(2)
C1	C6	1.393(2)	C17	C22	1.401(2)
C1	C7	1.5169(18)	C17	C23	1.499(2)
C2	C3	1.385(2)	C18	C19	1.374(2)
C3	C4	1.386(2)	C19	C20	1.376(2)
C4	C5	1.385(2)	C20	C21	1.388(2)
C5	C6	1.391(2)	C21	C22	1.389(2)
C7	C8	1.544(2)	C23	C24	1.518(2)
C8	C9	1.532(2)	C24	C25	1.534(2)
C9	C10	1.521(2)	C25	C26	1.550(2)
C10	C11	1.507(2)	C26	C27	1.5151(19)
C11	C12	1.400(2)	C27	C28	1.394(2)
C11	C16	1.383(2)	C27	C32	1.391(2)
C12	C13	1.385(2)	C28	C29	1.389(2)
C13	C14	1.387(2)	C29	C30	1.388(3)
C14	C15	1.377(2)	C30	C31	1.380(3)
C15	C16	1.379(2)	C31	C32	1.392(2)

Table	S13	Bond	Angles	for 3ac.	,

Atom Atom Atom			Angle/°	Atom Atom Atom			Angle/°
N1	01	С9	103.89(10)	N2	04	C24	104.54(10)
01	N1	C7	101.28(10)	04	N2	C26	102.20(10)
01	N1	C12	107.91(10)	C22	N2	O4	106.87(10)
C12	N1	C7	111.42(11)	C22	N2	C26	111.44(10)
C2	C1	C7	118.42(12)	C18	C17	C22	116.59(14)
C6	C1	C2	118.48(13)	C18	C17	C23	121.88(14)
C6	C1	C7	123.10(12)	C22	C17	C23	121.52(13)
C3	C2	C1	120.95(14)	F4	C18	C17	119.08(15)
C2	C3	C4	120.25(14)	F4	C18	C19	118.83(14)
C5	C4	C3	119.37(14)	C19	C18	C17	122.08(14)
C4	C5	C6	120.50(14)	F3	C19	C18	118.56(15)
C5	C6	C1	120.45(14)	F3	C19	C20	120.37(15)
N1	C7	C1	111.48(11)	C18	C19	C20	121.07(14)
N1	C7	C8	102.95(11)	C19	C20	C21	118.47(15)
C1	C7	C8	113.24(12)	C20	C21	C22	120.21(14)
С9	C8	C7	103.30(12)	C17	C22	N2	120.04(13)
01	C9	C8	103.94(12)	C21	C22	N2	118.43(12)
01	C9	C10	106.89(13)	C21	C22	C17	121.49(13)
C10	С9	C8	113.29(13)	C17	C23	C24	109.20(12)
C11	C10	C9	107.61(12)	04	C24	C23	107.95(12)
C12	C11	C10	121.00(13)	O4	C24	C25	103.20(11)
C16	C11	C10	121.71(14)	C23	C24	C25	113.75(13)
C16	C11	C12	117.27(14)	C24	C25	C26	103.81(11)
C11	C12	N1	120.74(13)	N2	C26	C25	104.30(11)
C13	C12	N1	118.13(13)	N2	C26	C27	111.41(11)
C13	C12	C11	121.12(13)	C27	C26	C25	113.28(12)
C12	C13	C14	120.28(14)	C28	C27	C26	122.00(13)
C15	C14	C13	118.81(14)	C32	C27	C26	119.35(13)
F2	C15	C14	120.50(14)	C32	C27	C28	118.53(14)
F2	C15	C16	118.73(14)	C29	C28	C27	120.53(15)
C14	C15	C16	120.77(14)	C30	C29	C28	120.31(15)
F1	C16	C11	119.38(14)	C31	C30	C29	119.68(14)
F1	C16	C15	118.94(14)	C30	C31	C32	120.02(15)
C15	C16	C11	121.67(14)	C27	C32	C31	120.92(15)

Table S14 Torsion Angles for 3ac.

Α	В	С		D	Angl	e/°	А	B	С	D	Angle/°
F2	C15	5 C16	5 I	F1		-1.0(2)	F3	C19	C20	C21	178.19(14)
F2	C15	5 C16	50	C11	-179	.97(14)	F4	C18	C19	F3	0.3(2)
01	N1	C7	(C1	79	.92(12)	F4	C18	C19	C20	-179.77(14)
01	N1	C7	(C8	-41	79(12)	04	N2	C22	C17	-28.88(15)
01	N1	C12	20	C11	24	.33(16)	04	N2	C22	C21	148.62(12)
01	N1	C12	20	C13	-154	.82(13)	04	N2	C26	C25	33.38(12)
01	С9	C10)(C11	-48	73(16)	04	N2	C26	C27	-89.16(12)
N1	01	C9	(C8	-38	13(13)	04	C24	C25	C26	-19.67(14)
N1	01	C9	(C10	81	.94(13)	N2	04	C24	C23	-78.64(13)
N1	C7	C8	(С9	18	.56(14)	N2	04	C24	C25	42.08(13)
N1	C12	2 C 1 3	3 (C14	177	13(14)	N2	C26	C27	C28	52.09(18)
C1	C2	C3	(C4		0.4(2)	N2	C26	C27	C32	-131.83(13)
C1	C7	C8	(С9	-101	.95(13)	C17	C18	C19	F3	179.60(14)
C2	C1	C6	(C5		0.0(2)	C17	C18	C19	C20	-0.4(2)
C2	C1	C7	1	N1	-175	.42(12)	C17	C23	C24	04	41.98(15)
C2	C1	C7	(C8	-59	.88(17)	C17	C23	C24	C25	-71.89(15)
C2	C3	C4	(C5		-0.3(2)	C18	C17	C22	N2	174.30(13)
C3	C4	C5	(C6		0.2(2)	C18	C17	C22	C21	-3.1(2)
C4	C5	C6	(C1		0.0(2)	C18	C17	C23	C24	179.13(13)
C6	C1	C2	(С3		-0.2(2)	C18	C19	C20	C21	-1.8(2)
C6	C1	C7	1	N1	4	.24(19)	C19	C20	C21	C22	1.5(2)
C6	C1	C7	(C8	119	.78(15)	C20	C21	C22	N2	-176.42(13)
C7	N1	C12	20	C11	-86	.01(15)	C20	C21	C22	C17	1.0(2)
C7	N1	C12	20	C13	94	.84(15)	C22	N2	C26	C25	-80.44(13)
C7	C1	C2	(C3	179	.48(13)	C22	N2	C26	C27	157.02(12)
C7	C1	C6	(C5	-179	.64(13)	C22	C17	C18	F4	-177.84(12)
C7	C8	C9	(01	11	.23(14)	C22	C17	C18	C19	2.8(2)
C7	C8	C9	(C10	-104	.42(14)	C22	C17	C23	C24	-2.17(19)
C8	C9	C10)(C11	65	15(17)	C23	C17	C18	F4	0.9(2)
C9	01	N1	(C7	50	.74(12)	C23	C17	C18	C19	-178.40(14)
C9	01	N1	(C12	-66	.37(13)	C23	C17	C22	N2	-4.5(2)
C9	C10)C11	10	C12		7.1(2)	C23	C17	C22	C21	178.12(13)
C9	C10)C11	10	C16	-171	.57(15)	C23	C24	C25	C26	97.01(14)
C10	C11	C12	21	N1		5.2(2)	C24	04	N2	C22	69.38(12)
C10	C11	C12	20	C13	-175	.64(14)	C24	04	N2	C26	-47.78(12)
C10	C11	C16	5 I	F1		-2.0(2)	C24	C25	C26	N2	-8.31(14)
C10)C11	C16	50	C15	176	.93(15)	C24	C25	C26	C27	112.99(13)

Table S14 Torsion Angles for 3ac.

A B	С	D	A	ngle/°	Α	B	С	D	Angle/°
C11C12	C13	C1	4	-2.0(2) C25	C26	C27	C28	-65.12(17)
C12 N1	C7	C1	-	165.56(11) C25	C26	C27	C32	110.95(15)
C12 N1	C7	C8		72.73(13) C26	N2	C22	C17	81.99(15)
C12C11	C16	F1		179.27(13) C26	N2	C22	C21	-100.51(14)
C12 C11	C16	C1	5	-1.8(2) C26	C27	C28	C29	175.81(14)
C12C13	C14	C1	5	-0.5(2) C26	C27	C32	C31	-175.76(13)
C13C14	C15	F2	-	178.87(15) C27	C28	C29	C30	-0.4(2)
C13C14	C15	C1	6	1.8(3) C28	C27	C32	C31	0.5(2)
C14C15	C16	F1		178.31(14) C28	C29	C30	C31	0.9(2)
C14C15	C16	C1	1	-0.6(3) C29	C30	C31	C32	-0.8(2)
C16C11	C12	N1	-	176.01(13) C30	C31	C32	C27	0.1(2)
C16C11	C12	C1	3	3.1(2) C32	C27	C28	C29	-0.3(2)

Atom	x	У	z	U(eq)
H2	7347.73	11941.97	6601.83	29
Н3	5486.78	13805.36	6480.31	34
H4	3936.36	14092.43	7971.94	35
Н5	4251.91	12487.87	9576.74	35
H6	6109.37	10611.82	9700.16	30
H7	9101.49	10035.6	8171.45	26
H8A	7303.45	9870.62	6577.44	37
H8B	8945.44	8939.24	6878.65	37
Н9	6532.26	8260.53	7304.82	38
H10A	8090.57	6321.48	8268.94	39
H10B	8995.82	6806.52	7254.54	39
H13	10424.2	8604.23	10459.17	35
H14	12600.95	6942.22	10850.4	39
H20	12074.54	7019.91	6259.87	35
H21	10474.25	8923.26	5270.11	29
H23A	8304.06	6686.05	2872.71	34
H23B	9519.44	6965.06	2042.46	34
H24	7492.08	8674.6	1431.61	31
H25A	6469.15	8259.38	3497.08	34
H25B	5761.3	9523.29	2559.03	34
H26	7228.54	9319.52	4559.14	26
H28	7001.53	11510.78	1860.31	37
H29	5577.15	13587.4	1496.61	43
H30	4116.89	14383.54	2892.27	42
H31	4137.57	13107.9	4672.29	40

Table S15 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 3ac.

11030.6

5043.51

32

H32

5569.8