Supplementary Information

DNA methylation induces subtle mechanical alteration but significant chiral selectivity

Yi Zeng,^{[a]†} Yujia Mao,^{[a]†} Yanjun Chen,^[a] Yuhong Wang, *^[b] and Shoujun Xu*^[a]
^[a]Department of Chemistry, ^[b]Department of Biology and biochemistry, University of Houston, Houston, TX 77204, USA
*Corresponding authors, E-mail: <u>ywang60@uh.edu</u>, <u>sxu7@uh.edu</u>
[†]These authors contributed equally to this work.

Table of Contents

- 1. Experimental details and the instrument, with Figure S1;
- 2. Force calibration, with Figure S2;
- 3. Force dependence on sample distance, with Figure S3;
- 4. Standard deviations of the dissociation voltages;
- 5. Structures of the drug molecules, with Figure S4.

1. Experimental details and the instrument

Materials:

The DNA oligomers were purchased from IDT (Integrated DNA Technologies, Coralville, USA). Magnetic beads M280 was purchased from Fisher Scientific (10 mg/mL, Cat. # 11205D). The drug molecules, *d*-tetrahydropalmatine (THP) (ab142555, Abcam Biochemicals, purity >98%), *l*-THP (1614, AvaChem Scientific, 98%), *l*-stepholidine (FS74167, Biosynth International, purity >95%) were purchased and used directly. All other chemicals were purchased from Sigma Aldrich unless specified otherwise.

DNA sequences for calibration are:

5'Bio/G TAC GTA AAT CTA CTG CTG AA (Strand 0) 3'-G CAT TTA GAT GAC GA/Bio (15 bp with Stran 0) 3'- CAT TTA GAT GAC GA/Bio (14 bp with Stran 0) 3'-AT TTA GAT GAC GA/Bio (13 bp with Stran 0) 3'-T TTA GAT GAC GA/Bio (12 bp with Stran 0) 3'-TTA GAT GAC GA/Bio (11 bp with Stran 0)

DNA sequences for methylation study are:

5'Bio/CCC AAT CGA CCC (none methylated) 3'Bio/GGG TTA GCT GGG (complementary to the previous strand) 5'Bio/CCC AAT m⁵CGA CCC (one methylated) 3'Bio/GGG TTA Gm⁵CT GGG (for two methylated duplex)

Instrument:

A home-built atomic magnetometer was used to measure the magnetic signal of the samples, with a sensitivity of ~150 fT \sqrt{Hz} . The ¹³³Cs atomic sensor, which was cubic with 6 mm side length, was housed in a four-layer magnetic shield. Linear polarized laser at 894.5952 nm was used to excite the Cs atoms (TLB-6818, Newport). A linear motor was used to scan the sample (Ultra Motion, Cutchogue). For force generation, a piezo disk of 15 mm diameter and 2 mm thick was used. Ultrasound at 1.00 MHz was generated by a function generator (DS345, Stanford Research System) and amplified by an AR amplifier (75A250A, AR).

Figure S1. Photos of the instrument. a. Overview of the apparatus. 1, atomic sensor housed inside a four-layer magnetic shield; 2, laser and optics; 3, motor for sample scanning. b. details of the sample region. 4, sample holder; 5, piezo on a translation stage; 6, laser diode; 7, photo detector; 8, pump; 9, water reservoir.

Procedure:

The sample well with dimensions of $4 \times 3 \times 2 \text{ mm}^3$ was coated with biotin (Biotin-PEG-SVA-5000 and MPEG-SVA-5000, 1:30 ratio, Laysan Bio Inc). Streptavidin (ThermoFisher Scientific) with a concentration of 0.25 mg/mL was introduced onto the surface and incubated for 1 h. After rinsing off excess streptavidin, the first DNA (1 μ M) with a biotin linker was added into the sample well and immobilized on the surface via biotin-streptavidin interaction. The incubation process was for 1 hr. Excess DNA was also rinsed off afterwards; then 1 μ M of probing DNA was added and incubated overnight. Next, streptavidin-coated magnetic beads M280 were diluted to approximately 0.5 mg/mL and introduced into the sample well. After 2 hr incubation, each sample was magnetized for 2 min on a permanent magnet (~0.5 T), and centrifuged (5427R, Eppendorf) at 1500 rpm (revolution per minute) for 20 min to remove nonspecifically bound magnetic beads. For the DNA-drug interaction experiments, the drug

(*d*-THP, *l*-THP, or *l*-stepholidine) was introduced to the sample well after centrifugation and incubated for 1 hr, with final concentration of 100 μ M. All the mixtures were in TAM₁₀ buffer, which contains 20 mM tris-HCl (15568025, ThermoFisher Scientific), 30 mM NH₄Cl (213330, Sigma Aldrich), 70 mM KCl (P3911, Sigma Aldrich), 5 mM EDTA (15575, Invitrogen), 7 mM BME (2-mercaptoethanol) (M3148, Sigma Aldrich), 10 mM MgCl₂ (M1028, Sigma Aldrich).

2. Force calibration

Force calibration was carried out using a series of DNA duplexes with 11-15 bp respectively. The dissociation forces in pN were obtained using centrifugal force, in which $F = m\omega^2 r$. Here m is the buoyant mass of the magnetic beads, ω is the angular speed of the centrifuge for duplex dissociation, r is the radius of the centrifuge (7.5 cm for Eppendorf 5470R) (Refs. 24, 25). Linear fitting yields $F = 1024.7V^2 + 16.0$, in which V is in volts and F in pN.

Figure S2. Calibration of ultrasound force using DNA duplexes with different lengths

3. Force dependence on sample distance calibration

Using the 13-bp DNA duplex, we have measured the dissociation voltage at several sample distances. The variation of dissociation voltages shows the necessity of maintaining a constant sample distance for the duration of the experiment.

Figure S3. Dissociation voltage vs. sample distance.

	#1	#2	#3	#4	#5	Standard deviation*
0 CH ₃	0.155	0.155	0.155	0.154	0.153	0.00089
1 CH ₃	0.161	0.161	0.161	0.160	0.162	0.00071
2 CH ₃	0.171	0.171	0.171	0.170	0.169	0.00089

4. Standard deviations of the dissociation voltages*

*Unit: V.

All the standard deviations were less than the 0.001 V variation of the ultrasound amplitude.

5. Structures of the drug molecules

Figure S4. Structures of the three drug molecules. THP: tetrahydropalmatine; SPD: stepholidine.