Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Intramolecular C–N bond activation by a transient boryl anion

Authors: Emily E. Nahon,^a Gareth R. Nelmes,^a Penelope J. Brothers^a and Jamie Hicks^{*a}

Affiliations:

- [a] Research School of Chemistry, Australian National University, Sullivans Creek Road, Acton,2601, Australia.
- * Email address for correspondence:

jamie.hicks@anu.edu.au

This PDF files includes:

Materials and Methods

Synthetic and characterisation data for new compounds	S2
NMR spectra of new compounds	S8
X-ray crystallographic studies	\$30
Computational details	S38
References	S55

Figures S1 – S32

Table S1–S2

(55 pages total)

Materials and Methods

Synthetic and Characterisation Data for New Compounds

General Considerations

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon. All glassware and cannulae were dried in a 140 °C oven for a minimum of 12 hours prior to use. All solvents, bar benzene, were collected from an MBraun solvent purification system, stored under argon in Teflon valved ampoules over a mirror of sodium metal or 4 Å molecular sieves, and sparged with argon prior to use. Benzene and C₆D₆ were dried and distilled from molten potassium and stored in Teflon capped ampoule over molecular sieves. NMR samples were prepared under argon in 5 mm Norell Select Series NMR Tube fitted with J. Young Teflon valves. ¹H, ¹³C{¹H}, ¹¹B{¹H}, and ¹⁹F{¹H} NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. ¹H and ¹³C{¹H} spectra were referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). ¹¹B{¹H}, and ¹⁹F{¹H} were externally referenced to BF₃·OEt₂ and CF₃CO₂H, respectively. Assignments were confirmed using twodimensional ¹H -¹H and ¹³C -¹H NMR correlation experiments. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. Infrared spectra were obtained using a PerkinElmer Spectrum One with an attenuated total reflectance (ATR) accessory. Samples were suspended in Nujol oil prior to spectroscopic analysis. Elemental analyses were carried out by the Elemental Analysis Service, Science Centre at London Metropolitan University, UK. 4,4'-oxybis(tert-butylbenzene)⁵¹ and potassium cyclopentadienyl iron dicarbonyl^{s2} were prepared by literature methods. All other reagents were purchased from chemical suppliers and used as received.

Synthesis of 4,4'-oxybis(3-bromo-1-tert-butylbenzene): N-bromosuccinimide (11.16 g, 62.68 mmol) was added to a solution of 4,4'-oxybis(tert-butylbenzene) (7.081 g, 25.07 mmol) and ammonium acetate (0.3865 g, 5.015 mmol) in 90 mL of acetonitrile portion-wise over 15 minutes. No efforts were made to exclude air or moisture. This yielded a transparent dark red solution that was stirred for a further 16 hours at room temperature. Volatiles were removed *in vacuo* to give a pale-yellow powder, which was redissolved in dichloromethane (*ca.* 50 mL) and washed with water (2 x 100 mL). The dichloromethane layer was dried with magnesium sulphate and solvent removed *in vacuo* to give a yellow oil that solidified overnight to give 4,4'-oxybis(3-bromo-1-tert-butylbenzene) as a pale-yellow solid. Yield: 9.98 g (90%). ¹**H NMR** (400.1 MHz, C₆D₆, 25 °C): $\delta_{H} = 1.04$ (s, 18H, 'Bu-CH₃), 6.63 (d, ³*J*_{HH} = 8.6, ⁴*J*_{HH} = 2.3, 2H, 'BuCCHCH), 7.67 (d, ⁴*J*_{HH} = 2.3, 2H, BrCCH); ¹³C{¹**H**} **NMR** (100.6 MHz, C₆D₆, 25 °C): $\delta_{C} = 31.0$ (C(CH₃)), 33.9 (C(CH₃)), 114.1 (*C*O), 119.1 (*ortho-C*H), 125.6 ('BuCCHCH), 130.8 (BrCCH), 148.0 ('BuC), 151.6 (BrC); **IR** (ATR, cm⁻¹): 2954(m), 2901(sh), 2864(sh),

1591(w), 1572(w), 1480(s), 1463(sh), 1394(m), 1361(m), 1285(s), 1259(s), 1202(sh), 1112(m), 1040(s), 903(m), 886(m), 862(w), 842(m), 830(m), 814(s), 735(w), 711(m), 667(w), 601(m), 570(sh), 436(sh), 425(w); **Anal. Calc.** for C₂₀H₂₄Br₂O·CH₃OH (C₂₁H₂₈Br₂O₂): C 53.41%, H 5.98%, N 0%, found: C 53.54%, H 5.49%, N 0%.

Synthesis of H₂(^FNON): To a solution of 4,4'-oxybis(3-bromo-1-tert-butylbenzene) (8.000 g, 18.17 mmol), sodium tert-butoxide (5.239 g, 54.52 mmol), palladium acetate (0.204 g, 0.909 mmol) and tritertbutylphosphonium tetrafluoroborate (0.791 g, 2.730 mmol) in toluene (120 mL) was added 2,6diisopropylaniline (7.0 mL, 37.1 mmol) at room temperature. The reaction mixture was then stirred at 100°C for 16 hours. Once the reaction had allowed to cool, the mixture was quenched with water (200 mL) and extracted into toluene (3 x 50 mL). The organic layer was dried with magnesium sulphate before removing the solvent in vacuo to yield a thick dark brown oil. The oil was dissolved in hexane (100 mL) and the solution passed through an alumina plug. This gave a pale-yellow solution, which upon evaporation to dryness gave H₂(^FNON) as a fine yellow powder. Yield: 6.43 g (56%). ¹H NMR (400.1 MHz, C₆D₆, 25 °C): δ_H = 1.09 (br, 24H, CH(CH₃)₂), 1.14 (s, 18H, C(CH₃)₃), 3.30 (sep, ³JHH = 7.0, 4H, CH(CH₃)₂), 5.91 (s, 2H, NH), 6.54 (d, ⁴JHH = 2.3, 2H, Ar-H), 6.67 (dd, ³JHH = 8.3, ⁴JHH = 2.3, 2H, Ar-H), 7.07 (d, ³JHH = 8.3 2H, Ar-*H*), 7.14-7.22 (m, 6H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 25 °C): δ_C = 23.7, 24.4 (CH(CH₃)₂), 28.7 (CH(CH₃)₂), 31.6 (C(CH₃)₃), 34.6 (C(CH₃)₃), 110.4, 114.6, 118.3, 124.1, 128.0, 135.3, 139.3, 141.9, 147.6, 147.9 (ArC); IR (ATR, cm⁻¹): 3411(m), 3066(w), 2960(s), 2867(sh), 1603(m), 1586(sh), 1507(s), 1461(m), 1445(sh), 1398(m), 1361(m), 1328(m), 1300(m), 1253(sh), 1241(s), 1199(s), 1182(sh), 1125(m), 1102(sh), 1056(w), 952(w), 934(w), 865(m), 848(sh), 820(m), 801(s), 758(m), 729(w), 700(w), 678(w), 636(m), 585(w), 505(w), 453(w); MS (ESI, +ve ion, m/z): Found: 633.4778. Calcd for C₄₄H₆₁N₂O [M+H]+: 633.4784.

Synthesis of K₂(^F**NON**) (1): A mixture of (^FNON)H₂ (2.00 g, 3.16 mmol) and KH (0.380 g, 9.61 mmol) in toluene (20 mL) is heated to 100°C, and left to stir for 5 days. After allowing to cool to room temperature, the reaction solution was filtered and solvent removed from the fiterate *in vacuo* to give **1** as a pale brown powder. Yield: 2.05 g (92%). ¹H NMR (400.1 MHz, C₆D₆, 80 °C): δ_{H} = 1.15 (br, 24H, Dipp-CH(CH₃)₂), 1.19 (s, 18H, ^tBu-C(CH₃)₃), 3.24 (sep, ³J_{HH} = 6.9, 4H, Dipp-CH(CH₃)₂), 6.09 (s, 2H, Ar-*H*), 6.12 (d, ³J_{HH} = 8.0, 2H, Ar-*H*), 6.93 (d, ³J_{HH} = 8.0, 2H, Ar-*H*), 7.00 (t, ³J_{HH} = 7.6, 2H, Ar-*H*), 7.22 (d, ³J_{HH} = 7.6, 4H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 80 °C): δ_{C} = 24.7 (Dipp-CH(CH₃)₂), 28.1 (Dipp-CH(CH₃)₂), 32.0 (^tBu-C(CH₃)₃), 34.6 (^tBu-C(CH₃)₃), 103.5, 110.4, 117.8, 120.1, 124.3, 141.7, 142.9, 147.4, 150.5, 153.4 (Ar-*C*); **IR** (ATR, Nujol, cm⁻¹): 3045(sh), 2955(s), 2923(s), 2859(s), 1588(sh), 1571(m), 1555(sh), 1487(s), 1458(m), 1414(s), 1397(s), 1362(w), 1352(w), 1327(m), 1297(m), 1252(m), 1223(sh), 1211(w), 1202(sh), 1177(w), 1156(w), 1119(m), 1099(sh), 1053(sh), 1053(w), 1042(w), 1030(w), 956(m), 930(w), 906(w), 859(m), 850(m), 801(w), 782(s), 757(s), 738(s), 699(m), 671(m), 652(m), 586(w),

569(m), 478(sh), 469(m), 413(m); **Anal. Calc.** a satisfactory elemental analysis could not be obtained for this compound, possibly due to decomposition during shipping.

Synthesis of (^FNON)Mg(OEt₂) (2-OEt₂): To a solution of H₂(^FNON) (3.24 g, 5.12 mmol) in diethyl ether (30 mL) was added *n*-butyl-sec-butylmagnesium (8.04 mL, 5.63 mmol of a 0.7 M hexane solution), giving a clear pale beige coloured solution. This was left to stir at room temperature, open to a slow flow of argon, for 16 hours. Solvent was removed in vacuo, then the residue dissolved in hexane to form a pale orange solution. The solution was concentrated in vacuo and left to stand at room temperature overnight, yielding **2-OEt**₂ as large blocky colourless crystals. Yield: 2.07 g (56%). ¹H NMR (400.1 MHz, C₆D₆, 25 °C): $\delta_{\text{H}} = 0.63$ (t, ${}^{3}J_{\text{HH}} = 7.1$, 6H, O(CH₂CH₃)₂), 1.03 (d, ${}^{3}J_{\text{HH}} = 6.9$, 12H, Dipp-CH(CH₃)₂), 1.20 (m, 12H, Dipp-CH(CH₃)₂), 1.21 (s, 18H, ^tBu-C(CH₃)₃), 3.05 (q, ³J_{HH} = 7.1, 4H, O(CH₂CH₃)₂), 3.39 (sep, ³J_{HH} = 6.9, 4H, Dipp-CH(CH₃)₂), 6.43-6.46 (m, 4H, Ar-H), 7.15-7.19 (m, 2H, Ar-H), 7.23-7.25 (m, 4H, Ar-*H*), 7.40 (d, ${}^{3}J_{HH}$ = 8.6, 2H, Ar-*H*); ${}^{13}C{}^{1}H$ NMR (100.6 MHz, C₆D₆, 25 °C): δ_{C} = 13.4 (O(CH₂CH₃)₂), 24.5, 25.0 (Dipp-CH(CH₃)₂), 28.2 (Dipp-CH(CH₃)₂), 31.7 (^tBu-C(CH₃)₃), 34.6 (^tBu-C(CH₃)₃), 67.6 (O(CH₂CH₃)₂), 108.4, 113.0, 118.2, 123.8, 123.9, 142.9, 145.5, 146.8, 148.8, 149.8 (AR-C); IR (ATR, Nujol, cm⁻¹): 3414(w), 3056(w), 2960(s), 2825(sh), 2065(m), 1600(m), 1587(sh), 1508(w), 1432(s), 1405(s), 1381(sh), 1359(m), 1322(s), 1297(s), 1255(m), 1192(m), 1158(s), 1106(m), 1088(m), 1038(m), 950(m), 933(sh), 900(m), 865(w), 856(w), 838(w), 799(s), 782(sh), 755(m), 736(w), 684(w), 651(m), 605(w), 556(w), 520(m), 489(w), 449(m), 425(m), 417(m); Anal. Calc. for C₄₈H₆₈MgN₂O₂: C 79.04%, H 9.40%, N 3.84%, found: C 78.82%, H 9.46%, N 3.89%.

Synthesis of (^FNON)Mg(THF)₂ (2-THF): To a solution of H₂(^FNON) (2.50 g, 3.94 mmol) in THF (30 mL) was added di-*n*-butyl-magnesium (3.9 mL, 3.94 mmol of a 1.0 M hexane solution), giving a clear pale beige coloured solution. The reaction was left to stir at room temperature, open to a slow flow of argon, for 16 hours. Solvent was removed *in vacuo*, and the residue dissolved in a large amount of hexane (*ca.* 100 mL) to form a pale orange solution. The solution was concentrated *in vacuo* and left overnight, yielding 2-THF as large colourless needles. Yield: 1.54 g (49%). ¹H NMR (400.1 MHz, C₆D₆, 25 °C): $\delta_{\rm H}$ = 0.96 (br, 8H, O(CH₂CH₂)₂), 1.15 (d, ³J_{HH} = 7.0, 12H, Dipp-CH(CH₃)₂), 1.27 (m, 12H, Dipp-CH(CH₃)₂), 1.29 (s, 18H, ^tBu-C(CH₃)₃), 3.30 (br, 8H, O(CH₂CH₂)₂), 3.60 (sep. ³J_{HH} = 7.0, 4H, Dipp-CH(CH₃)₂), 6.26 (d, ⁴J_{HH} = 2.5, 2H, Ar-*H*), 6.44 (dd, ³J_{HH} = 8.4, ⁴J_{HH} = 2.5, 2H, Ar-*H*), 7.20-7.29 (m, 6H, Ar-*H*), 7.71 (d, ³J_{HH} = 8.4, 2H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 25 °C): $\delta_{\rm C}$ = 24.5 (Dipp-CH(CH₃)₂), 24.8 (O(CH₂CH₂)₂), 26.0 (Dipp-CH(CH₃)₂), 28.0 (Dipp-CH(CH₃)₂), 31.9 (^tBu-C(CH₃)₃), 34.6 (^tBu-C(CH₃)₃), 70.3 (O(CH₂CH₂)₂), 106.4, 112.4, 115.3, 123.8, 124.0, 141.9, 146.3, 146.6, 149.6, 150.6 (AR-*C*); **IR** (ATR, Nujol, cm⁻¹): 3052(w), 2957(s), 2925(sh), 2866(m), 1600(m), 1585(w), 1489(s), 1462(m), 1433(m), 1405(m), 1380(w), 1360(w), 1339(m), 1324(sh), 1297(s), 1274(w), 1254(m), 1193(s), 1170(s), 1119(s), 1084(w), 1019(s), 961(sh), 953(s), 935(w), 893(s), 862(s), 795(s), 774(m), 760(m), 726(w), 688(w), 676(w),

657(s), 624(w), 581(w), 555(w), 534(w), 522(m), 496(w), 484(w), 453(m), 434(m), 410(w); **Anal. Calc.** for C₅₂H₇₂MgN₂O₃·C₄H₈O (C₅₆H₈₀MgN₂O₄): C 77.35%, H 9.27%, N 3.22%, found: C 77.54%, H 9.55%, N 3.50%.

Synthesis of (FNON)BF (3-F), Route A: To a solution of 2-OEt₂ (3.07 g, 4.21 mmol) in toluene (30 mL) was added BF₃·OEt₂ (0.572 mL, 4.62 mmol) dropwise at -80 °C. The reaction was allowed to warm to room temperature, slowly giving a dark green coloured solution. This was stirred for an additional 16 hours at room temperature to yield a cloudy light green solution. The solution was filtered, and the volatiles removed in vacuo. The remaining green solid was then dissolved in toluene (20 mL), filtered, and then volatiles removed in vacuo again. The yellow residue was then washed with hexane, yielding **3-F** as a white powder. Yield: 1.41 g (51%). ¹**H NMR** (400.1 MHz, C₆D₆, 25 °C): δ_{H} = 0.81 (d, ³J_{HH} = 6.8, 6H, Dipp-CH(CH₃)₂), 1.02 (s, 18H, ^tBu-C(CH₃)₃), 1.26 (d, ³J_{HH} = 6.8, 6H, Dipp-CH(CH₃)₂), 1.30 (d, ³J_{HH} = 6.7, 12H, Dipp-CH(CH₃)₂), 3.57 (sep, ³J_{HH} = 6.8, 2H, Dipp-CH(CH₃)₂), 3.76 (sep, ³J_{HH} = 6.8, 2H, Dipp-CH(CH₃)₂), 6.70 (d, ⁴J_{HH} = 2.4, 2H, Ar-H), 6.82 (dd, ³J_{HH} = 8.4, ⁴J_{HH} = 2.3, 2H, Ar-H), 7.11 (dd, ³J_{HH} = 6.8, ⁴J_{HH} = 2.5, 2H, Ar-*H*), 7.16-7.22 (m, 4H, Ar-*H*), 7.37 (d, ³J_{HH} = 8.4, 2H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 25 °C): δ_C = 23.9, 24.6, 25.3, 25.4 (Dipp-CH(CH₃)₂), 28.2, 28.7 (Dipp-CH(CH₃)₂), 31.4 (^tBu-C(CH₃)₃), 34.5 (tBu-C(CH₃)₃), 120.4, 122.0, 122.0, 122.4, 123.9, 125.5, 140.0, 141.3, 147.2, 147.5, 148.3, 149.2 (Ar-C); ¹¹B{¹H} NMR (128.4 MHz, C₆D₆, 25 °C): δ_B = 21.7; ¹⁹F{¹H} NMR (376.5 MHz, C6D6, 25 °C): δ_F = -99.7, -99.8; IR (ATR, nujol, cm⁻¹): 3060(w), 3025(w), 2961(s), 2926(m), 2867(m), 1607(sh), 1587(w), 1500(s), 1463(m), 1445(w), 1410(s), 1392(sh), 1372(s), 1357(m), 1338(sh), 1318(s), 1277(m), 1268(m), 1254(sh), 1245(sh), 1226(w), 1191(s), 1126(m), 1101(m), 1057(m), 1044(sh), 934(m), 885(m), 855(w), 839(s), 821(s), 807(s), 795(w), 765(s), 749(s), 729(m), 684(sh), 673(sh), 665(s), 633(m), 612(w), 599(w), 581(m), 562(m), 549(w), 527(w), 510(w), 490(m), 469(w), 442(w); Anal. Calc. for C₄₄H₅₈BFN₂O: C 79.98%, H 8.85%, N 4.24%, found: C 78.98%, H 8.84%, N 4.22%.

Synthesis of (^FNON)BF (3-F), Route B: To a solution of 2-THF (7.50 g, 9.38 mmol) in toluene (50 mL) was added $BF_3 \cdot OEt_2$ (1.27 mL, 10.3 mmol) dropwise at -80 °C. The reaction was allowed to warm to room temperature, slowly giving a dark green coloured solution. This was stirred for an additional 16 hours at room temperature to yield a cloudy light green solution. The solution was filtered, and the volatiles removed *in vacuo*. The remaining green solid was then dissolved in toluene (40 mL), filtered, and then volatiles removed *in vacuo*. The yellow residue was then washed with hexane, yielding **3-F** as a white powder. Yield: 2.48 g (40%).

Synthesis of (^FNON)BBr (3-Br): To a Schlenk flask loaded with **3-F** (1.3722 g, 2.0767 mmol) was added a solution of 1.0 M BBr₃ in DCM (21.0 mL, 20.8 mmol) giving a deep dark brown solution, which was stirred at room temperature for 2.5 hours. Volatiles were removed *in vacuo* and the brown residue was dissolved in benzene, resulting in a light brown solution with precipitate crashing out. The mixture

was filtered, volatiles from the filtrate were removed *in vacuo* and the remaining brown solid was washed with hexane, yielding **3-Br** as a pale beige powder. Yield: 0.9226 g (62%). ¹**H NMR** (400.1 MHz, C₆D₆, 25 °C): $\delta_{H} = 0.59$ (d, ³J_{HH} = 6.7, 6H, Dipp-CH(CH₃)₂), 0.91 (s, 18H, ^tBu-C(CH₃)₃), 1.41 (d, ³J_{HH} = 6.9, 6H, Dipp-CH(CH₃)₂), 1.48 (d, ³J_{HH} = 6.7, 6H, Dipp-CH(CH₃)₂), 1.49 (d, ³J_{HH} = 6.9, 6H, Dipp-CH(CH₃)₂), 3.73 (sep, ³J_{HH} = 6.7, 2H, Dipp-CH(CH₃)₂), 3.87 (sep, ³J_{HH} = 6.9, 2H, Dipp-CH(CH₃)₂), 6.71 (d, ⁴J_{HH} = 2.3, 2H, Ar-*H*), 6.77 (dd, ³J_{HH} = 8.4, ⁴J_{HH} = 2.3, 2H, Ar-*H*), 7.05-7.09 (m, 2H, Ar-*H*), 7.17-7.19 (m, 4H, Ar-*H*), 7.30 (d, ³J_{HH} = 8.4, 2H, Ar-*H*); ¹³C[¹H} NMR (100.6 MHz, C₆D₆, 25 °C): $\delta_{C} = 23.7$, 24.3, 25.7, 25.7 (Dipp-CH(CH₃)₂), 28.3, 29.0 (Dipp-CH(CH₃)₂), 31.2 (^tBu-C(CH₃)₃), 34.4 (^tBu-C(CH₃)₃), 121.4, 122.2, 123.9, 125.5, 126.0, 140.9, 146.1, 146.2, 148.2, 148.4, 150.9 (Ar-*C*); ¹¹B[¹H} NMR (128.4 MHz, C₆D₆, 25 °C): $\delta_{B} = 28.2$; **IR** (ATR, nujol, cm⁻¹): 3057(w), 2960(s), 2926(m), 2867(m), 1606(sh), 1586(w), 1507(sh), 1496(m), 1464(m), 1441(sh), 1404(m), 1378(m), 1362(sh), 1349(s), 1317(w), 1301(w), 1239(sh), 1267(s), 1255(sh), 1242(sh), 1215(w), 1205(w), 1183(s), 1113(m), 1075(m), 705(m), 1054(w), 1042(w), 929(m), 889(w), 876(w), 842(m), 815(m), 803(s), 791(sh), 761(m), 738(w), 726(m), 675(sh), 657(s), 626(w), 596(w), 582(w), 565(m), 533(w), 511(w), 501(sh), 488(w), 474(m), 465(sh); **Anal. Calc.** for C_{44H58}BRN₂O: C 73.23%, H 8.10%, N 3.88%, found: C 73.29%, H 8.29%, N 3.75%.

Synthesis of the C-N activated product (4): To a solution of 3-Br (0.21 g, 0.29 mmol) in THF (10mL) was added a small strip of lithium ribbon. The reaction was stirring vigorously at room temperature for 16 hours resulting opaque green-brown solution. The reaction mixture was filtered, and volatiles were removed from the fluorescent yellow green filtrate in vacuo. The dull yellow residue was dissolved in hexane, yielding a bright yellow solution with a white precipitate. This solution was filtered, the filtrate concentrated *in vacuo* and slowly cooled to -20 °C overnight to give **4** as small colourless crystals. Yield: 0.18 g (86%). ¹H NMR (400.1 MHz, C₆D₆, 25 °C): δ_H = 0.28 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 0.54 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 0.84 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 1.12 (s, 9H, ^tBu-C(CH₃)₃), 1.13 (br, 8H, $(O(CH_2)(CH_2))_2)$, 1.19 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 1.29 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 1.40 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 1.44 (d, ³J_{HH} = 6.9, 3H, Dipp-CH(CH₃)₂), 1.44 (s, 9H, ^tBu-C(CH₃)₃), 1.46 (d, ³J_{HH} = 6.9, 6H, Dipp-CH(CH₃)₂), 2.87 (sep, ³J_{HH} = 6.9, 1H, Dipp-CH(CH₃)₂), 3.09 (br, 8H, (O(CH₂)(CH₂))₂), 3.30 (sep, ³J_{HH} = 6.9, 1H, Dipp-CH(CH₃)₂), 3.80 (sep, ³J_{HH} = 6.9, 1H, Dipp-CH(CH₃)₂), 4.47 (sep, ³J_{HH} = 6.9, 1H, Dipp-CH(CH₃)₂), 6.12 (d, ⁴J_{HH} = 2.4, 1H, Ar-H), 6.65 (dd, ³J_{HH} = 8.3, ⁴J_{HH} = 2.4, 1H, Ar-H), 6.70 (dd, ³J_{HH} = 8.2, ⁴J_{HH} = 2.5, 1H, Ar-*H*), 6.89 (dd, ³J_{HH} = 7.7, ⁴J_{HH} = 1.1, 1H, Ar-*H*), 7.02-7.06 (m, 1H, Ar-*H*), 7.05 (d, ⁴J_{HH} = 2.5, 1H, Ar-*H*), 7.09-7.14 (m, 2H, Ar-*H*), 7.21-7.25 (m, 1H, Ar-*H*), 7.29 (dd, ³J_{HH} = 7.7, ⁴J_{HH} = 1.7, 1H, Ar-*H*), 7.39 (d, ³J_{HH} = 8.3, 1H, Ar-*H*), 7.57 (d, ³J_{HH} = 8.2, 1H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 25 °C): δ_c = 22.5, 23.0, 23.2, 23.3 (Dipp-CH(CH₃)₂), 25.3 (O(CH₂)(CH₂))₂), 25.4, 26.05, 26.3 (Dipp-CH(CH₃)₂), 27.7 (Dipp-CH(CH₃)₂), 27.9 (Dipp-CH(CH₃)₂), 28.3 (Dipp-CH(CH₃)₂), 31.6, 32.1 (^tBu-C(CH₃)₃), 33.7, 34.3 (Dipp-CH(CH₃)₂), 34.5, 34.5, (^tBu-C(CH₃)₃, 67.9 (O(CH₂)(CH₂))₂), 114.0, 115.3, 115.4, 120.7, 122.0, 122.7, 123.0, 123.4, 123.5, 123.6, 125.1, 125.3, 127.6, 128.0, 141.4, 144.5, 146.0, 146.7, 146.9, 149.2, 150.5, 151.1, 151.2, 153.2 (Ar-*C*); ¹¹B{¹H} NMR (128.4 MHz, C₆D₆, 25 °C): δ_B = 32.5; IR (ATR, nujol, cm⁻¹): 3054(sh), 2959(s), 2925(s), 2863(m), 1588(w), 1569(w), 1501(m), 1485(s), 1426(s), 1378(m), 1357(m), 1321(sh), 1300(m), 1276(m), 1249(m), 1189(s), 1156(s), 1120(m), 1097(w), 1042(s), 1015(s), 942(sh), 914(w), 881(m), 868(w), 828(s), 802(s), 782(sh), 768(w), 755(m), 722(w), 698(w), 673(w), 655(w), 647(w), 628(w), 604(w), 573(w), 553(w), 536(w), 510(w), 468(m), 405(w); Anal. Calc. a satisfactory elemental analysis could not be obtained for this compound, possibly due to decomposition during shipping.

Synthesis of [{(^FNON)BOCFeCp}₂] (5): To a solution of 3-Br (0.16 g, 0.22 mmol) in THF (15 mL) was added potassium cyclopentadienyliron dicarbonyl (0.058 g, 0.27 mmol), which was then stirred at room temperature for 48 hours. Volatiles were removed from the reaction mixture in vacuo yielding a dark brown solid. This residue was extracted into pentane (15 mL), filtered and the remaining clear red brown filtrate was concentrated in vacuo. The reaction vessel left to stand for overnight to yield 5 as thin yellow crystals. Yield: 3% (crystalline yield). ¹H NMR (400.1 MHz, C₆D₆, 25 °C): δ_{H} = 0.45 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH_3)₂), 0.49 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH_3)₂), 0.50 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH_3)₂), 0.64 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH₃)₂), 1.02 (s, 18H, ^tBu-C(CH₃)₃), 1.17 (s, 18H, ^tBu-C(CH₃)₃), 1.17 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH₃)₂), 1.29 (d, ${}^{3}J_{HH}$ = 6.7, 6H, Dipp-CH(CH₃)₂), 1.39 (d, ${}^{3}J_{HH}$ = 6.7, 6H, Dipp-CH(CH₃)₂), 1.55 (d, ³J_{HH} = 6.6, 6H, Dipp-CH(CH₃)₂), 2.11 (sep, ³J_{HH} = 6.6, 2H, Dipp-CH(CH₃)₂), 3.24 (sep, ³J_{HH} = 6.7, 2H, Dipp-CH(CH₃)₂), 3.56 (sep, ³J_{HH} = 6.6, 2H, Dipp-CH(CH₃)₂), 4.14 (s, 5H, Cp-H), 4.96 (sep, ³J_{HH} = 6.6, 2H, Dipp-CH(CH₃)₂), 6.50 (d, ⁴J_{HH} = 2.4, 2H, Ar-H), 6.85 (dd, ³J_{HH} = 8.1, ⁴J_{HH} = 2.4, 2H, Ar-H), 6.86 (dd, ³J_{HH} = 8.3, ⁴J_{HH} = 2.4, 2H, Ar-*H*), 7.00 (d, ⁴J_{HH} = 2.4, 2H, Ar-*H*), 7.04 – 7.07 (m, 4H, Ar-*H*), 7.08 – 7.13 (m, 6H, Ar-*H*), 7.20 (d, ³J_{HH} = 8.5, 2H, Ar-*H*), 7.27 (dd, ³J_{HH} = 7.7, ⁴J_{HH} = 1.8, 2H, Ar-*H*), 7.47 (d, ³J_{HH} = 8.3, 2H, Ar-*H*); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 25 °C): δ_C = 23.0, 23.1, 23.5, 23.9, 24.2, 25.8, 26.0 (Dipp-CH(CH₃)₂), 28.4, 28.7 (Dipp-CH(CH₃)₂), 29.0 (Dipp-CH(CH₃)₂), 30.3 (Dipp-CH(CH₃)₂), 31.2, 31.4 (^tBu-C(CH₃)₃), 31.6 (Dipp-CH(CH₃)₂), 34.5, 34.6 (^tBu-C(CH₃)₃), 84.1 (Cp-C), 118.7, 121.0, 121.4, 121.6, 122.4, 122.4, 123.4, 123.6, 126.4, 126.8, 127.0, 127.6, 142.4, 143.9, 146.3, 146.6, 147.3, 147.5, 147.7, 147.8, 148.0, 148.8, 149.0, 150.2 (Ar-C), 215.7 (CO); ${}^{11}B{}^{1}H{}$ NMR a clear ${}^{11}B{}^{1}H{}$ signal was unable to be distinguished from the baseline; Anal. Calc. a satisfactory elemental analysis could not be obtained for this compound, possibly due to decomposition during shipping.

4,4'-oxybis(3-bromo-1-tert-butylbenzene)

NMR Spectra of New Compounds

Figure S1: ¹H NMR spectrum of 4,4'-oxybis(3-bromo-1-tert-butylbenzene) (400 MHz, C₆D₆, 298K).

Figure S2: ¹³C{¹H} NMR spectrum of 4,4'-oxybis(3-bromo-1-tert-butylbenzene) (101 MHz, C₆D₆, 298K).

Figure S3: ¹H NMR spectrum of H₂(^FNON) (400 MHz, C₆D₆, 298K).

Figure S4: ¹³C{¹H} NMR spectrum of H₂(^FNON) (101 MHz, C₆D₆, 298K).

Figure S5: ¹H NMR spectrum of K₂(^FNON) (**1**) (400 MHz, C₆D₆, 353K).

Figure S6: ¹³C{¹H} NMR spectrum of K₂(^FNON) (**1**) (101 MHz, C₆D₆, 353K).

Figure S7: ¹H NMR spectrum of (^FNON)Mg(OEt₂) (**2-OEt**₂) (400 MHz, C₆D₆, 298K).

Figure S8: ¹³C{¹H} NMR spectrum of (^FNON)Mg(OEt₂) (**2-OEt**₂) (101 MHz, C₆D₆, 298K).

Figure S9: ¹H NMR spectrum of (^FNON)Mg(THF)₂ (**2-THF**) (400 MHz, C₆D₆, 298K).

Figure S10: ¹³C{¹H} NMR spectrum of (^FNON)Mg(THF)₂ (2-THF) (101 MHz, C₆D₆, 298K).

Figure S11: ¹H NMR spectrum of (^FNON)BF (**3-F**) (400 MHz, C₆D₆, 298K).

Figure S12: ¹³C{¹H} NMR spectrum of (^FNON)BF (**3-F**) (101 MHz, C₆D₆, 298K).

(^FNON)BF (3-F)

Figure S13: ¹¹B{¹H} NMR spectrum of (^FNON)BF (**3-F**) (128 MHz, C₆D₆, 298K).

Figure S14: ¹⁹F{¹H} NMR spectrum of (^FNON)BF (**3-F**) (376 MHz, C₆D₆, 298K).

Figure S15: ¹H NMR spectrum of (^FNON)BBr (**3-Br**) (400 MHz, C₆D₆, 298K).

Figure S16: ¹³C{¹H} NMR spectrum of (^FNON)BBr (**3-Br**) (101 MHz, C₆D₆, 298K).

Figure S17: ¹¹B{¹H} NMR spectrum of (^FNON)BBr (**3-Br**) (128 MHz, C₆D₆, 298K). * = Unknown boron containing impurity.

Figure S18: ¹H NMR spectrum of **4** (400 MHz, C₆D₆, 298K).

Figure S19: ¹³C{¹H} NMR spectrum of **4** (101 MHz, C₆D₆, 298K).

Figure S21: ¹H NMR spectrum of **5** (400 MHz, C₆D₆, 298K).

Figure S22: ¹³C{¹H} NMR spectrum of **5** (101 MHz, C₆D₆, 298K).

X-ray crystallographic studies

Single-crystal X-ray diffraction data were collected using either a Rigaku Supernova dual-source diffractometer or a Rigaku Xcaliber single-source (Mo) diffractometer. Crystals were selected under Paratone-N oil, mounted on Micromount loops and quench-cooled using an Oxford Cryosystems open flow N₂ cooling device.^{S3} Data were collected at 150 K using mirror monochromated Cu K_{α} (λ = 1.5418 Å) or Mo K_{α} (λ = 0.71073 Å) radiation. Data collected were processed using the CrysAlisPro package, including unit cell parameter refinement and inter-frame scaling (which was carried out using SCALE3 ABSPACK within CrysAlisPro).^{S4} Equivalent reflections were merged and diffraction patterns processed with the CrysAlisPro suite.^{S4} Structures were subsequently solved using SHELXT-2018 and refined on F² using the SHELXL 2018 package and the graphical interface Olex2.^{S5-S7}

Finalised CIFs for all X-ray diffraction structures (2301629-2301637) have been deposited at the Cambridge Crystallographic Data Centre. These can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

	4,4'-oxybis(3-bromo-1- tert-butylbenzene)	H ₂ (^F NON)	1·2C ₆ H ₆	2-OEt ₂
Formula	$C_{20}H_{24}Br_2O$	$C_{44}H_{60}N_2O$	$C_{56}H_{70}K_2N_2O$	$C_{48}H_{68}MgN_2O_2$
М	440.21	632.94	865.34	729.35
Cell Setting	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space Group	Cc	C2/c	P21/c	<i>P</i> -1
a/Å	8.75690(10)	70.8297(10)	18.2232(2)	10.7933(6)
b/Å	16.9749(2)	10.40514(14)	9.80740(10)	10.9169(6)
c/Å	12.7839(2)	44.9198(6)	28.2050(6)	19.6634(10)
α/°	90	90	90	99.184(5)
β/°	91.5310(10)	105.4574(14)	99.342(2)	93.750(4)
γ/°	90	90	90	100.054(5)
V/Å ³	1899.62(4)	31908.1(8)	4974.00(13)	2241.7(2)
Z	4	32	4	2
Unique/l > 2σl	2821/2791	31872/23219	9738/8403	7881/4855
R _{int}	0.0183	0.1069	0.0209	0.1072
Parameters	214	1910	552	525
R_1 (all data/ I > 2 σ I)	0.0214/0.0212	0.0983/0.0686	0.0557/0.0480	0.1249/0.0769
wR ₂ (all data/ I > 2σI)	0.0557/0.0555	0.2086/0.1782	0.1385/0.1309	0.2229/0.1889
GooF	1.076	1.055	1.042	0.991
Residual max/min	0.434/-0.370	0.583/-0.427	0.813/-0.553	0.368/-0.525
T/K	150	150	150	150
Radiation, λ (Å)	Cu Kα, (1.54184)	Cu Kα, (1.54184)	Cu Kα, (1.54184)	Mo Kα <i>,</i> (0.71073)
CCDC deposition number	2301629	2301630	2301631	2301632

Table S1: Crystallographic and refinement parameters for the structures of compounds 4,4'-oxybis(3-bromo-1-tert-butylbenzene), H₂(^FNON), 1 and 2-OEt₂.

 Table S2: Crystallographic and refinement parameters for the structures of compounds 2-THF, 3-F, 3-Br, 4 and 5.

	2-THF	3-F	3-Br∙C ₆ H ₆	4.0.5C ₆ H ₁₄	5·3C₀H₀
Formula	C ₅₂ H ₇₄ MgN ₂ O ₃	C44H58BFN2O	$C_{50}H_{64}BBrN_2O$	$C_{55}H_{81}BLiN_2O_3$	$C_{118}H_{144}B_2Fe_2N_4O_4$
М	799.44	660.73	799.75	835.96	1815.68
Cell Setting	Monoclinic	Triclinic	Triclinic	Monoclinic	Triclinic
Space Group	P2₁/n	<i>P</i> -1	<i>P</i> -1	P21/n	<i>P</i> -1
a/Å	15.18110(10)	11.5584(9)	11.0832(8)	11.7476(2)	11.85390(10)
b/Å	11.81750(10)	12.1098(15)	12.2624(9)	17.0185(3)	12.9432(2)
c/Å	27.6540(2)	15.8128(18)	19.3619(17)	26.4191(7)	18.7438(2)
α/°	90	89.601(9)	74.717(7)	90	106.5440(10)
β/°	103.4550(10)	88.022(8)	74.915(7)	97.504(2)	99.3330(10)
γ/°	90	61.747(10)	64.183(7)	90	105.4520(10)
V/Å ³	4825.03(7)	1948.4(4)	2252.7(3)	5236.64(19)	2567.41(6)
Z	4	2	2	4	2
Unique/I > 2σI	10166/8994	7485/6556	9202/7573	10266/7576	10683/9809
R _{int}	0.0405	0.0165	0.0566	0.0255	0.0416
Parameters	568	487	542	677	600
R_1 (all data/ I > 2 σ I)	0.0437/0.0389	0.0484/0.0420	0.0785/0.0614	0.0870/0.0649	0.0421/0.0384
wR ₂ (all data/ I > 2σI)	0.1077/0.1039	0.1047/0.0990	0.1437/0.1358	0.1855/0.1682	0.0972/0.0955
GooF	1.054	1.029	1.055	1.026	1.071
Residual max/min	0.220/-0.255	0.232/-0.377	0.712/-0.678	0.482/-0.414	0.221/-0.369
T/K	150	150	150	150	150
Radiation, λ (Å)	Cu Kα, (1.54184)	Cu Kα, (1.54184)	Cu Kα, (1.54184)	Cu Kα, (1.54184)	Cu Kα, (1.54184)
CCDC deposition number	2301633	2301634	2301635	2301636	2301637

Figure S23: Molecular structure of 4,4'-oxybis(3-bromo-1-tert-butylbenzene) as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S24: Molecular structure of $H_2(^FNON)$ as determined by X-ray crystallography. Noncoordinating solvent molecules and most hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S25: Molecular structure of **1** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S26: Molecular structure of **2-OEt**₂ as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S27: Molecular structure of **2-THF** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl, *iso*-propyl groups and one coordinated THF molecule have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S28: Molecular structure of **3-BF** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S29: Molecular structure of **3-Br** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S30: Molecular structure of **4** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Figure S31: Molecular structure of **5** as determined by X-ray crystallography. Non-coordinating solvent molecules and hydrogen atoms have been removed, and *tert*-butyl and *iso*-propyl groups have been displayed in wireframe for clarity. Displacement ellipsoids set at the 50% probability level.

Computational details

Density functional theory (DFT) calculations for geometry optimisation were performed using the Gaussian 16 program^{S8} using the PBEO hybrid density functional approximation^{S9} with Grimme's D3 dispersion correction with Becke-Johnson dampening^{S10} and the def2-SVP basis set^{S11} and the ultrafine integration grid. The structures were confirmed as minima on the potential energy surface *via* analytical frequency calculations, yielding no negative eigenvalues, except for the insertion transition state which was verified as a saddle point on the potential energy surface with a single negative eigenvalue. The corresponding imaginary stretching frequency was verified as the reaction coordinate *via* the intrinsic reaction coordinate method. Thermochemical properties were calculated using the hessian matrix from these analytical frequency calculations with the "freqchk" utility program accompanying Gaussian 16/C.01, with a pressure of 1.0 atmospheres, unscaled stretching frequencies, and a temperature of 193.65 K, that of a dry-ice/acetone bath.

Single point calculations were performed in the ORCA 5.0.4 program^{S12} using Libint^{S13} and with functional data from libXC.^{S14} The functional was chosen per recent reviews, ^{S15} specifically for main-group reaction barrier heights, to be the nonempirical double-hybrid DSD-PBEP86-D3BJ^{S16} with RIJCOSX resolution of the identity approximation^{S17} with a CPCM solvent correction (tetrahydrofuran)^{S18} and with Grimme's D3 dispersion correction with Becke-Johnson dampening, ^{S10} frozen-core approximation for the MP2-part of the double-hybrid, using the def2-QZVPP basis set for orbitals, ^{S19} the def2/J basis set for coulomb auxiliary basis, ^{S20} and the def2-QZVPP/C for correlation auxiliary basis. ^{S21} Final energies were obtained by adding the free energy correction from the thermochemical properties calculated (*vide supra*) to the electronic energies from the just described method.

For the C–N bond activation mechanism, the starting point for the boryl anion (**B'**) optimisation was taken from the solid-state structure of the corresponding fluoride complex by removing errant solvent molecules and the fluoride, then optimising the geometry for the singlet monoanion. The starting point for the inserted product was taken from the correspondingly lithiated solid-state structure, again removing errant solvent molecules and the lithium with coordinated THF molecules. For computational efficiency, the *tert*-butyl moieties were truncated to methyl groups in each case. The transition state geometry was found by scanning along a decreasing B-C distance and optimising to a saddle point from the highest energy point along the scan coordinate.

Complex **5** was probed using Gaussian 16/C.01 at the PBE0-D3BJ/def2-TZVP//PVE0-D3BJ/def2-SVP level of theory and the ultrafine integration grid, it was verified as a minimum on the potential energy surface *via* analytical frequency calculations, yielding no negative eigenvalues, no thermodynamic entropic properties were investigated for this complex, and no *in silico* truncation of the molecule was performed.

номо

HOMO-1

Cartesian Coordinates and Computed Energies (Hartrees):

Boryl (B')

Nuclear Repulsion : 5343.27008906			
Electronic Energy: -7022.48469083			
One Electron Energy: -12953.34533385			
Two Electron Energy: 5930.86064302			
Max COSX asymmetry : 0.00000412			
CPCM Dielectric : -0.06706212			
Virial components:			
Potential Energy : -3353.13600135			
Kinetic Energy : 1673.92139957			
Virial Ratio : 2.00316216			
DFT components:			
N(Alpha) : 150.999676552321 electrons			
N(Beta) : 150.999676552321 electrons			
N(Total) : 301.999353104642 electrons			
E(X) : -71.441785922516			
E(C) : -4.749610458321			
E(XC) : -76.191396380837			
CPCM Solvation Model Properties:			
Surface-charge : 0.94331007			
Charge-correction : -0.00462592			
Dispersion: -0.073377861374			
RI-MP2 CORRELATION ENERGY: -3.879305853			
Total single point energy: -1683.167285486163			
Thermal correction: 0.677739			
Total free energy: -1682.506822			

0	-0.113400	-2.498100	0.757300
Ν	1.265900	-0.083700	0.242700
Ν	-1.283700	-0.103900	0.079200
С	1.474200	-1.236200	-0.533300
С	-2.056000	-1.232700	0.155500
С	0.700300	-2.395000	-0.344800
С	-1.470500	-2.456000	0.548000
С	-3.447700	-1.202700	-0.035700
Н	-3.901500	-0.254800	-0.333200
С	2.414400	-1.237600	-1.574900
Н	3.032700	-0.344900	-1.702300

С	2.568300	-2.320600	-2.441300
С	0.836300	-3.477500	-1.207000
Н	0.216900	-4.359600	-1.027800
С	-4.239000	-2.336900	0.173400
С	-2.245700	-3.582600	0.757200
Н	-1.746500	-4.502700	1.070600
С	1.755500	-3.444700	-2.253100
Н	1.849600	-4.304600	-2.922000
С	-3.632700	-3.529500	0.577200
Н	-4.239900	-4.422500	0.747100
В	-0.046200	0.500900	0.400000
С	-1.747600	1.258000	-0.067400
С	-3.385100	3.539600	-0.599600
С	-2.591700	1.835800	0.966400
С	-1.900600	1.777800	-1.416700
С	-2.668000	2.914900	-1.626000
С	-3.339400	2.963900	0.679700
Н	-2.728100	3.329600	-2.637400
Н	-3.926700	3.419800	1.483700
Н	-3.994300	4.424500	-0.796500
С	2.416000	0.622000	0.691000
С	4.702400	1.939900	1.622800
С	2.761700	1.881700	0.153600
С	3.210800	0.026500	1.696200
С	4.355500	0.696300	2.137800
С	3.901900	2.524400	0.646700
Н	4.976200	0.240000	2.914000
Н	4.172500	3.504500	0.245000
Н	5.594800	2.457600	1.985300
С	-2.496100	1.281300	2.372400
Н	-2.257800	0.209000	2.287000
С	-1.327200	1.946800	3.104000
Н	-1.555100	3.006900	3.304200
Н	-0.425100	1.893900	2.465200
Н	-1.102300	1.450600	4.063600
С	-3.790000	1.376200	3.170600
Н	-4.076100	2.422600	3.367800
Н	-3.678700	0.881200	4.149700
Н	-4.622600	0.896000	2.632300
С	-1.155000	1.102100	-2.551300
Н	-0.239700	0.663400	-2.112600

С	-0.705500	2.062200	-3.649600
Н	-0.164900	2.924900	-3.232700
Н	-1.561400	2.451800	-4.224900
Н	-0.040800	1.549600	-4.364200
С	-1.936800	-0.062500	-3.164600
Н	-2.871500	0.303400	-3.622100
Н	-2.207200	-0.810200	-2.407200
Н	-1.345700	-0.571200	-3.946000
С	1.945300	2.547100	-0.935300
Н	1.233800	1.794100	-1.301400
С	2.810200	2.987500	-2.115500
Н	3.505200	3.798600	-1.842600
Н	2.174500	3.362700	-2.932700
Η	3.411000	2.152500	-2.510400
С	1.110600	3.697700	-0.376100
Н	1.751300	4.470200	0.082100
Η	0.412500	3.305700	0.379000
Η	0.511000	4.169900	-1.170100
С	2.825700	-1.303200	2.315700
Η	1.805400	-1.534500	1.979700
С	2.778700	-1.230700	3.841100
Η	2.111000	-0.422300	4.175300
Η	3.774000	-1.050600	4.279900
Η	2.401300	-2.178600	4.257400
С	3.741800	-2.429800	1.836700
Η	4.784500	-2.255000	2.152200
Η	3.727600	-2.510000	0.739600
Η	3.419500	-3.398700	2.251400
С	3.552500	-2.253200	-3.575200
Η	3.826900	-3.257400	-3.931500
Н	4.474900	-1.732400	-3.276600
Η	3.132600	-1.702000	-4.433800
С	-5.725700	-2.251900	-0.033000
Н	-6.172900	-1.478000	0.611700
Η	-6.220100	-3.208500	0.191800
Н	-5.969500	-1.979900	-1.072900

Boryl Insertion Transition State

Nuclear Repulsion :	5343.27008906
Electronic Energy :	-7022.48469083

One Electron Energy: -12953.34533385 5930.86064302 Two Electron Energy: Max COSX asymmetry : 0.00000412 CPCM Dielectric : -0.06706212 Virial components: Potential Energy : -3353.13600135 Kinetic Energy : 1673.92139957 Virial Ratio 2.00316216 : DFT components: N(Alpha) : 150.999676552321 electrons : 150.999676552321 electrons N(Beta) N(Total) 301.999353104642 electrons : E(X) : -71.441785922516 E(C) : -4.749610458321 : -76.191396380837 E(XC) DFET-embed. en. : 0.00000000000 **CPCM Solvation Model Properties:** : Surface-charge 0.94331007 Charge-correction : -0.00462592 Dispersion: -0.073377861 RI-MP2 CORRELATION ENERGY: -3.879305853 Total single point energy: -1683.167285 Thermal correction: 0.676889 Total free energy: -1682.490396 0 -0.014800 2.413900 -1.023400 1.309400 0.073300 -0.436600 Ν -1.206700 -0.016700 -0.385300 Ν С 1.358000 1.147300 0.464000 С -1.977000 1.098000 -0.600800 С 0.592800 2.295200 0.202300 С -1.386600 2.320000 -1.012500 С -3.388900 1.094500 -0.508800 -3.880200 0.181300 -0.166200 Н С 2.101300 1.106900 1.650500 Н 2.727600 0.230800 1.836000 С 2.035300 2.129300 2.600300 С 0.508200 3.317000 1.139500 Н -0.115000 4.184200 0.908800 С -4.168100 2.200500 -0.852000 С -2.149600 3.417100 -1.366800

Н	-1.622400	4.322000	-1.679700
С	1.214600	3.232300	2.339000
Н	1.136900	4.038600	3.073800
С	-3.546700	3.368300	-1.308400
Н	-4.143100	4.237700	-1.596100
В	0.103800	-0.532200	-0.980900
С	-1.841200	-1.160000	0.187900
С	-3.065500	-3.375000	1.385100
С	-2.426200	-2.159900	-0.625000
С	-1.898200	-1.254700	1.598200
С	-2.514200	-2.373500	2.173400
С	-3.021200	-3.258900	-0.005300
Н	-2.560200	-2.457200	3.263000
Н	-3.466900	-4.041500	-0.626300
Н	-3.539500	-4.244200	1.849900
С	2.546900	-0.576300	-0.708600
С	5.015800	-1.787800	-1.212500
С	2.859200	-1.805700	-0.087000
С	3.473100	0.052600	-1.565500
С	4.702400	-0.569400	-1.804300
С	4.095000	-2.396900	-0.363900
Н	5.423900	-0.091600	-2.473600
Н	4.343000	-3.355800	0.100000
Н	5.979100	-2.265700	-1.412200
С	-2.455500	-2.035800	-2.134100
Н	-1.866500	-1.138700	-2.380100
С	-1.736700	-3.202000	-2.803700
Н	-2.197200	-4.174200	-2.558700
Н	-0.685600	-3.198600	-2.477400
Н	-1.755300	-3.087900	-3.900200
С	-3.882200	-1.867900	-2.657100
Н	-4.506400	-2.751500	-2.440800
Н	-3.874200	-1.726200	-3.750600
Н	-4.370800	-0.989400	-2.209200
С	-1.333200	-0.156700	2.478000
Н	-0.693000	0.462600	1.835000
С	-0.462700	-0.685100	3.614700
Н	0.345900	-1.325100	3.233300
Н	-1.043200	-1.271400	4.346400
Н	-0.000100	0.155100	4.156800
С	-2.442400	0.750400	3.013400

Н	-3.130000	0.190400	3.670500
Н	-3.030800	1.180100	2.189600
Н	-2.014700	1.583700	3.594800
С	1.887200	-2.489200	0.854400
Н	1.088800	-1.761900	1.065400
С	2.534200	-2.883300	2.180500
Н	3.311100	-3.654400	2.049100
Н	1.776100	-3.298100	2.864100
Н	3.003800	-2.020100	2.678800
С	1.211500	-3.679800	0.178100
Н	1.944600	-4.459700	-0.090400
Н	0.703900	-3.318000	-0.729600
Н	0.452400	-4.124300	0.842600
С	3.136800	1.369400	-2.235600
Η	2.072300	1.563700	-2.044000
С	3.306100	1.295800	-3.751500
Н	2.704400	0.473900	-4.167700
Н	4.356600	1.132100	-4.044800
Н	2.973500	2.235300	-4.222000
С	3.937800	2.521800	-1.629900
Н	5.020800	2.384700	-1.791000
Н	3.762800	2.593200	-0.545700
Н	3.646000	3.482800	-2.084300
С	2.805000	2.014600	3.886100
Н	2.768300	2.950300	4.463300
Н	3.862900	1.769900	3.701100
Н	2.396400	1.212500	4.523600
С	-5.664200	2.126000	-0.712300
Н	-6.059200	1.177100	-1.108600
Н	-6.159700	2.949900	-1.247500
н	-5.971300	2.184400	0.346000

C–N activated product (4')

Nuclear Repulsion :	5359.31835964
Electronic Energy :	-7038.65048425
One Electron Energy:	-12987.07658931
Two Electron Energy:	5948.42610506
Max COSX asymmetry :	0.0000687
CPCM Dielectric :	-0.07023797
Virial components:	

Potential Energy : -3353.37876793 Kinetic Energy : 1674.04664332 Virial Ratio : 2.00315731 DFT components: N(Alpha) : 150.999861457579 electrons N(Beta) : 150.999861457579 electrons N(Total) : 301.999722915158 electrons E(X) : -71.455465462264 E(C) : -4.749879190027 E(XC) : -76.205344652291 **CPCM Solvation Model Properties:** Surface-charge : 0.94422670 Charge-correction : -0.00470210 Dispersion: -0.075817978 RI-MP2 CORRELATION ENERGY: -3.869564091 Total single point energy: -1683.277507 Thermal correction: 0.68302 Total free energy: -1682.594487

0	-2.190300	1.346700	-1.053200
Ν	0.282100	0.636600	0.231500
Ν	-1.553100	-1.148500	0.013600
С	-0.597300	1.612200	0.740900
С	-2.812100	-0.828800	-0.275200
С	-1.831100	1.915400	0.138900
С	-3.179400	0.387600	-0.924700
С	-3.907100	-1.702300	-0.020900
Н	-3.683600	-2.633800	0.506100
С	-0.227300	2.361300	1.867700
Н	0.748700	2.154600	2.310800
С	-1.039800	3.347000	2.427300
С	-2.664000	2.882000	0.699800
Н	-3.617800	3.077900	0.205100
С	-5.209700	-1.445900	-0.449100
С	-4.458000	0.651100	-1.379500
Н	-4.642100	1.597300	-1.896800
С	-2.281200	3.594000	1.830900
Н	-2.945600	4.357700	2.245700
С	-5.487200	-0.271700	-1.162100
Н	-6.498400	-0.069100	-1.525600
В	-0.243200	-0.743800	-0.053600

С	0.819500	-1.935600	-0.311300
С	2.491300	-4.177300	-0.774400
С	1.628900	-2.015500	-1.464600
С	0.853000	-3.024600	0.601400
С	1.686300	-4.120200	0.358900
С	2.453700	-3.127600	-1.682800
Н	1.705600	-4.951100	1.070200
Н	3.068700	-3.177100	-2.585700
Н	3.139700	-5.040500	-0.950900
С	1.606500	1.122800	0.025200
С	4.169400	2.233000	-0.383100
С	2.709500	0.671400	0.786800
С	1.809500	2.139400	-0.951800
С	3.083700	2.679600	-1.127100
С	3.972300	1.232700	0.557400
Н	3.228700	3.463400	-1.875200
Н	4.820200	0.880700	1.150600
Н	5.163400	2.661000	-0.537800
С	1.561300	-0.948000	-2.540200
Н	1.028700	-0.089000	-2.108200
С	2.944200	-0.471100	-2.975800
Н	3.517500	-1.277700	-3.461300
Н	3.523500	-0.108600	-2.113700
Н	2.869500	0.354300	-3.700600
С	0.723700	-1.434600	-3.723100
Н	1.188200	-2.310900	-4.205500
Н	0.616900	-0.643900	-4.484700
Н	-0.283100	-1.725600	-3.388000
С	-0.043600	-3.071200	1.830200
Н	-0.492600	-2.073600	1.942800
С	0.689500	-3.416900	3.124600
Н	1.492700	-2.697800	3.343400
Н	1.141000	-4.422300	3.095300
Н	-0.013400	-3.401700	3.973600
С	-1.203100	-4.034000	1.579800
Н	-0.841200	-5.068200	1.449100
Н	-1.735000	-3.723600	0.670400
Н	-1.915300	-4.024100	2.422100
С	2.592200	-0.362900	1.888700
Н	1.576200	-0.775000	1.840800
С	2.775400	0.263900	3.272400

Н	3.776400	0.713400	3.379800
Н	2.664500	-0.500600	4.058700
Н	2.032600	1.051200	3.467000
С	3.585300	-1.505700	1.682500
Η	4.624200	-1.159700	1.811700
Н	3.486900	-1.939900	0.678500
Н	3.414100	-2.310200	2.413200
С	0.672800	2.682800	-1.800300
Н	-0.182700	2.005100	-1.685900
С	0.995300	2.717300	-3.293500
Н	1.259300	1.720800	-3.672900
Η	1.827400	3.401200	-3.528400
Н	0.114600	3.066900	-3.855100
С	0.251500	4.075400	-1.322400
Н	1.059700	4.806900	-1.494500
Н	0.010100	4.081900	-0.250500
Н	-0.640500	4.417600	-1.870900
С	-0.603900	4.087400	3.660500
Н	-1.090000	5.072100	3.732200
Н	0.485500	4.243500	3.671700
Н	-0.861500	3.527600	4.576100
С	-6.311400	-2.421800	-0.131900
Н	-5.955700	-3.462800	-0.181400
Η	-7.156400	-2.318100	-0.830300
н	-6.707200	-2.264700	0.887000

[{(^FNON)BOCFeCp}₂] (5)

Nuclear Repulsion: 29665.1690049664 Electronic Energy: -6,979.56962812296 Dispersion Energy: -0.4192138237 Virial Ratio: 2.0041 CPCM Solvation Model Properties: Total single point energy: -6979.9888 Thermal correction: 1.903133 Total free energy: -6,978.085667

Fe	-0.26920	0.81090	-0.79200
0	-2.53580	-0.20330	0.73560
0	-4.67280	0.30300	-2.13110
Ν	-4.51300	-1.31610	0.05550

Ν	-4.57410	1.21660	0.44260
С	-5.64280	-1.39620	-0.77140
С	-6.62910	-2.36560	-0.59220
Н	-6.50900	-3.05900	0.24130
С	-3.96250	-2.56560	0.48710
С	-6.37460	1.39870	2.10200
С	-1.58060	2.33990	-1.30380
Н	-2.45210	2.65680	-0.73770
С	-4.20550	-2.99540	1.80600
С	-5.73320	-0.53640	-1.87630
С	-1.28960	-0.08520	0.34410
С	-0.26300	2.85020	-1.15310
Н	0.05790	3.60060	-0.43390
С	-5.01090	1.57950	1.76280
С	-0.21980	1.25600	-2.80870
Н	0.13030	0.57260	-3.57850
С	-4.89630	1.64720	-1.91380
С	-4.11270	2.15750	2.68470
С	-7.39970	0.89690	1.10450
Н	-6.85280	0.48450	0.24840
С	-4.86100	2.10480	-0.58720
С	-3.67950	-4.22860	2.20400
Н	-3.84230	-4.57730	3.22640
С	-7.72430	-2.47930	-1.45540
С	-2.95550	-5.01750	1.31660
Н	-2.55040	-5.97750	1.64500
С	-4.99530	-2.14420	2.77940
Н	-5.50470	-1.37000	2.18750
С	-6.83120	-0.60270	-2.72070
Н	-6.89190	0.08600	-3.56540
С	-3.24630	-3.35560	-0.42970
С	-2.66430	2.44780	2.35170
Н	-2.45250	2.02390	1.36440
С	-4.58760	2.50100	3.95600
Н	-3.89750	2.94370	4.67820
С	-1.55400	1.34480	-2.32370
Н	-2.39670	0.74300	-2.65790
С	-5.12700	3.46160	-0.36760
Н	-5.13240	3.81650	0.66370
С	-5.11420	2.51300	-2.96890
Н	-5.09790	2.11430	-3.98520

С	-6.79770	1.75860	3.38340
Н	-7.84650	1.62080	3.65650
С	-1.58060	-2.94940	-2.28030
Н	-0.97230	-2.31260	-1.62040
Н	-1.47300	-2.57480	-3.31000
Н	-1.16810	-3.97130	-2.26250
С	0.57640	2.19340	-2.09230
Н	1.64570	2.35430	-2.20150
С	-3.04630	-2.91490	-1.86470
Н	-3.36720	-1.86660	-1.93560
С	-2.74920	-4.58530	0.01060
Н	-2.18770	-5.21520	-0.68380
С	-8.71940	-3.62440	-1.25210
С	-6.07190	-2.93490	3.51740
Н	-6.74250	-3.45790	2.81780
Н	-6.68450	-2.25750	4.13180
Н	-5.64010	-3.68970	4.19310
С	-7.82190	-1.56130	-2.50770
Н	-8.66340	-1.60030	-3.19910
С	-3.92600	-3.73510	-2.81020
Н	-3.63940	-4.79930	-2.79490
Н	-3.82220	-3.37270	-3.84490
Н	-4.98780	-3.66620	-2.53030
С	-5.38520	4.35380	-1.41680
С	-5.35640	3.86570	-2.72670
Н	-5.53090	4.52740	-3.57390
С	-1.72550	1.77650	3.34920
Н	-1.78820	2.24200	4.34600
Н	-0.68780	1.84870	3.00230
Н	-1.96700	0.71140	3.45700
С	-5.68860	5.81800	-1.08810
С	-5.91350	2.29820	4.31120
Н	-6.26390	2.57210	5.30940
С	-7.97230	-4.95140	-1.45910
Н	-7.54190	-5.00510	-2.47100
Н	-8.65820	-5.80410	-1.33130
Н	-7.14800	-5.06990	-0.73990
С	-2.38980	3.94870	2.26600
Н	-3.00320	4.42760	1.48990
Н	-1.33310	4.12350	2.01120
Н	-2.59380	4.45600	3.22280

В	-3.85220	-0.07710	0.32490
С	-4.06970	-1.41950	3.75520
Н	-3.53850	-2.13400	4.40490
Н	-4.63990	-0.72540	4.39180
Н	-3.31560	-0.83180	3.21490
С	-8.26200	2.04870	0.58240
Н	-8.85180	2.50230	1.39570
Н	-8.96420	1.68200	-0.18280
Н	-7.64720	2.83680	0.12670
С	-8.27760	-0.21910	1.66200
Н	-7.67930	-1.06330	2.03160
Н	-8.93930	-0.60090	0.87140
Н	-8.91680	0.13070	2.48820
С	-9.29810	-3.58190	0.16820
Н	-8.51280	-3.63610	0.93640
Н	-9.97860	-4.43310	0.32730
Н	-9.86710	-2.65550	0.33660
С	-4.50780	6.42750	-0.31990
Н	-4.34330	5.92280	0.64300
Н	-4.69630	7.49190	-0.10720
Н	-3.57730	6.35190	-0.90330
С	-9.87970	-3.55820	-2.24540
Н	-10.44600	-2.61910	-2.14830
Н	-10.57720	-4.38860	-2.05820
Н	-9.53360	-3.64630	-3.28640
С	-6.95350	5.88390	-0.21960
Н	-7.81720	5.45510	-0.75080
Н	-7.19170	6.92900	0.03490
Н	-6.83080	5.32870	0.72230
С	-5.92300	6.65100	-2.34860
Н	-5.03790	6.65880	-3.00280
Н	-6.13950	7.69360	-2.06980
Н	-6.77930	6.27860	-2.93110
Fe	0.26920	-0.81120	0.79170
0	2.53570	0.20300	-0.73590
0	4.67260	-0.30290	2.13110
Ν	4.51280	1.31600	-0.05560
Ν	4.57420	-1.21660	-0.44250
С	5.64250	1.39630	0.77140
С	6.62870	2.36580	0.59220
Н	6.50870	3.05910	-0.24140

С	3.96230	2.56550	-0.48740
С	6.37490	-1.39870	-2.10170
С	1.58070	-2.34010	1.30370
Н	2.45230	-2.65690	0.73770
С	4.20540	2.99520	-1.80630
С	5.73290	0.53660	1.87640
С	1.28950	0.08490	-0.34440
С	0.26310	-2.85050	1.15270
Н	-0.05760	-3.60090	0.43340
С	5.01110	-1.57960	-1.76260
С	0.21950	-1.25650	2.80840
Н	-0.13080	-0.57310	3.57820
С	4.89630	-1.64700	1.91390
С	4.11310	-2.15770	-2.68450
С	7.39980	-0.89690	-1.10410
Н	6.85290	-0.48450	-0.24810
С	4.86110	-2.10470	0.58740
С	3.67960	4.22830	-2.20450
Н	3.84240	4.57680	-3.22690
С	7.72380	2.47970	1.45540
С	2.95540	5.01730	-1.31730
Н	2.55040	5.97740	-1.64580
С	4.99550	2.14390	-2.77950
Н	5.50470	1.36960	-2.18730
С	6.83080	0.60310	2.72080
Н	6.89160	-0.08550	3.56560
С	3.24600	3.35570	0.42930
С	2.66470	-2.44810	-2.35160
Н	2.45280	-2.02420	-1.36430
С	4.58810	-2.50130	-3.95580
Н	3.89810	-2.94400	-4.67800
С	1.55380	-1.34500	2.32360
Н	2.39640	-0.74320	2.65790
С	5.12730	-3.46160	0.36790
Н	5.13270	-3.81650	-0.66340
С	5.11420	-2.51280	2.96910
Н	5.09780	-2.11400	3.98540
С	6.79810	-1.75870	-3.38310
Н	7.84690	-1.62080	-3.65610
С	1.58030	2.95000	2.28000
Н	0.97180	2.31330	1.62030

Н	1.47260	2.57570	3.30980
Н	1.16800	3.97200	2.26200
С	-0.57650	-2.19390	2.09180
Н	-1.64580	-2.35490	2.20080
С	3.04600	2.91520	1.86430
Н	3.36670	1.86680	1.93540
С	2.74910	4.58530	-0.01130
Н	2.18750	5.21530	0.68310
С	8.71880	3.62480	1.25210
С	6.07230	2.93450	-3.51710
Н	6.74280	3.45740	-2.81740
Н	6.68510	2.25700	-4.13130
Н	5.64070	3.68930	-4.19300
С	7.82140	1.56180	2.50780
Н	8.66290	1.60100	3.19930
С	3.92580	3.73540	2.80970
Н	3.63950	4.79960	2.79420
Н	3.82200	3.37310	3.84440
Н	4.98760	3.66620	2.52980
С	5.38540	-4.35360	1.41720
С	5.35650	-3.86540	2.72700
Н	5.53100	-4.52700	3.57430
С	1.72590	-1.77680	-3.34910
Н	1.78890	-2.24200	-4.34600
Н	0.68810	-1.84940	-3.00240
Н	1.96710	-0.71160	-3.45660
С	5.68900	-5.81780	1.08860
С	5.91400	-2.29830	-4.31090
Н	6.26440	-2.57230	-5.30900
С	7.97170	4.95180	1.45900
Н	7.54120	5.00560	2.47080
Н	8.65750	5.80460	1.33110
Н	7.14750	5.07030	0.73970
С	2.39030	-3.94900	-2.26600
Н	3.00380	-4.42790	-1.49000
Н	1.33360	-4.12390	-2.01110
Н	2.59420	-4.45620	-3.22280
В	3.85210	0.07700	-0.32500
С	4.07010	1.41920	-3.75550
Н	3.53910	2.13370	-4.40530
Н	4.64050	0.72510	-4.39200

Н	3.31590	0.83150	-3.21540
С	8.26220	-2.04860	-0.58200
Н	8.85210	-2.50220	-1.39520
Н	8.96420	-1.68190	0.18330
Н	7.64740	-2.83680	-0.12640
С	8.27770	0.21920	-1.66160
Н	7.67930	1.06340	-2.03130
Н	8.93930	0.60110	-0.87090
Н	8.91700	-0.13050	-2.48770
С	9.29750	3.58230	-0.16820
Н	8.51220	3.63630	-0.93640
Н	9.97800	4.43350	-0.32740
Н	9.86660	2.65580	-0.33650
С	4.50810	-6.42760	0.32060
Н	4.34350	-5.92290	-0.64230
Н	4.69670	-7.49190	0.10800
Н	3.57770	-6.35200	0.90410
С	9.87910	3.55880	2.24540
Н	10.44560	2.61980	2.14830
Н	10.57650	4.38930	2.05810
Н	9.53300	3.64690	3.28640
С	6.95370	-5.88370	0.22000
Н	7.81740	-5.45480	0.75100
Н	7.19200	-6.92890	-0.03450
Н	6.83090	-5.32870	-0.72200
С	5.92350	-6.65070	2.34920
Н	5.03850	-6.65850	3.00350
Н	6.14020	-7.69320	2.07050
Н	6.77980	-6.27810	2.93160

References

- S1 A. R. White, L. Wang and D. A. Nicewicz, *Synlett*, 2019, **30**, 827.
- S2 J. A. Gladysz, G. M. Williams, W. Tam, D. L. Johnson, D. W. Parker and J. C. Selover, *Inorg. Chem.*, 1979, **18**, 553.
- S3 J. Cosier and A. M. Glazer, J. Appl. Cryst., 1986, **19**, 105.
- S4 CrysAlisPro v171.41.93a (Rigaku Oxford Diffraction, 2021).
- S5 G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.
- S6 G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- S7 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr*. 2009, **42**, 339.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
 Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M.
 Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,
 J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.
 Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
 G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
 Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
 Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T.
 A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
 J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L.
 Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- S9 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; J. P. Perdew, K.
 Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **78**, 1396; C. Adamo and V. Barone, V., *J. Chem. Phys.*, 1999, **110**, 6158.
- S10 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456.
- F. Weigend, and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297; F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.
- S12 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, **152**, 224108.
- S13 E. F. Valeev, *Libint: A library for the evaluation of molecular integrals of manybody.operators over Gaussian functions*, Version 2.8.0, http://libint.valeyev.net/.
- S14 S. Lehtola, C. Steigman, M. J. T. Oliveira and M. A. L. Marques, *SoftwareX*, 2018, **7**, 1.
- S. Dohm, A. Hansen, M. Steinmetz, S. Grimme and M. P. Checinski, J. Chem. Theory Comput.
 2018, 14, 2596; L. Goerigk and S. Grimme, WIREs Comput. Mol. Sci., 2014, 4, 576; E.
 Semidalas and J. M. L. Martin, J. Chem. Theory Comput., 2022, 18, 883.
- S16 S. Kozuch and J. M. L. Martin, *Phys. Chem. Chem. Phys.*, 2011, **13**, 20104.
- S17 S. Kossmann and F. Nesse, J. Chem. Theory Comput. 2010, 6, 2325.
- A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799; J. Andzelm, C. Kölmel and A. J. Klamt, Chem. Phys., 1995, 103, 9312; V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem. 2003, 24, 669.
- S19 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.
- S20 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- S21 A. Hellweg, C. Hättig, S. Höfener and W. Klopper, *Theor. Chem. Acc.* 2007, **117**, 587.