Supplementary Information

Modulation of $\Delta \mathrm{E}_{\text {ST }}$ and room temperature phosphorescence in carbazole derivatives

Komal Vasant Barhate ${ }^{\text {a }}$, Amey P. Wadawale ${ }^{\text {b }}$, K. R. S. Chandrakumarc* and Neeraj Agarwala*
${ }^{\text {a }}$ School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
${ }^{b}$ Chemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
${ }^{\text {cT}}$ Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Contents:

Scheme S1: Schematic representation of the synthesis of N -substituted carbazole derivatives

Figure SI 1: ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of DI-CN-Acph in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$

Figure SI 2: COSY spectrum of DI-CN-Acph in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$. Top: Full spectrum and Bottom: Aromatic region
Figure SI 3: ${ }^{1} \mathrm{H}$ NMR \& ${ }^{19} \mathrm{~F}$ (top, inset) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of DI-CF ${ }_{3}-\mathbf{A c p h}$ in CDCl_{3}
Figure SI 4: COSY spectrum of DI-CF 3 - Acph in CDCl_{3}. Top: Full spectrum and Bottom: Aromatic region
Figure SI 5: ${ }^{1} \mathrm{H}$ NMR \& ${ }^{19} \mathrm{~F}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of DI-F-Acph in CDCl_{3}
Figure SI 6: COSY spectrum of DI-F-Acph in CDCl_{3}. Top: Full spectrum and Bottom: Aromatic region
Figure SI 7: HRMS spectrum of compound DI-CN-Acph
Figure SI 8: MALDI-TOF spectrum of compound DI-CF ${ }_{3}$-Acph
Figure SI 9: MALDI-TOF spectrum of compound DI-F-Acph
Figure SI 10: IR spectrum of compound DI-CN-Acph
Figure SI 11: IR spectrum of compound DI-CF $_{3}$-Acph
Figure SI 12: IR spectrum of compound DI-F-Acph
Figure SI 13: Absorption, emission \& decay profiles of DI-CN-Acph in different solvents.
Figure SI 14: Emission decay profiles of DI-CN-Acph in powder at different wavelengths.
Figure SI 15: Absorption, emission \& decay profiles of DI-CF $\mathbf{3}_{3}$-Acph in different solvents.
Figure SI 16: Emission \& decay profiles of DI-CF ${ }_{3}$-Acph in powder at different wavelengths.

Figure SI 17: (Left) Emission of DI-CF $\mathbf{3}_{3}$-Acph in Me-THF at 298 K and 77 (inset emission at 77 K of DI-CF $_{3}-$ Acph + Mel), \& (Right) Kinetic scan at 77 K in MeTHF (inset decay profile) with excitation source ON for 10s.

Figure SI 18: Absorption, emission \& decay profiles of DI-F-Acph in different solvents.
Figure SI 19: Emission \& decay profiles of DI-F-Acph in powder at different wavelengths.
Figure SI 20: (Left) Emission of DI-F-Acph in Me-THF at 298 K and 77 (inset emission at 77 K of DI-FAcph + Mel), \& (Right) Kinetic scan at 77 K in MeTHF (inset decay profile) with excitation source ON for 10s.

Figure SI 21: Crystal structures of DI-CF ${ }_{3}$-Acph \& DI-F-Acph along different axis.
Figure SI 22: Optimized geometries of DI-CN-Acph, DI-CF 3 -Acph \& DI-F-Acph.
Figure SI 23: Calculated frontier molecular orbitals of DI-CN-Acph, DI-CF ${ }_{3}$-Acph \& DI-F-Acph.
Table 1: Absorption \& emission data of DI-CN-Acph in different solvents.
Table 2: Lifetime data of DI-CN-Acph in different solvents.
Table 3: Lifetime data of DI-CN-Acph in powder at different wavelengths
Table 4: Absorption \& emission data of DI-CF $\mathbf{3}_{3}$-Acph in different solvents.
Table 5: Lifetime data of DI-CF ${ }_{3}$-Acph in different solvents.
Table 6: Lifetime data of $\mathrm{DI}_{-\mathrm{CF}_{3} \text {-Acph in powder at different wavelengths. }}^{\text {in }}$.
Table 7: Absorption \& emission data of DI-F-Acph in different solvents.
Table 8: Lifetime data of DI-F-Acph in different solvents.
Table 9: Lifetime data of DI-F-Acph in powder at different wavelengths.
Table 10: Crystallographic data for DI-CF 3 -Acph \& DI-F-Acph
Table 11. Bond lengths and angles for DI-CF 3 -Acph
Table 12. Bond lengths and angles for DI-F-Acph

Materials and Methods:

All solvents and chemicals were obtained from Sigma-Aldrich and SD Fine Chemicals, India, and used as received. Silica gel (100-200 mesh) was used for column chromatographic separation. A Bruker Avance 400 MHz spectrometer was used to obtain ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, \& ${ }^{13} \mathrm{C}$ NMR spectra. Tetramethylsilane was used as an internal reference, and the residual proton in CDCl_{3} ($\delta=7.26 \mathrm{ppm}$) \& $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}(\delta=6 \mathrm{ppm})$ was used as a reference peak. A Bruker MALDI-TOF and Agilent HRMS spectrometers were used for mass spectra. Shimadzu 1800, and HORIBA FluoroMax-4 spectrometers were used to collect the absorption and emission spectra, respectively. A HORIBA Deltaflex nano-LEDbased time-correlated single-photon counting (TCSPC) spectrometer with 290 nm Nano led as an excitation source was used for fluorescence decay studies in solution. Emission decay profiles in powder at 298 K were recorded using 395 nm spectra led as an excitation source and the data were collected at the magic angle $\left(54.7^{\circ}\right)$. Monitoring the scattered excitation light from SiO_{2} particles suspended in water gave us the instrument response function (IRF). The IRF was found to be $\sim 100 \mathrm{ps}$. Emission and lifetimes at cryogenic temperature were recorded on FLS1000 fluorescence spectrophotometer equipped with a xenon arc lamp (Xe900) and a microsecond flash-lamp ($\mu \mathrm{F900}$). X-ray crystallography was achieved on XtaLAB Synergy, Dualflex, HyPix four-circle diffractometer with a micro-focus sealed X-ray tube using a mirror as monochromator and a HyPix detector using Cu K α radiation ($\lambda=1.54184 \AA$) from a single crystal at 298 K The luminescent photos and videos were taken by iPhone 13 under ambient conditions. The density functional theory (DFT) based calculations were done using the ORCA-based electronic structural program. The optimization and frequency calculations were performed using the BP86 exchange-correlation function with the double- ζ valence plus polarization function (DZVP) basis set basis set, with a D3(BJ) empirical dispersion correction.

Synthesis:

Scheme S1: Schematic representation of the synthesis of N-substituted carbazole derivatives

1-(4-(9H-carbazol-9-yl) phenyl) ethan-1-one (1) was synthesized as given in ref. ${ }^{1}$

1-(4-(3,6-dibromo-9H-carbazol-9-yl) phenyl) ethenone (2): 1-(4-(9H-carbazol-9-yl) phenyl) ethanone ($0.710 \mathrm{~g}, 2.18 \mathrm{mmol}$) was dissolved in dimethylformamide (DMF) (10 mL) in a 100 mL round bottom flask. After the solution was cooled at $0^{\circ} \mathrm{C}$, a solution of N bromosuccinimide (NBS) ($0.88 \mathrm{~g}, 4.97 \mathrm{mmol}$) in DMF (2 mL) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 h in the absence of light. The mixture was then poured into cold water (250 mL), white precipitate obtained by filtration was purified by column chromatography using dichloromethane/hexane (1:9) to get pure 1-(4-(3,6-dibromo-9H-carbazol-9-yl) phenyl) ethenone (2) as white crystals (1.03 g, 92 \%). ${ }^{2}$

General procedure for the synthesis of DI-R-Acph derivatives:

1-(4-(3,6-dibromo-9H-carbazol-9-yl) phenyl) ethenone (2) (0.05 g, 0.11 mmol$)$, boronic acid (3 equi.), anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}(0.072 \mathrm{~g}, 0.34 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba}){ }_{3}(0.01 \mathrm{~g}, 10 \mathrm{~mol} \%)$, S-Phos (0.008 g , $20 \mathrm{~mol} \%)$, were placed in an oven-dried Schlenk tube and capped with a rubber septum and then evacuated. A mixture of 3 mL toluene and 0.5 mL water was added via syringe and then again evacuated and refilled with argon (the sequence was repeated three times). The reaction was carried out at $100{ }^{\circ} \mathrm{C}$ for 18 h and was monitored by the TLC method. On completion of the reaction, the reaction mixture was cooled down to room temperature and water was added. The water layer was washed with dichloromethane three times. Further organic layer was washed with brine solution and dries over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent
was evaporated by rotatory evaporator and the crude product was further purified by column chromatography with dichloromethane/hexane (1:4) as eluent.
(i) 4, 4'-(9-(4-acetylphenyl)-9H-carbazole-3,6-diyl) di benzonitrile (DI-CN-Acph): Yield 38 mg (68\%);M.P.: above $250^{\circ}{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$): δ ppm $8.49(\mathrm{~s}, 2 \mathrm{H}), 8.30(\mathrm{~d}, 2 \mathrm{H}),$, (d, 4H), 7.85 (t, 6H), 7.78 (d, 2H), 7.66 (d, 2H, J = 6.4 Hz), 2.73 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta \mathrm{ppm} 197.30,146.02,141.35,141.03,136.20,132.86,132.37,130.52,127.93$, $126.58,126.32,124.45,119.51,110.96,110.24,26.98$; IR: $v\left(\mathrm{~cm}^{-1}\right) 2342,2216,1681,1595$, 1460, 1368, 1235, 1172, 1107, 912, 842, 750, 646, 560; HR-MS: Calcd. For $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ 487.1685; obsd. $522.1369(\mathrm{M}+\mathrm{Cl})^{+}$
(ii) 1-(4-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)phenyl)ethan-1-one (DI-CF 3^{-} Acph): Yield $35 \mathrm{mg}(54 \%)$; M.P.: above $250^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.45(\mathrm{~s}, 2 \mathrm{H})$, $8.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.87(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.78(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz} \mathrm{~Hz}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=8.4 \mathrm{~Hz}$), $2.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 196.91,145.03,141.62,140.66$, $135.98,132.90,130.33,129.08,128.75,127.49,126.47,126.11,125.84,125.80,125.77$, 124.44, 123.06, 119.30, 110.54, 26.74; ${ }^{19}$ F NMR (): $\delta p p m-62.26 ;$ IR: $v\left(\mathrm{~cm}^{-1}\right) 1681,1595,1476$, $1326,1273,1107,1068,1007,955,794,655,585 ;$ MALDI-TOF mass calcd. For $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NO}$ (573.53); obsd. 573.21 (M) ${ }^{+}$
(iii) 1-(4-(3,6-bis(4-fluorophenyl)-9H-carbazol-9-yl)phenyl)ethan-1-one (DI-F-Acph): Yield 40 $\mathrm{mg}(74 \%)$; M.P.: above $250^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta \mathrm{ppm}\right): 8.36(\mathrm{~s}, 2 \mathrm{H}), 8.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.71(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz} \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=8.4 \mathrm{~Hz}), 7.20(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~J}=8.4 \mathrm{~Hz}), 2.75(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}$ 196.95, 163.48, 161.03, 141.95, 140.05, 137.76, 137.73, 135.69, 133.43, 130.27, 128.83, $128.75,126.34,125.84,124.44,118.88,115.80,115.59,110.27,26.73 ;{ }^{19} \mathrm{~F}$ NMR (): $\delta \mathrm{ppm}-$ 116.48; IR: $v\left(\mathrm{~cm}^{-1}\right) 1683,1595,1471,1361,1220,1161,952,833,771,586,520 ;$ MALDI-TOF mass calcd. For $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}$ (473.52); obsd. $472.52(\mathrm{M})^{+}$

Characterization:

(i) By NMR spectroscopy

Figure SI 1: ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of DI-CN-Acph in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$

Figure SI 2: COSY spectrum of DI-CN-Acph in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$. Top: Full spectrum and Bottom: Aromatic region

Figure SI 3: ${ }^{1} \mathrm{H}$ NMR \& ${ }^{19} \mathrm{~F}$ (top, inset) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of $\mathrm{DI}^{-\mathrm{CF}_{3}-A c p h ~ i n ~} \mathrm{CDCl}_{3}$

Figure SI 4: COSY spectrum of $\mathrm{DI}^{-} \mathrm{CF}_{3}-\mathrm{Acph}$ in CDCl_{3}. Top: Full spectrum and Bottom: Aromatic region

Figure SI 5: ${ }^{1} \mathrm{H}$ NMR \& ${ }^{19} \mathrm{~F}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of DI-F-Acph in CDCl_{3}

Figure SI 6: COSY spectrum of DI-F-Acph in CDCl_{3}. Top: Full spectrum and Bottom: Aromatic region
(ii) By mass spectrometry

Figure SI 7: HRMS spectrum of compound DI-CN-Acph

Figure SI 8: MALDI-TOF spectrum of compound DI-CF 3 -Acph

Figure SI 9: MALDI-TOF spectrum of compound DI-F-Acph
(iii) By FTIR spectroscopy

Figure SI 10: IR spectrum of compound DI-CN-Acph

Figure SI 11: IR spectrum of compound DI-CF $_{3}-\mathbf{A c p h}$

Figure SI 12: IR spectrum of compound DI-F-Acph

Photo-physical Studies:

Figure SI 13: Absorption, emission \& decay profiles of DI-CN-Acph in different solvents.

Table 1: Absorption \& emission data of DI-CN-Acph in different solvents.

Solvent	$\boldsymbol{\lambda}_{\text {abs }}(\mathbf{n m})(\log \boldsymbol{\varepsilon})$	$\boldsymbol{\lambda}_{\text {em }}(\mathbf{n m})$	$\boldsymbol{\Phi}_{\mathrm{f}}(\%)$	Stokes Shift $\left(\mathbf{c m}^{-1}\right)$
MeTHF	$279(4.87), 308(4.94), 332(4.95)$	407	0.6	5550
DCM	$280(4.51), 308(4.57), 335(4.58)$	445	5.2	7378
DMSO	$283(4.62), 312(4.65), 341(4.70)$	470	29.2	8049
ACN	$279(4.56), 308(4.66), 332(4.66)$	468	4.9	8753

Table 2: Lifetime data of DI-CN-Acph in different solvents.

Solvent	λ (nm)	Chi square	$\tau_{1}\left(\mathrm{a}_{\mathbf{1}}\right)(\mathrm{ns})$	$\tau_{\mathbf{2}}\left(\mathrm{a}_{2}\right)(\mathrm{ns})$	$\tau_{3}\left(\mathrm{a}_{3}\right)(\mathrm{ns})$	$\tau_{\text {avg }}$ (ns)
MeTHF	427	1.10	$0.12 \pm 0.02(64.6)$	$0.96 \pm 0.06(29.9)$	$2.92 \pm 0.16(5.4)$	0.78
DCM	453	1.2	$1.07 \pm 0.08(17.4)$	$3.18 \pm 0.03(82.5)$	-	2.81
DMSO	468	1.17	$5.95 \pm 0.01(100)$	-	-	5.95
ACN	473	1.11	$5.05 \pm 0.01(100)$	-	-	5.05

Figure SI 14: Emission decay profiles of DI-CN-Acph in powder at different wavelengths.

Table 3: Lifetime data of DI-CN-Acph in powder at different wavelengths.

$\lambda(\mathrm{nm})$	Chi square	$\tau_{1}\left(\mathrm{a}_{1}\right)(\mu \mathrm{s})$	$\tau_{2}\left(\mathrm{a}_{2}\right)(\mu \mathrm{s})$	$\tau_{\text {avg }}(\mu \mathrm{s})$
515	1.12	$7.7 \pm 1.2(100)$		7.7
550	1.09	$14.2 \pm 2.1(65.1)$	$170.7 \pm 24.2(34.9)$	21.0
580	1.18	$19.4 \pm 2.7(60.7)$	$246.6 \pm 25.4(39.3)$	30.3
600	1.22	$17.7 \pm 2.5(65.8)$	$248.6 \pm 21.1(34.2)$	25.9

Figure SI 15: Absorption, emission \& decay profiles of DI-CF ${ }_{3}$-Acph in different solvents.

Table 4: Absorption \& emission data of DI-CF ${ }_{3}$-Acph in different solvents.

Solvent	$\lambda_{\text {abs }}(\mathbf{n m})(\log \boldsymbol{\varepsilon})$	$\boldsymbol{\lambda}_{\mathrm{em}}(\mathbf{n m})$	$\boldsymbol{\Phi}_{\mathrm{f}}(\%)$	Stokes Shift (cm $\mathbf{1})$
MeTHF	$300(4.61), 320(4.46)$	407	43.0	6678
DCM	$300(4.54), 320(4.37)$	455	27.3	9272
DMSO	$305(4.64), 325(4.52)$	468	37.1	9402
ACN	$300(4.51), 320(4.11)$	474	25.2	10153

Table 5: Lifetime data of DI-CF $_{3}$-Acph in different solvents.

Solvent	λ (nm)	Chi Square	$\tau_{1}\left(\mathrm{a}_{1}\right)(\mathrm{ns})$	$\tau_{2}\left(\mathrm{a}_{2}\right)(\mathrm{ns})$	$\tau_{3}\left(\mathrm{a}_{3}\right)(\mathrm{ns})$	$\tau_{\text {avg }}$ (ns)
METHF	411	1.11	$0.19 \pm 0.05(54.5)$	$0.86 \pm 0.02(43.3)$	$4.16 \pm 0.41(2.2)$	0.40
DCM	458	1.08	$0.86 \pm 0.08(9.9)$	$5.38 \pm 0.02(90.1)$		3.55
DMSO	468	1.18	$1.55 \pm 0.18(2.7)$	$8.70 \pm 0.02(97.3)$		7.75
ACN	472	1.02	$4.15 \pm 0.01(100)$			4.15

Figure SI 16: Emission \& decay profiles of DI-CF ${ }_{3}$-Acph in powder at different wavelengths.

Table 6: Lifetime data of DI-CF ${ }_{3}$-Acph in powder at different wavelengths.

$\lambda(\mathrm{nm})$	Chi square	$\tau_{1}\left(\mathrm{a}_{1}\right)(\mu \mathrm{s})$	$\tau_{2}\left(\mathrm{a}_{2}\right)(\mu \mathrm{s})$	$\tau_{\mathrm{AvG}}(\mu \mathrm{s})$
$\mathbf{5 0 0}$	1.06	$7.0 \pm 0.9(100)$	-	7.0
$\mathbf{5 5 0}$	1.13	$1.9 \pm 0.5(60.8)$	$18.9 \pm 0.7(39.2)$	3.0
$\mathbf{5 8 0}$	1.06	$8.2 \pm 0.6(78.8)$	$41.4 \pm 9.9(21.2)$	9.8
$\mathbf{6 0 0}$	1.19	$8.3 \pm 1.3(76.6)$	$37.6 \pm 3.9(23.4)$	10.0

Figure SI 17: (Left) Emission of DI-CF $\mathbf{3}_{\mathbf{3}}$-Acph in Me-THF at 298 K and 77 (inset emission at 77 K of DI$\mathbf{C F}_{3}$-Acph + Mel), \& (Right) Kinetic scan at 77 K in MeTHF (inset decay profile) with excitation source ON for 10s.

Figure SI 18: Absorption, emission \& decay profiles of DI-F-Acph in different solvents.

Table 7: Absorption \& emission data of DI-F-Acph in different solvents.

Solvent	$\boldsymbol{\lambda}_{\text {abs }}(\mathbf{n m})(\log \boldsymbol{\varepsilon})$	$\boldsymbol{\lambda}_{\text {em }}(\mathbf{n m})$	$\boldsymbol{\Phi}_{\mathrm{f}}(\%)$	Stokes Shift (cm ${ }^{\mathbf{- 1})}$
MeTHF	$287(4.61), 340(4.24)$	432	44.7	6263
DCM	$287(4.50), 334(4.15)$	471	31.5	8709
DMSO	$287(4.54), 334(4.13)$	489	12.6.	9490
ACN	$287(4.51), 336(4.11)$	496	25.7	9600

Table 8: Lifetime data of DI-F-Acph in different solvents.

Solvent	$\lambda(\mathrm{nm})$	Chi square	$\tau_{1}\left(\mathrm{a}_{1}\right)(\mathrm{ns})$	$\tau_{2}\left(\mathrm{a}_{2}\right)(\mathrm{ns})$	$\tau_{\text {avg }}$ (ns)
MeTHF	420	1.14	$0.54 \pm 0.02(58.4)$	$1.89 \pm 0.02(41.6)$	0.77
DCM	475	1.02	$1.14 \pm 0.15(3.1)$	$7.18 \pm 0.01(96.9)$	6.18
DMSO	487	1.13	$8.62 \pm 0.01(100)$	-	8.62
ACN	495	1.03	$2.43 \pm 0.01(100)$	-	2.43

Figure SI 19: Emission \& decay profiles of DI-F-Acph in powder at different wavelengths.

Table 9: Lifetime data of DI-F-Acph in powder at different wavelengths.

$\lambda(\mathrm{nm})$	Chi square	$\tau_{1}\left(\mathrm{a}_{1}\right)(\mu \mathrm{s})$	$\tau_{2}\left(\mathrm{a}_{2}\right)(\mu \mathrm{s})$	$\tau_{3}\left(\mathrm{~A}_{3}\right)(\mu \mathrm{s})$
$\mathbf{5 0 0}$	1.21	$4.86 \pm 1.1(100)$	-	4.7
$\mathbf{5 5 0}$	0.98	$6.53 \pm 1.6(64.5)$	$20.1 \pm 2.6(35.5)$	8.7
$\mathbf{5 8 0}$	1.17	$5.12 \pm 0.9(39.4)$	$19.3 \pm 1.2(60.6)$	9.2
$\mathbf{6 0 0}$	0.95	$9.72 \pm 0.8(85.0)$	$53.1 \pm 5.4(14.9)$	11.1

Figure SI 20: (Left) Emission of DI-F-Acph in Me-THF at 298 K and 77 (inset emission at 77 K of DI-FAcph + Mel), \& (Right) Kinetic scan at 77 K in MeTHF (inset decay profile) with excitation source ON for 10s.

Single Crystal studies:

The data were collected using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54184 \AA$)from a single crystal at 298(2) K on an XtaLAB Synergy, Dualflex, HyPix four-circle diffractometer with a micro-focus sealed X-ray tube using a mirror as monochromator and a HyPix detector. All data were integrated with CrysAlis PRO and a multi-scan absorption correction using SCALE3 ABSPACK was applied. ${ }^{3}$ The structure was solved by iterative methods using SHELXT and refined by full-matrix least-squares methods against F^{2} by SHELXL2017/1. ${ }^{4}$ Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. The structure was refined (weighted least squares refinement on F^{2}) to convergence. The crystal and structure refinement data are detailed in Table 10. All figures were drawn using ORTEP and Mercury. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre.

Molecule of DI-F-Acph along a axis

Figure SI 21: Crystal structures of DI-CF 3_{3}-Acph \& DI-F-Acph along different axis.

Table 10: Crystallographic data for DI-CF $_{3}$-Acph \& DI-F-Acph

Compound	DI-CF ${ }_{3}$-Acph	DI-F-Acph
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NO}$	$\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}$
Formula weight	573.52	473.50
Temperature [K]	298(2)	298(2)
Crystal system	orthorhombic	monoclinic
Space group (number)	Pca2 ${ }_{1}$ (29)	$P 2_{1} / C^{\prime}$ (14)
a [Å]	27.071(9)	14.54460(10)
b [Å]	13.5223(6)	21.9876(5)
c [Å]	7.5005(4)	7.50510(10)
$\alpha[\AA]$	90	90
β [Å]	90	101.3830(10)
γ [Å]	90	90
Volume [${ }^{\text { }}$]	2745.6(10)	2352.93(6)
Z	4	4
$\rho_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.387	1.337
$\mu\left[\mathrm{mm}^{-1}\right]$	0.952	0.742
F(000)	1176	984
Crystal size [mm ${ }^{3}$]	$0.150 \times 0.050 \times 0.020$	$0.100 \times 0.050 \times 0.010$
Crystal colour	colourless	colourless
Crystal shape	plate	plate
Radiation	$\mathrm{Cu} K_{\alpha}(\lambda=1.54184 \AA$ A	$\begin{gathered} \mathrm{Cu} K_{\alpha} \\ (\lambda=1.54184 \mathrm{~A}) \end{gathered}$
2θ range [${ }^{\circ}$]	$\begin{gathered} 6.53 \text { to } 155.70 \\ (0.79 \AA) \\ \hline \end{gathered}$	$\begin{gathered} 6.20 \text { to } 174.11 \\ (0.77 \AA) \\ \hline \end{gathered}$
Index ranges	$\begin{aligned} -34 & \leq h \leq 34 \\ -17 & \leq k \leq 16 \\ -9 & \leq 1 \leq 7 \end{aligned}$	$\begin{aligned} -18 & \leq h \leq 18 \\ -25 & \leq k \leq 27 \\ -9 & \leq 1 \leq 9 \end{aligned}$
Reflections collected	26690	91708
Independent reflections	$\begin{gathered} 4748 \\ R_{\text {int }}=0.0784 \\ R_{\text {sigma }}=0.0520 \\ \hline \end{gathered}$	$\begin{gathered} 5049 \\ R_{\text {int }}=0.1481 \\ R_{\text {sigma }}=0.0432 \\ \hline \end{gathered}$
Completeness to $\theta=67.684^{\circ}$	100.0 \%	99.9 \%
Data / Restraints / Parameters	4748/13/399	5049/0/326
Goodness-of-fit on F^{2}	1.301	1.031
Final \mathbf{R} indexes [$1 \geq 2 \sigma(1)]$	$\begin{gathered} R_{1}=0.0651 \\ w R_{2}=0.2021 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0791 \\ w R_{2}=0.2417 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} R_{1}=0.0874 \\ w R_{2}=0.2847 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0936 \\ w R_{2}=0.2643 \\ \hline \end{gathered}$
Largest peak/hole [eÅ ${ }^{3}$]	0.47/-0.48	0.35/-0.26
CCDC number	2299335	2299336

Table 11. Bond lengths and angles for DI-CF ${ }_{3}$-Acph

	Length[Å]/Angle[${ }^{\circ}$]
C1-C2	1.513(6)
C1-F1	1.313(10)
C1-F2A	1.38(3)
C1-F2B	1.295(12)
C1-F3	1.334(10)
C2-C3	1.382(7)
C2-C7	1.381(8)
C3-C4	1.384(6)
C4-C5	1.382(6)
C5-C6	1.388(6)
C5-C8	1.493(5)
C6-C7	1.389(6)
C8-C13	1.374(6)
C8-C9	1.419(5)
C9-C10	1.377(6)
C10-C11	1.385(6)
C11-C12	1.411(5)
C11-N1	1.393(5)
C12-C13	1.399(5)
C12-C15	1.433(5)
C14-C15	1.413(5)
C14-C19	1.384(5)
C14-N1	1.401(5)
C15-C16	1.388(6)
C16-C17	1.382(6)
C17-C18	1.415(6)
C17-C20	1.486(5)
C18-C19	1.375(6)
C20-C21	1.389(6)
C20-C25	1.400(6)
C21-C22	1.373(7)
C22-C23	1.387(8)
C23-C24	1.376(9)
C23-C26	1.511(8)
C24-C25	1.380(7)
C26-F4	1.296(10)
C26-F5A	1.36(4)
C26-F5B	1.287(16)
C26-F6	1.338(13)
C27-C28	1.395(6)
C27-C32	1.391(7)
C27-N1	1.429(5)
C28-C29	1.382(6)
C29-C30	1.402(7)
C30-C31	1.382(7)
C30-C33	1.508(5)
C31-C32	1.380(6)

C33-C34	$1.469(8)$	
C33-O1	$1.226(8)$	
	Bond angles	
F1-C1-C2	$112.7(6)$	
F2A-C1-C2	$114.9(14)$	
F2B-C1-C2	$111.0(7)$	
F3-C1-C2	$112.4(6)$	
F2B-C1-F1	$112.8(14)$	
F1-C1-F2A	$89(3)$	
F3-C1-F2A	$119(2)$	
F1-C1-F3	$106.3(6)$	
F2B-C1-F3	$101.1(12)$	
C3-C2-C1	$119.4(5)$	
C7-C2-C1	$120.3(5)$	
C7-C2-C3	$120.3(4)$	
C2-C3-C4	$119.9(4)$	
C5-C4-C3	$120.9(4)$	
C4-C5-C6	$118.3(4)$	
C4-C5-C8	$120.7(4)$	
C6-C5-C8	$121.0(4)$	
C5-C6-C7	$121.5(4)$	
C2-C7-C6	$119.0(5)$	
C13-C8-C5	$119.8(3)$	
C9-C8-C5	$121.2(4)$	
C13-C8-C9	$118.9(3)$	
C10-C9-C8	$122.9(4)$	
C9-C10-C11	$117.3(4)$	
C10-C11-C12	$121.3(4)$	
N1-C11-C12	$108.7(3)$	
C10-C11-N1	$129.8(4)$	
C13-C12-C11	$120.0(4)$	
C11-C12-C15	$107.7(3)$	
C13-C12-C15	$132.3(4)$	
C8-C13-C12	$119.6(4)$	
C19-C14-C15	$120.4(4)$	
N1-C14-C15	$109.2(4)$	
C19-C14-N1	$130.3(4)$	
C14-C15-C12	$106.4(3)$	
C16-C15-C12	$132.9(4)$	
C16-C15-C14	$120.7(4)$	
C17-C16-C15	$119.5(4)$	
C16-C17-C18	$118.5(4)$	
C16-C17-C20	$120.1(4)$	
C18-C17-C20	$121.3(4)$	
C19-C18-C17	$122.8(4)$	
C18-C19-C14	$117.9(4)$	
C21-C20-C17	$120.9(4)$	
C25-C20-C17	$121.0(4)$	
C21-C20-C25	$118.1(4)$	
C22-C21-C20	$121.1(4)$	

C21-C22-C23	$119.8(5)$
C24-C23-C22	$120.5(5)$
C22-C23-C26	$119.8(6)$
C24-C23-C26	$119.7(6)$
C23-C24-C25	$119.4(5)$
C24-C25-C20	$121.1(5)$
F4-C26-C23	$113.2(6)$
F5A-C26-C23	$106.8(14)$
F5B-C26-C23	$115.4(9)$
F6-C26-C23	$111.5(8)$
F5B-C26-F4	$101.9(17)$
F4-C26-F5A	$134(3)$
F6-C26-F5A	$84(3)$
F4-C26-F6	$101.6(8)$
F5B-C26-F6	$112.1(14)$
C32-C27-C28	$119.8(4)$
C28-C27-N1	$120.2(4)$
C32-C27-N1	$120.0(4)$
C29-C28-C27	$119.6(4)$
C28-C29-C30	$121.4(4)$
C31-C30-C29	$117.5(4)$
C29-C30-C33	$123.1(4)$
C31-C30-C33	$119.3(4)$
C32-C31-C30	$122.2(4)$
C31-C32-C27	$119.4(4)$
C34-C33-C30	$121.0(5)$
O1-C33-C30	$119.0(5)$
O1-C33-C34	$119.9(5)$
C11-N1-C14	$108.0(3)$
C11-N1-C27	$125.9(3)$
C14-N1-C27	$126.1(3)$

Table 12. Bond lengths and angles for DI-F-Acph.

No	Length[Å]/Angle[${ }^{\circ}$]
C1- C2	$1.398(5)$
C2- C3	$1.499(4)$
C2- O1	$1.291(5)$
C3- C4	$1.389(4)$
C3- C8	$1.397(4)$
C4- C5	$1.381(3)$
C5- C6	$1.389(3)$
C6- C7	$1.393(3)$
C6- N1	$1.419(3)$
C7- C8	$1.378(4)$
C9- C10	$1.403(3)$
C9- C23	$1.387(3)$
C9- N1	$1.407(3)$
C10- C11	$1.446(3)$

C10-C26	1.393(3)
C11-C12	1.402(3)
C11- C16	1.390(3)
C12-C13	1.403(4)
C12-N1	1.399(3)
C13- C14	1.376(3)
C14- C15	1.404(4)
C15- C16	1.392(3)
C15-C17	1.485(3)
C17-C18	1.384(4)
C17- C22	1.395(4)
C18- C19	1.386(4)
C19- C20	1.346(4)
C20-C21	1.366(5)
C20-F1	1.368(3)
C21-C22	1.383(5)
C23-C24	1.387(3)
C24- C25	1.400(3)
C25-C26	1.391(3)
C25-C27	1.488(3)
C27-C28	1.396(3)
C27-C32	1.392(4)
C28- C29	1.386(4)
C29- C30	1.363(4)
C30- C31	1.368(4)
C30-F2	1.356(3)
C31- C32	1.384(4)
Bond angles	
O1-C2-C1	121.4(4)
O1-C2-C3	119.5(3)
C1-C2-C3	119.0(4)
C4- C3- C2	123.0(3)
C8- C3-C2	119.1(3)
C4-C3-C8	117.9(2)
C5- C4- C3	121.6(2)
C4- C5- C6	119.8(2)
C5- C6- C7	119.1(2)
C5- C6- N1	120.5(2)
C7- C6-N1	120.4(2)
C8- C7-C6	120.5(2)
C7- C8- C3	120.9(2)
C23-C9-C10	120.7(2)
C23-C9-N1	130.7(2)
C10- C9- N1	108.5(2)
C26- C10- C11	132.2(2)
C9- C10- C11	107.4(2)
C26-C10-C9	120.2(2)
C16-C11-C10	132.8(2)
C12-C11- C10	106.7(2)
C16- C11- C12	120.5(2)

$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$109.3(2)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$130.0(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.7(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$117.6(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$122.8(2)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$118.9(2)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 17$	$121.0(2)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 17$	$120.1(2)$
$\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$119.5(2)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 15$	$121.3(2)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 15$	$121.5(2)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22$	$117.3(2)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$121.2(2)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$	$119.3(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$122.3(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{F} 1$	$118.6(3)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{F} 1$	$119.1(3)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$118.3(3)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$	$121.6(3)$
$\mathrm{C} 9-\mathrm{C} 23-\mathrm{C} 24$	$118.1(2)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$122.4(2)$
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	$118.7(2)$
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 27$	$120.9(2)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 27$	$120.4(2)$
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 10$	$119.9(2)$
$\mathrm{C} 32-\mathrm{C} 27-\mathrm{C} 25$	$121.3(2)$
$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 25$	$121.2(2)$
$\mathrm{C} 32-\mathrm{C} 27-\mathrm{C} 28$	$117.5(2)$
$\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 27$	$121.4(3)$
$\mathrm{C} 30-\mathrm{C} 29-\mathrm{C} 28$	$118.7(3)$
F2- C30-C29	$119.3(3)$
F2-C30-C31	$118.3(3)$
$\mathrm{C} 29-\mathrm{C} 30-\mathrm{C} 31$	$122.4(3)$
$\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32$	$118.5(3)$
$\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 27$	$121.6(2)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 6$	$125.71(19)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 6$	$125.54(19)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 9$	$108.01(19)$

Figure SI 22: Optimized geometries of DI-CN-Acph, DI-CF ${ }_{3}$-Acph \& DI-F-Acph.

Figure SI 23: Calculated frontier molecular orbitals of DI-CN-Acph, DI-CF ${ }_{3}$-Acph \& DI-F-Acph.

References:

1 Ling, K., Shi, H., Wang, H., Fu, L., Lv, A., Huang, K., Ye, W., Gu, M., Ma, C., Yao, X. and Jia, W., Advanced Optical Materials, 2019, 7(24), p.1901076.
2 Agarwal, N., Nayak, P.K., Ali, F., Patankar, M.P., Narasimhan, K.L. and Periasamy, N., Synthetic metals, 2011, 161(5-6), pp.466-473.
3 Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
4 G. M. Sheldrick, Acta Cryst.2015, C71, 3-8.

