Supporting Information

Nickel-Catalyzed Regioselective Hydrogen Isotope Exchange Accelerated by 2-Pyridones

Zhi-Jiang Jiang,^{*,1} Si-Han Xu,^{1,2} Yuhang Su,^{1,2} Erxun Hu,¹ Jiawei Han,^{1,2} Jian-Fei Bai,¹ Bencan Tang,⁴ Jia Chen,^{1,3} Zhanghua Gao^{*,1,3}

(Email for corresponding authors: zj.jiang@nbt.edu.cn; z.gao@nbt.edu.cn)

- 1. NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
- 2. School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- 3. Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
- 4. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, P. R. China

Contents

1.	General Information	S2
2.	Experimental procedures	S3
3.	Condition Optimization	S4
4.	Additional experiments	S8
5.	Results of Substrate deuteration	S10
6.	References	S82

1. General Information

1) Experiments and Reagents

Unless noted otherwise, all experiments were carried out under the protection of nitrogen atmosphere, with oven-dried glassware and magnetic stirring bar. Temperature is reported as the temperature of the metal heating module, with the height of stirring reaction mixture lower than heating module.

Commercially available reagents were purchased from Aladdin, Bidepharm, and Leyan Chemicals, which was used directly without further purification unless stated otherwise. The deuterated solvents were supplied by Ningbo Cuiying Chemicals. The D₂O for reaction was fetched and transferred to the reaction in glovebox with nitrogen atmosphere.

The substrate N-(8-aminoquinoline)benzamide was prepared according to the reported literature.^[1,2]

2) TLC and Chromatography

Analytic thin-layer chromatography (Leyan chemicals) was used for checking the formation of unexpected side reactions. Visualization was achieved by ultraviolet light (254 nm and 365 nm) and iodine staining. Flash chromatography was performed on silica gel (200-300 mesh) with the indicated solvent systems.

3) Spectroscopy Analysis

The gas chromatography-mass spectroscopy (GC-MS) are recorded on an Agilent 6890N GC-system with an Agilent 5973Network Mass Selective Detector (electron ionization), and a HP-5MS column (30 m, 0.25 mm \times 0.25 µm).

¹H NMR (400 MHz) and ¹³C-NMR (100 MHz) are recorded on a Bruker Ascend 400 spectrometer and chemical shifts are reported in ppm down field from TMS and are referenced to residual proton in CDCl₃ or DMSO-*d*₆. The spectra for deuterated substrates are reported as observed, while the integration difference less than 5% are ignored. The NMR data are reported as: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet with *J* = coupling constant in Hz, and the deuterated position are marked as "Labelled".

4) Calculation of Deuterium Incorporation

The degree of deuterium-incorporation was calculated based on both GC-MS and ¹H-NMR methods, which had been described in our previous work.^[3] The theoretical deuterium degree was calculated as follow.

 $D_{theo} = \frac{6 \times n(acetone - d_6)}{6 \times n(acetone - d_6) + 1 \times n(2 - pyridone) + 3 \times n(sub)}$ $= \frac{6 \times 12.6 mmol}{6 \times 12.6 mmol + 1 \times 0.04 mmol + 3 \times 0.5 mmol}$ = 0.98

2. Experimental procedures

1) General procedure for standard condition

To an oven dried 10 mL pressure vessel was charged with substrates (0.5 mmol, 1.0 equiv.), Ni(OTf)₂ (10 mol%), 5-trifluoromethyl-2-carboxypyridine **L8** (20 mol%), Na₂CO₃ (2.0 equiv.), DCE (1.0 mL, 0.5 M), and acetone- d_6 (1.0 mL). The vessel was purged with nitrogen stream, and was sealed by a Teflon bushing with Viton O-ring. Then, the vessel was placed into a preheated aluminum block on a magnetic stirrer and stirred at 110 °C for 24 hours. After the time ended, the vessel was cooled in water to room temperature. The mixture was diluted with water (5 mL) and extracted by DCM (5 mL) for 3 times. The mixture was then filtrated over a pad of celite, and the residue was washed with DCM. The combined organic layer was dried over anhydrous sodium sulfate, and sampled for GC-MS analysis. The solvent was removed under reduced pressure after filtration, and the crude mixture was purified purified by chromatography to afford purified product.

Figure S1 Apparatus and glassware used in the experiments.

3. Condition Optimization

1) Initial optimization

The initial optimization was commenced with the examination of solvent systems. To achieve the deuterium labelling, conventional solvents were examined with D₂O as deuterium source. Unfortunately, none of such combinations rendered expected labelling result (Table S1 entries 1–5), as the work reported by You.^[4] However, all the reactions showed a green-coloured aqueous layer. This observation suggested the nickel catalyst may concentrated into the aqueous layer, which could hardly interact with the substrates.

Therefore, to remove the inference from separated liquid phase, the organic deuterium source was examined. In this case, successive labelling was observed with promising deuterium-incorporation of $1.26D_{MS}$ (Table S1 entry 6). However, extremely poor recovery was found due to the extensive esterlysis, where the amide was replaced to unreactive ester during the reaction period. Thus, the exchange could hardly render a acceptable result with deuterium source with nucleophilicity, where a deuteron provider was required by the mechanistic scheme. Fortunately, acetone- d_6 satisfied the requirement, which could offer the deuteron by tautomerization. Subsequent examination of solvent system suggested its combination with toluene as well as DCE could rendered promising results (Table S1 entries 7–16), and the DCE was chosen for subsequent study due to its higher volatility simplified workups.

Table S1	Initial	tests wi	th solven	t systems	and	deuterium	source. ^a
----------	---------	----------	-----------	-----------	-----	-----------	----------------------

entry	solvent (mL)	D-source (mL)	%Recov ^b	D _{MS} ^c
1	toluene (0.25)	D ₂ O (0.75)	-	< 0.05
2	MTBE (0.50)	D ₂ O (1.0)	-	< 0.05
3	THF (1.0)	D ₂ O (0.30)	-	< 0.05
4	1,4-dioxane (1.0)	D ₂ O (0.30)	-	< 0.05
5	DMSO (1.0)	D ₂ O (0.30)	-	< 0.05
6	toluene (0.25)	CD3OD (0.90)	30	1.26
7	toluene (0.50)	Acetone- <i>d</i> ₆ (0.50)	93	1.24
8	1,4-dioxane (0.50)	Acetone- <i>d</i> ₆ (0.50)	90	1.21
9	mesitylene (0.50)	Acetone- <i>d</i> ₆ (0.50)	94	1.19
10	<i>c</i> -hexane (0.50)	Acetone- $d_6(0.50)$	91	0.86
11	DCE (0.50)	Acetone- <i>d</i> ₆ (0.50)	96	1.18
12	PEG-400 (0.50)	Acetone- <i>d</i> ₆ (0.50)	82	0.18
13	DME (0.50)	Acetone- <i>d</i> ₆ (0.50)	85	0.80
14	DCE (0.75)	Acetone- <i>d</i> ₆ (0.25)	92	0.73
15	DCE (0.25)	Acetone- <i>d</i> ₆ (0.75)	91	1.17
16	-	Acetone- d_6 (1.00)	96	0.49

^{*a*} Reaction condition unless noted otherwise: substrate **1** (0.25 mmol), Ni(OTf)₂ (10 mol%), Na₂CO₃ (2.0 equiv.), solvent and D-source at 120 °C for 24 hours; ^{*b*} Recovery after column chromatography; ^{*c*} Deuterium incorporation determined by GC-MS.

Table S2 Examination of catalytic system.^a

entry	catalyst	ligand	%Recov ^b	D _{MS} ^c
1	Ni(OTf) ₂	-	96	1.18
2	NiCl ₂	-	95	0.11
3	Ni(dppf)Cl ₂	-	75	0.11
4	Ni(OAc) ₂ ·4H ₂ O	-	89	0.67
5	Ni(OTf)2	L1	87	1.23
6	Ni(OTf)2	L2	89	1.14
7	Ni(OTf)2	L3	94	1.18
8	Ni(OTf)2	L4	94	1.13
9	Ni(OTf) ₂	L5	90	1.26
10	Ni(OTf)2	L6	95	0.20
11	Ni(OTf)2	L7	78	< 0.05
12	Ni(OTf)2	L8	91	1.79
13	Ni(OTf)2	L13	92	1.78
14	Cu(OAc) ₂ ·H ₂ O	L8	n/a	0.10
15	CoSO4·7H ₂ O	L8	n/a	n.d.
16	Mn(OAc) ₂	L8	n/a	n.d.
17	FePO ₄ ·4H ₂ O	L8	n/a	n.d.

^aReaction condition unless noted otherwise: substrate **1** (0.25 mmol), catalyst (10 mol%), ligand (20 mol%), Na₂CO₃ (2.0 equiv.), DCE (0.5 mL) and Acetone- d_6 (0.5 mL) at 120 °C for 24 hours; ^b Recovery after column chromatography; ^c Deuterium incorporation determined by GC-MS. n.d. = not detected.

Figure S2 Ligands tested in the work. "Deuterium incorporation of 6 hours' exchange.

2) Optimization of reaction condition

19

L8 (20)

After the determination of catalytic system and deuterium source, further optimization was focused to further improve the performance. As shown in Table S3, 20 mol% of ligand loading rendered the highest deuterium incorporation of $1.43D_{MS}$, and the sodium sulphate remained the optimal choice. Further adjustment of temperature provided the product with a satisfying labelling degree of $1.83D_{MS}$ after 24-hour exchange.

Table S3 Condition optimization for HIE of aromatic ring.^a

^{*a*} Reaction condition unless noted otherwise: substrate 1 (0.25 mmol), Ni(OTf)₂ (10 mol%), **L8**, base, DCE (0.5 mL) and acetone- d_6 (0.5 mL) at specified temperature; ^{*b*}Recovery after column chromatography; ^{*c*}Deuterium incorporation determined by GC-MS.

100

24

94

1.64

Na₂CO₃ (2.0)

3) Ligand optimization for the HIE of aliphatic substrates

H ₂ C,	Ni(OTf) ₂ (10 mol%) Ligand (20 mol%)	D ₃ C,
H ₃ C ^T CH ₃ H	Na ₂ CO ₃ (2.0 equiv) DCE (0.5 M) Acetone-d ₆ (0.5 M) 130 °C, 24 h	$D_3C \begin{array}{c} \\ CD_3 \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Table S4 Condition optimization for the HIE of aliphatic substrates.^a

entry	ligand (mol%)	base (equiv.)	T (°C)	D _{MS} ^c
1	L8 (20)	Na ₂ CO ₃ (2.0)	130	2.04
2	L11 (20)	Na ₂ CO ₃ (2.0)	130	0.05
3	L13 (20)	Na ₂ CO ₃ (2.0)	130	7.83
4	L16 (20)	Na ₂ CO ₃ (2.0)	130	4.99
5	L17 (20)	Na ₂ CO ₃ (2.0)	130	7.62
6	L18 (20)	Na ₂ CO ₃ (2.0)	130	2.27
7	L13 (20)	TEA (2.0)	130	4.86
8	L13 (20)	DIPEA (2.0)	130	5.28
9	L13 (20)	NaHCO₃ (2.0)	120	5.91

^aReaction condition unless noted otherwise: aromatic amides (0.25 mmol), Ni(OTf) 2 (10 mol%), ligand (20 mol%), base (2.0 equiv.), DCE (0.5 mL) and acetone- d_6 (0.5 mL) in a 15 mL tube sealed by Teflon and reacted at 130 °C for 24 hours. b Deuterium incorporation determined by GC-MS.

Figure S3 Ligands tested in the work. ^aDeuterium incorporation of 6 hours' exchange.

4. Additional experiments

1) Deuteration kinetic curve

The optimization above rendered a condition with $1.83D_{MS}$ at 110 °C (Table S3, entry 18). However, the initial success also showed a $1.24D_{MS}$ incorporation at 120 °C (Table S1, entry 7), which didn't reflect a substantial improvement. Therefore, a kinetic comparison was conducted at 110 °C, and the data was summarized in Table S4 and Figure 2b.

As data indicated, the ligand-free condition showed a dramatically decreased reactivity, which only afford a moderate labelling degree of $0.71D_{MS}$. The overall deuterium accumulation was slow, which didn't reach the plateau during the tracking period of 24 hours. In contrast, the reaction with **L8** showed a much faster labelling speed, which reached $0.73D_{MS}$ in the first 2 hours. Therefore, the addition of **L8** provided a much higher reactivity for nickel catalyzed deuteration.

time e	D _{MS}				
ume	ligand-free condition ^b	optimized condition ^c	PPh₃ (20 mol%)		
1	0.01	0.19	0.03		
2	0.01	0.73	0.12		
4	0.04	1.45	0.18		
8	0.30	1.82	0.46		
12	0.43	1.82	0.76		
24	0.71	1.80	1.23		

Table S5 Kinetic profile for labelling under different conditions.^a

^aDeuterium incorporation determined by GC-MS; ^bReaction condition: substrate **1** (0.25 mmol), Ni(OTf)₂ (10 mol%), Na₂CO₃ (2.0 equiv.), DCE (0.5 mL) and Acetone- d_6 (0.5 mL) at 110 °C; ^cReaction condition: substrate **1** (0.25 mmol), Ni(OTf)₂ (10 mol%), L8 (20 mol%), Na₂CO₃ (2.0 equiv.), DCE (0.5 mL) and Acetone- d_6 (0.5 mL) and Acetone- d_6 (0.5 mL) at 110 °C.

2) Data for water addition experiments

According to You's mechanistic experiment,^[4] the C-H activation of *N*-benzoyl amino acids could hardly be labelled effectively, which employed heavy water as deuterium source (Figure 1b). Therefore, we tested the influence of water to our protocol. As shown in Figure 2c and Table S5, the addition heavy water suppressed the labelling efficiency, which was totally inhibited with 10 equiv. water or more.–

Table S6 Influence of water addition	۱. ^a
--------------------------------------	-----------------

entry	D ₂ O (equiv.)	D _{MS} ^b
1	0	1.78
2	5	0.89
3	10	0.06
4	20	n.d.
5	50	n.d.

^aReaction condition: substrate **1** (0.25 mmol), Ni(OTf)₂ (10 mol%), **L8** (20 mol%), Na₂CO₃ (2.0 equiv.), DCE (0.5 mL), Acetone- d_6 (0.5 mL) and **D₂O** at 110 °C; ^bDeuterium incorporation determined by GC-MS. n.d. = not detected.

3) Directing group examination

Besides the 8-aminoquinoline, a series directing groups were also tested under the standard condition (Figure S4). However, only the substrate with *N*'-oxide 2-aminopyridine rendered a moderate degree of labelling. *N*-protected benzylamines were also exposed to the protocol, where a moderate degree of labelling was observed on nicotinic amide, which was facilitated by the Thorpe-Ingold effect.

Figure S4 Examination of directing groups.

5. Results of Substrate deuteration

Deuteration of N-(quinolin-8-yl)benzamide (1)

General procedure to afford **1-[d]** as white solid (118.5 mg, 95%) with D-incorporation 97% for 2,6-positions by ¹H NMR and 1.86 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 8.95 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.20 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.10 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.65 – 7.52 (m, 5H), 7.49 (dd, *J* = 8.2, 4.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.75 (s, 1H), 8.95 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (dd, *J* = 8.3, 1.7 Hz, 1H), **8.12 – 8.08 (m, 0.06H, Labelled)**, 7.68 – 7.52 (m, 5H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H).

Figure S5 ¹H NMR spectrum comparison

Figure S7 ¹H NMR of 1 in CDCl₃

Figure S8 ¹H NMR of 1-[d] in CDCl₃

Deuteration of 2-methyl-N-(quinolin-8-yl)benzamide (2)

General procedure to afford **2-[d]** as white solid (122.5 mg, 94%) with D-incorporation 97% for 6-position by ¹H NMR and 0.81 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.96 (dd, *J* = 7.4, 1.5 Hz, 1H), 8.78 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.18 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.69 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.64 – 7.53 (m, 2H), 7.45 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.41 (td, *J* = 7.4, 1.5 Hz, 1H), 7.36 – 7.28 (m, 2H), 2.61 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.96 (dd, J = 7.5, 1.5 Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.69 (d, J = 7.8 Hz, 0.03H, Labelled), 7.67 – 7.52 (m, 2H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.32 (dd, J = 7.6, 4.0 Hz, 2H), 2.61 (s, 3H).

Figure S9 ¹H NMR spectrum comparison

Figure S11 ¹H NMR of 2 in CDCl₃

Deuteration of 3-methyl-N-(quinolin-8-yl)benzamide (3)

General procedure to afford **3-[d]** as white solid (124.5 mg, 95%) with D-incorporation 10% for 2-position and 97% for 6-position by ¹H NMR and 0.98 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 1H), 8.94 (dd, *J* = 7.6, 1.5 Hz, 1H), 8.83 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.14 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.94 – 7.82 (m, 2H), 7.58 (t, *J* = 7.9 Hz, 1H), 7.51 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.44 (dd, *J* = 8.2, 4.3 Hz, 2H), 7.41 – 7.36 (m, 1H), 2.47 (s, 3H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 1H), 8.94 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.83 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.14 (dd, *J* = 8.3, 1.7 Hz, 1H), <u>7.92 – 7.86 (m, 0.93H, Labelled)</u>, 7.58 (t, *J* = 7.9 Hz, 1H), 7.51 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.37 (ddd, *J* = 7.5, 1.7, 0.8 Hz, 1H), 2.47 (s, 3H).

Figure S13 ¹H NMR spectrum comparison

Figure S15 ¹H NMR of 3 in CDCl₃

Deuteration of 4-methyl-N-(quinolin-8-yl)benzamide (4)

General procedure to afford **4-[d]** as white solid (123.3 mg, 93%) with D-incorporation 97% for *ortho*-positions by ¹H NMR and 1.85 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 8.94 (dd, J = 7.6, 1.4 Hz, 1H), 8.85 (dd, J = 4.3, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 8.02 – 7.95 (m, 2H), 7.60 (t, J = 7.9 Hz, 1H), 7.53 (dd, J = 8.3, 1.5 Hz, 1H), 7.47 (dd, J = 8.3, 4.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 2.45 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.94 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 0.06H, Labelled), 7.59 (t, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.35 (s, 2H), 2.45 (s, 3H).

Figure S17 ¹H NMR spectrum comparison

Figure S19 ¹H NMR of 4 in CDCl₃

Deuteration of 4-Methoxy-N-(quinolin-8-yl)benzamide-2 (5)

General procedure to afford **5-[d]** as white solid (132.5 mg, 96%) with D-incorporation 97% for *ortho*-positions by ¹H NMR; $R_f = 0.25$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.68 (s, 1H), 8.92 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.85 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.20 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.12 – 8.04 (m, 2H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.48 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.08 – 7.01 (m, 2H), 3.90 (s, 3H). **NMR** data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.92 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.84 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.17 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.06 (d, *J* = 9.3 Hz, 0.06H, Labelled), 7.58 (t, *J* = 7.9 Hz, 1H), 7.52 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.03 (s, 2H), 3.89 (s, 3H).

Figure S21 ¹H NMR spectrum comparison

Figure S22 ¹H NMR of 5 in CDCl₃

Deuteration of 3-Methoxy-N-(quinolin-8-yl)benzamide-2 (6)

General procedure to afford **6-[d]** as light yellow solid (132.7 mg, 95%) with D-incorporation 97% for 2,6-positions by ¹H NMR; $R_f = 0.25$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.68 (s, 1H), 8.90 (dd, *J* = 7.6, 1.5 Hz, 1H), 8.77 (dt, *J* = 4.0, 1.9 Hz, 1H), 8.08 (ddd, *J* = 8.3, 2.9, 1.6 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.53 (td, *J* = 8.0, 1.7 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.44 – 7.35 (m, 2H), 7.13 – 7.03 (m, 1H), 3.87 (d, *J* = 1.5 Hz, 3H).. **NMR** data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 1H), 8.92 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.82 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.15 (dd, *J* = 8.3, 1.7 Hz, 1H), <u>7.66 – 7.62 (m, 0.07H, Labelled)</u>, 7.61 – 7.54 (m, 1H), 7.51 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.44 (dt, *J* = 8.3, 2.1 Hz, 2H), 7.11 (d, *J* = 8.3 Hz, 1H), 3.90 (s, 3H).

Figure S24 ¹H NMR spectrum comparison

Figure **S25** ¹H NMR of **6** in CDCl₃

Deuteration of 2-Methoxy-N-(quinolin-8-yl)benzamide (7)

General procedure to afford **7-[d]** as white solid (131.6 mg, 95%) with D-incorporation 17% for 6-position by ¹H NMR and 0.15 D_{MS} by GC-MS; $R_f = 0.25$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 1H), 9.04 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.87 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.36 (dd, *J* = 7.8, 1.9 Hz, 1H), 8.17 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.59 (t, *J* = 7.9 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.18 – 7.11 (m, 1H), 7.08 (dd, *J* = 8.3, 1.0 Hz, 1H), 4.20 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 12.34 (s, 1H), 9.04 (dd, *J* = 7.7, 1.4 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.36 (dd, *J* = 7.9, 1.9 Hz, 0.83H, Labelled), 8.14 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.57 (t, *J* = 7.9 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.43 (dd, *J* = 8.2, 4.1 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.05 (dd, *J* = 8.3, 1.0 Hz, 1H), 4.18 (s, 3H).

Figure S27 ¹H NMR spectrum comparison

Figure S28 GC-MS spectrum comparison

Figure S29 ¹H NMR of 7 in CDCl₃

Deuteration of 4-(Dimethylamino)-N-(quinolin-8-yl)benzamide (8)

General procedure to afford **8-[d]** as light yellow solid (135.1 mg, 93%) with D-incorporation 97% for 2,6-positions by ¹H NMR; $R_f = 0.20$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 8.94 (dd, *J* = 7.7, 1.3 Hz, 1H), 8.84 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.16 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.04 – 7.98 (m, 2H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.51 – 7.43 (m, 2H), 6.80 – 6.74 (m, 2H), 3.06 (s, 6H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 8.94 (dd, *J* = 7.7, 1.3 Hz, 1H), 8.84 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.16 (dd, *J* = 8.3, 1.7 Hz, 1H), **8.01 (d,** *J* **= 9.5 Hz, 0.06H, Labelled)**, 7.58 (t, *J* = 7.9 Hz, 1H), 7.53 – 7.41 (m, 2H), 6.78 (s, 2H), 3.06 (s, 6H).

Figure S31 ¹H NMR spectrum comparison

Figure S32 ¹H NMR of 8 in CDCl₃

Deuteration of 3-Fluoro-N-(quinolin-8-yl)benzamide (9)

General procedure to afford **9-[d]** as white solid (129.7 mg, 97%) with D-incorporation 96% for 2,6-positions by ¹H NMR and 1.77 D_{MS} by GC-MS; $R_f = 0.50$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, D_{MS}O) δ 10.65 (s, 1H), 8.97 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.68 (d, *J* = 7.6 Hz, 1H), 8.45 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.81 (dt, *J* = 9.7, 2.1 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.67 (qd, *J* = 8.7, 5.2 Hz, 3H), 7.52 (td, *J* = 8.5, 2.7 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, D_{MS}O) δ 10.64 (s, 1H), 8.97 (d, *J* = 4.7 Hz, 1H), 8.67 (d, *J* = 7.6 Hz, 1H), 8.45 (d, *J* = 8.3 Hz, 1H), <u>7.91 – 7.59 (m, 4.07H, Labelled)</u>, 7.51 (t, *J* = 8.6 Hz, 1H).

Figure S34 ¹H NMR spectrum comparison

Figure S35 GC-MS spectrum comparison

Figure S36 ¹H NMR of 9 in DMSO-d₆

F-76.0

.2.0 11.5 11.0 10.5 10.0 9.5

1.00

9.0 8.5

5 88 5 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.(f1 (ppn)

Deuteration of 3-Chloro-N-(quinolin-8-yl)benzamide (10)

General procedure to afford **10-[d]** as white solid (136.2 mg, 96%) with D-incorporation 57% for 2-position and 96% for 6-position by ¹H NMR and 1.34 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 1H), 8.90 (dd, *J* = 7.3, 1.7 Hz, 1H), 8.86 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.19 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.06 (t, *J* = 1.9 Hz, 1H), 7.95 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.63 – 7.45 (m, 5H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.68 (s, 1H), 8.90 (dd, *J* = 7.3, 1.7 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.06 (d, *J* = 2.1 Hz, 0.43H, Labelled), 7.97 – 7.92 (m, 0.04H, Labelled), 7.62 – 7.44 (m, 5H).

Figure S38 ¹H NMR spectrum comparison

Figure S39 GC-MS spectrum comparison

Figure S40 ¹H NMR of 10 in CDCl₃

Figure S41 ¹H NMR of 10-[d] in CDCl₃

Deuteration of 3-Bromo-N-(quinolin-8-yl)benzamide (11)

General procedure to afford **11-[d]** as white solid (157.3 mg, 96%) with D-incorporation 42% for 2-position and 95% for 6-position by ¹H NMR and 1.31 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 8.86 (dd, *J* = 18.7, 5.8 Hz, 2H), 8.23 – 8.13 (m, 2H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.65 – 7.34 (m, 4H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.65 (s, 1H), 8.88 (dd, *J* = 7.3, 1.7 Hz, 1H), 8.83 (dd, *J* = 4.7 Hz, 1H), 8.20 (d, *J* = 2.0 Hz, 0.58H, Labelled), 8.16 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.97 (dd, *J* = 7.7, 1.0 Hz, 0.05H, Labelled), 7.68 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H).

Figure S42 ¹H NMR spectrum comparison

Figure S43 GC-MS spectrum comparison

Figure S45 ¹H NMR of 11-[d] in CDCl₃

Deuteration of N-(Quinolin-8-yl)-2-(trifluoromethyl)benzamide (12)

General procedure to afford **12-[d]** as white solid (150.6 mg, 95%) with D-incorporation 61% for 6-position by ¹H NMR and 0.59 D_{MS} by GC-MS; $R_f = 0.30$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.93 (dd, *J* = 6.9, 2.1 Hz, 1H), 8.76 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.19 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.84 – 7.74 (m, 2H), 7.69 (td, *J* = 7.6, 1.4 Hz, 1H), 7.66 – 7.56 (m, 3H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.93 (dd, *J* = 6.9, 2.1 Hz, 1H), 8.76 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.19 (dd, *J* = 8.3, 1.7 Hz, 1H), **<u>7.83 – 7.75 (m, 1.39H, Labelled)</u>**, 7.68 (ddt, *J* = 5.4, 4.1, 2.1 Hz, 1H), 7.65 – 7.55 (m, 3H), 7.46 (dd, *J* = 8.3, 4.3 H).

Figure S46 ¹H NMR spectrum comparison

Figure S48 ¹H NMR of 12 in CDCl₃

Ti
<thTi</th>
Ti
Ti
Ti</

Deuteration of 2-Nitro-N-(quinolin-8-yl)benzamide (13)

General procedure to afford **13-[d]** as light yellow solid (130.2 mg, 90%) with D-incorporation 10% for 6-position by ¹H NMR; $R_f = 0.10$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.89 (dd, *J* = 6.5, 2.4 Hz, 1H), 8.75 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.20 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.81 – 7.73 (m, 2H), 7.72 – 7.55 (m, 3H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.90 (dd, *J* = 6.6, 2.4 Hz, 1H), 8.76 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.22 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), <u>7.81 – 7.73 (m, 1.90H, Labelled)</u>, 7.71 – 7.57 (m, 3H), 7.48 (dd, *J* = 8.3, 4.3 Hz, 1H).

Figure S50 ¹H NMR spectrum comparison

Figure S51 ¹H NMR of 13 in CDCl₃

Deuteration of N-(Quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (15)

General procedure to afford **15-[d]** as white solid (58.9 mg, 63%, reacted at 0.25 mmol scale) with D-incorporation 96% for 6-position by ¹H NMR; $R_f = 0.10$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 1H), 8.90 (dd, *J* = 30.2, 5.9 Hz, 2H), 8.50 (s, 1H), 8.17 (dd, *J* = 13.2, 8.1 Hz, 2H), 8.01 (d, *J* = 7.4 Hz, 1H), 7.67 – 7.41 (m, 4H), 1.38 (s, 12H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 1H), 8.94 (dd, *J* = 7.5, 1.4 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.51 (s, 1H), **8.18 (dd,** *J* **= 8.3, 1.7 Hz, 1.04H, Labelled)**, 8.02 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.63 – 7.51 (m, 3H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H), 1.38 (s, 12H).

Figure S53 ¹H NMR spectrum comparison

Figure S54 ¹H NMR of 15 in CDCl₃

N-(Quinolin-8-yl)benzo[d][1,3]dioxole-5-carboxamide (16)

General procedure to afford **16-[d]** as white solid (62.3 mg, 85%, reacted at 0.25 mmol scale) with D-incorporation 95% for 4,6-position by ¹H NMR; $R_f = 0.30$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 8.86 (dd, *J* = 21.1, 5.9 Hz, 2H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.71 – 7.40 (m, 5H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.07 (s, 2H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 8.87 (dd, *J* = 19.7, 5.9 Hz, 2H), 8.18 (d, *J* = 8.3 Hz, 1H), <u>7.66 – 7.43 (m, 3.11H, Labelled)</u>, 6.94 (s, 1H), 6.08 (s, 2H).

Figure S56 ¹H NMR spectrum comparison

Figure S57 ¹H NMR of 16 in CDCl₃

Figure S58 ¹H NMR of 16-[d] in CDCl₃

Deuteration of N-(Quinolin-8-yl)-[1,1'-biphenyl]-4-carboxamide (17)

General procedure to afford **17-[d]** as white solid (155.2 mg, 96%) with D-incorporation 98% for 3,5-positions by ¹H NMR; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.98 (d, *J* = 7.5 Hz, 1H), 8.91 – 8.81 (m, 1H), 8.17 (d, *J* = 8.1 Hz, 3H), 7.83 – 7.36 (m, 9H)..

NMR data for deuterated product: ¹H NMR(400 MHz, CDCl₃) δ 10.81 (s, 1H), 8.97 (dd, *J* = 7.6, 1.5 Hz, 1H), 8.88 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.21 (dd, *J* = 8.3, 1.6 Hz, 1.05H, Labelled), 7.78 (s, 2H), 7.70 – 7.65 (m, 2H), 7.62 (t, *J* = 7.9 Hz, 1H), 7.56 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.45 – 7.38 (m, 1H).

Figure S59 ¹H NMR spectrum comparison

Figure S60 ¹H NMR of 17 in CDCl₃

Deuteration of N-(Quinolin-8-yl)-1-naphthamide (18)

General procedure to afford **18-[d]** as light yellow solid (144.8 mg, 97%) with D-incorporation 97% for 2-position by ¹H NMR and 0.78 D_{MS} by GC-MS; $R_f = 0.50$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 1H), 9.07 (d, *J* = 7.6 Hz, 1H), 8.75 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.60 – 8.49 (m, 1H), 8.18 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 1H), 7.97 – 7.89 (m, 2H), 7.69 – 7.52 (m, 5H), 7.44 (dd, *J* = 8.3, 4.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 1H), 9.07 (dd, *J* = 7.5, 1.4 Hz, 1H), 8.75 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.62 – 8.51 (m, 1H), 8.20 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 1H), **7.96 – 7.90 (m, 1.03H, Labelled)**, 7.69 – 7.53 (m, 5H), 7.45 (dd, *J* = 8.3, 4.2 Hz, 1H).

Figure S62 ¹H NMR spectrum comparison

Figure S64 ¹H NMR of 18 in CDCl₃

Figure S65 ¹H NMR of 18-[d] in CDCl₃

Deuteration of N-(Quinolin-8-yl)-2-naphthamide (19)

General procedure to afford **19-[d]** as light yellow solid (142.5 mg, 96%) with D-incorporation 0% for 2-position and 97% for 6-position by ¹H NMR and 0.86 D_{MS} by GC-MS; $R_f = 0.50$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.91 (s, 1H), 9.00 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.90 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.62 (d, *J* = 1.9 Hz, 1H), 8.22 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.15 (dd, *J* = 8.6, 1.9 Hz, 1H), 8.08 – 8.03 (m, 1H), 8.01 (d, *J* = 8.6 Hz, 1H), 7.96 – 7.91 (m, 1H), 7.67 – 7.55 (m, 4H), 7.51 (dd, *J* = 8.3, 4.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 9.00 (dd, *J* = 7.5, 1.4 Hz, 1H), 8.89 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.61 (s, 1H), 8.19 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.14 (d, *J* = 9.5 Hz, 0.05H, Labelled), 8.09 – 8.02 (m, 1H), 8.00 (s, 1H), 7.95 – 7.87 (m, 1H), 7.68 – 7.53 (m, 4H), 7.49 (dd, *J* = 8.2, 4.2 Hz, 1H).

Figure S66 ¹H NMR spectrum comparison

Figure S68 ¹H NMR of 19 in CDCl₃

Figure S69 ¹H NMR of 19-[d] in CDCl₃

Deuteration of N-(Quinolin-8-yl)thiophene-2-carboxamide (20)

General procedure to afford **20-[d]** as white solid (123.2 mg, 97%) with D-incorporation 98% for 3-position by ¹H NMR and 0.76 D_{MS} by GC-MS; $R_f = 0.45$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.84 (d, *J* = 6.2 Hz, 2H), 8.16 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 3.7 Hz, 1H), 7.67 – 7.37 (m, 4H), 7.17 (t, *J* = 4.3 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.84 (dt, *J* = 5.3, 1.5 Hz, 2H), 8.17 (dd, *J* = 8.3, 1.7 Hz, 1H), **<u>7.84 (dd, J = 3.7, 1.1 Hz, 0.02H, Labelled)</u>**, 7.67 – 7.40 (m, 4H), 7.18 (d, *J* = 5.0 Hz, 1H).

Figure S70 ¹H NMR spectrum comparison

Figure S72 ¹H NMR of 20 in CDCl₃

Deuteration of N-(Quinolin-8-yl)thiophene-3-carboxamide (21)

General procedure to afford **21-[d]** as grey solid (119.0 mg, 94%) with D-incorporation 95% for 2-position and 96% for 4-position by ¹H NMR; $R_f = 0.45$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 8.93 – 8.81 (m, 2H), 8.22 – 8.14 (m, 2H), 7.70 (dd, *J* = 5.1, 1.4 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.50 – 7.41 (m, 2H).. **NMR** data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.54 (s, 1H), 8.92 – 8.81 (m, 2H), 8.19 (dd, *J* = 8.3, 1.7 Hz, 1.05H, Labelled), 7.70 (d, *J* = 5.1 Hz, 0.04H, Labelled), 7.62 – 7.51 (m, 2H), 7.48 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.43 (s, 1H).

Figure S75 ¹H NMR of 21 in CDCl₃

Deuteration of N-(Quinolin-8-yl)furan-3-carboxamide (22)

General procedure to afford **22-[d]** as light yellow solid (114.9 mg, 97%) with D-incorporation 96% for 2-position and 97% for 4-position by ¹H NMR; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.93 – 8.78 (m, 2H), 8.18 (dd, J = 8.4, 1.6 Hz, 2H), 7.60 – 7.51 (m, 3H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 6.93 (dd, J = 2.0, 0.9 Hz, 1H). NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.89 – 8.80 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1.04H, Labelled), 7.61 – 7.50 (m, 3H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 6.93 (d, J = 1.9 Hz, 0.03H, Labelled).

Figure S77 ¹H NMR spectrum comparison

Figure S78 ¹H NMR of 22 in CDCl₃

Figure S79 ¹H NMR of 22-[d] in CDCl₃

Deuteration of N-(quinolin-8-yl)benzo[b]thiophene-2-carboxamide (24)

General procedure to afford **24-[d]** as light yellow solid (146.8 mg, 97%) with D-incorporation 97% for 3-position by ¹H NMR; $R_f = 0.45$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material ¹H NMR (400 MHz, CDCl₃) δ 10.77 (s, 1H), 8.94 – 8.86 (m, 2H), 8.23 (dd, J = 8.2, 1.6 Hz, 1H), 8.12 (s, 1H), 7.93 (ddd, J = 11.5, 7.0, 2.7 Hz, 2H), 7.65 – 7.56 (m, 2H), 7.52 (dd, J = 8.3, 4.2 Hz, 1H), 7.45 (tt, J = 7.2, 5.5 Hz, 2H).

NMR data for deuterated product ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 8.95 – 8.81 (m, 2H), 8.20 (dd, *J* = 8.3, 1.7 Hz, 1H), **8.08 (s, 0.03H, Labelled)**, 7.98 – 7.86 (m, 2H), 7.63 – 7.53 (m, 2H), 7.53 – 7.40 (m, 3H).

Figure S80 ¹H NMR spectrum comparison

Figure S81 ¹H NMR of 24 in CDCl₃

Deuteration of 6-chloro-N-(quinolin-8-yl)nicotinamide (25)

General procedure to afford **25-[d]** as white solid (118.7 mg, 84%) with D-incorporation 5% for 4-position by ¹H NMR and 0.05 D_{MS} by GC-MS; $R_f = 0.30$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 9.11 – 9.06 (m, 1H), 8.89 – 8.81 (m, 2H), 8.31 (dd, *J* = 8.3, 2.5 Hz, 1H), 8.21 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.53 – 7.48 (m, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 9.09 (d, *J* = 2.5 Hz, 1H), 8.86 (td, *J* = 6.0, 2.3 Hz, 2H), **8.32 (dd,** *J* **= 8.3, 2.5 Hz, 0.95H, Labelled)**, 8.21 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.50 (dd, *J* = 8.3, 4.4 Hz, 2H).

Figure S83 ¹H NMR spectrum comparison

Figure S84 GC-MS spectrum comparison

Figure S85 ¹H NMR of 25 in CDCl₃

Figure S86 ¹H NMR of 25-[d] in CDCl₃

Deuteration of 2-phenyl-N-(quinolin-8-yl)acetamide (26)

General procedure to afford **26-[d]** as grey oily liquid (124.9 mg, 94%) with D-incorporation 12% for amethylene and 0% for phenyl-2-position by ¹H NMR and 0.16 D_{MS} by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.77 (dd, *J* = 7.3, 1.7 Hz, 1H), 8.69 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.11 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.55 – 7.37 (m, 7H), 7.36 – 7.31 (m, 1H), 3.90 (s, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.77 (dd, *J* = 7.2, 1.8 Hz, 1H), 8.70 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.14 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.57 – 7.37 (m, 7H), 7.36 – 7.30 (m, 1H), 3.90 (s, 1.83H, Labelled).

Figure S87 ¹H NMR spectrum comparison

Figure S89 ¹H NMR of 26 in CDCl₃

Figure S90 ¹H NMR of 26-[d] in CDCl₃

Deuteration of 2-((2,3-dimethylphenyl)amino)-N-(quinolin-8-yl)benzamide (28)

General procedure to afford **28-[d]** as light yellow solid (87.2 mg, 95%) with D-incorporation 96% for 6-position by ¹H NMR; $R_f = 0.60$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, $D_{MS}O$) δ 10.93 (s, 1H), 8.99 (d, J = 62.3 Hz, 2H), 8.71 (d, J = 7.6 Hz, 1H), 8.45 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 27.3 Hz, 3H), 7.37 (d, J = 9.1 Hz, 1H), 7.16 – 6.77 (m, 5H), 2.21 (d, J = 40.9 Hz, 6H).

NMR data for deuterated product: ¹H NMR (400 MHz, D_{MS}O) δ 10.93 (s, 1H), 9.07 (s, 1H), 8.91 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.70 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.45 (dd, *J* = 8.3, 1.7 Hz, 1H), **7.91 (dd,** *J* **= 8.0, 1.5 Hz, 0.04H, Labelled)**, 7.73 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.38 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.11 – 7.01 (m, 2H), 6.95 (ddd, *J* = 6.1, 4.6, 1.6 Hz, 2H), 6.87 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.27 (s, 3H), 2.16 (s, 3H).

Figure S91 ¹H NMR spectrum comparison

Figure S92 ¹H NMR of 28 in DMSO-d₆

Deuteration of 6-(3-(adamantan-1-yl)-4-methoxyphenyl)-N-(quinolin-8-yl)-2-naphthamide (29)

General procedure to afford **29-[d]** as white solid (126.4 mg, 94%, 3 mL DCE and 1 mL acetone- d_6 was used due to the poor solubility) with D-incorporation 15% for 1-position and 95% for 3-position by ¹H NMR; R_f = 0.20 (Pe-troleum ether/EtOAc =8/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.93 (s, 1H), 9.01 (dd, *J* = 7.5, 1.4 Hz, 1H), 8.92 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.64 (d, *J* = 1.8 Hz, 1H), 8.24 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.16 (dd, *J* = 8.5, 1.8 Hz, 1H), 8.11 – 8.01 (m, 3H), 7.84 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.69 – 7.49 (m, 5H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.92 (s, 3H), 2.21 (d, *J* = 3.0 Hz, 6H), 2.12 (t, *J* = 3.1 Hz, 3H), 1.88 – 1.75 (m, 6H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.92 (s, 1H), 9.01 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.92 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.63 (s, 0.85H, Labelled), 8.23 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 0.05H, Labelled), 8.12 - 8.01 (m, 3H), 7.84 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.68 - 7.48 (m, 5H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.92 (s, 3H), 2.21 (d, *J* = 2.9 Hz, 6H), 2.15 - 2.09 (m, 3H), 1.82 (t, *J* = 3.1 Hz, 6H).

Figure S94 ¹H NMR spectrum comparison

Figure S95 ¹H NMR of 29 in CDCl₃

Figure S96 ¹H NMR of 29-[d] in CDCl₃

Deuteration of 1-benzoyl-1H-indole-3-carbaldehyde (30)

General procedure to afford **30-[d]** as white solid (95.5 mg, 93%) with D-incorporation 75% for 2,6-positions by ¹H NMR; $R_f = 0.25$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, $D_{MS}O$) δ 10.74 (s, 1H), 8.98 (dd, J = 4.3, 1.7 Hz, 1H), 8.70 (dd, J = 7.6, 1.3 Hz, 1H), 8.48 (dd, J = 8.3, 1.7 Hz, 1H), 8.26 – 8.19 (m, 2H), 8.06 – 7.99 (m, 2H), 7.79 (dd, J = 8.3, 1.3 Hz, 1H), 7.73 – 7.63 (m, 2H), 3.13 – 3.02 (m, 4H), 1.50 (h, J = 7.4 Hz, 4H), 0.83 (t, J = 7.4 Hz, 6H)..

NMR data for deuterated product: ¹H NMR (400 MHz, $D_{MS}O$) δ 10.74 (s, 1H), 8.98 (dd, J = 4.2, 1.7 Hz, 1H), 8.70 (dd, J = 7.6, 1.3 Hz, 1H), 8.48 (dd, J = 8.3, 1.7 Hz, 1H), 8.23 (d, J = 8.6 Hz, 0.51H, Labelled), 8.03 (d, J = 3.9 Hz, 2H), 7.79 (dd, J = 8.4, 1.3 Hz, 1H), 7.73 – 7.61 (m, 2H), 3.13 – 3.04 (m, 4H), 1.50 (h, J = 7.4 Hz, 4H), 0.83 (t, J = 7.3 Hz, 6H).

Figure S98 ¹H NMR of 30 in DMSO-d₆

Deuteration of 4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-N-(quinolin-8-yl)-[1,1'-biphenyl]-2-carboxamide (31)

General procedure to afford **31-[d]** as white solid (93.7 mg, 59%) with D-incorporation 17% for 3-position by ¹H NMR; $R_f = 0.25$ (Petroleum ether/EtOAc =1/2).

NMR data for starting material: ¹H NMR (400 MHz, D_{MSO}) δ 9.85 (s, 1H), 8.62 (d, J = 4.9 Hz, 1H), 8.54 (d, J = 7.5 Hz, 1H), 8.25 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.68 – 7.41 (m, 12H), 7.26 (dt, J = 18.1, 7.1 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 5.47 (s, 2H), 3.77 (s, 3H), 2.60 (d, J = 6.8 Hz, 5H), 1.59 (h, J = 7.5 Hz, 2H), 0.79 (t, J = 7.3 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, $D_{MS}O$) δ 9.85 (s, 1H), 8.62 (dd, J = 4.2, 1.7 Hz, 1H), 8.54 (d, J = 7.4 Hz, 1H), 8.25 (dd, J = 8.3, 1.7 Hz, 1H), 7.79 (dd, J = 7.5, 1.5 Hz, 0.83H, Labelled), 7.69 – 7.42 (m, 12H), 7.33 – 7.20 (m, 2H), 7.09 (d, J = 8.1 Hz, 2H), 5.47 (s, 2H), 3.77 (s, 3H), 2.60 (d, J = 6.1 Hz, 5H), 1.59 (h, J = 7.4 Hz, 2H), 0.79 (t, J = 7.3 Hz, 3H).

Figure S100 ¹H NMR spectrum comparison

Figure S101 ¹H NMR of 31 in DMSO-d₆

Deuteration of N-(Quinolin-8-yl)pivalamide (32)

General procedure to afford **32-[d]** as colorless oily liquid (114.9 mg, 98%) with D-incorporation 86% for methyl by ¹H NMR and 7.80 D_{MS} by GC-MS; $R_f = 0.50$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.83 – 8.77 (m, 2H), 8.13 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.47 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.43 (dd, *J* = 8.3, 4.2 Hz, 1H), 1.43 (s, 8H)..

NMR data for deuterated product: ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 8.85 – 8.77 (m, 2H), 8.16 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.58 – 7.42 (m, 3H), <u>**1.40** (dt, *J* = 7.4, 1.9 Hz, 1.27H, Labelled)</u>; 13C NMR (101 MHz, CDCl₃) δ 177.52, 148.26, 138.83, 136.61, 134.82, 128.11, 127.65, 121.65, 121.38, 116.55, 39.94, 28.58 – 25.38 (m).

Figure S103 ¹H NMR spectrum comparison

Figure S105 ¹H NMR of 32 in CDCl₃

Figure S106 ¹H NMR of 32-[d] in CDCl₃

Deuteration of 2-Methyl-2-phenyl-N-(quinolin-8-yl)propenamide (33)

General procedure to afford **33-[d]** as white solid (133.9 mg, 97%) with D-incorporation 76% for gemmethyl and 9% for aromatic ring by ¹H NMR; $R_f = 0.50$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 8.77 (d, *J* = 7.6 Hz, 1H), 8.60 (d, *J* = 4.3 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.59 – 7.47 (m, 3H), 7.47 – 7.37 (m, 3H), 7.37 – 7.28 (m, 2H), 1.79 (s, 6H).

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.76 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.60 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.09 (dd, *J* = 8.3, 1.7 Hz, 1H), <u>7.57 – 7.48 (m, 2.82H, Labelled)</u>, 7.47 – 7.33 (m, 4H), 7.33 – 7.27 (m, 1H), <u>1.76 (d, *J* = 6.8 Hz, 1.49H, Labelled)</u>.

Figure S107 ¹H NMR spectrum comparison

Figure S108 ¹H NMR of 33 in CDCl₃

Figure S109 ¹H NMR of 33-[d] in CDCl₃

Deuteration of N-(Quinolin-8-yl)isobutyramide (34)

General procedure to afford **34-[d]** as colorless oily liquid (104.7 mg, 97%) with D-incorporation 41% for methyl by ¹H NMR; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.83 – 8.75 (m, 2H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.45 (dd, J = 8.3, 1.5 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 2.76 (hept, J = 6.9 Hz, 1H), 1.34 (d, J = 7.0 Hz, 6H).

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.85 – 8.76 (m, 2H), 8.16 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.58 – 7.42 (m, 3H), 2.77 (p, *J* = 6.2 Hz, 1H), 1.38 – 1.30 (m, 3.74H, Labelled).

Figure S110 ¹H NMR spectrum comparison

Figure S111 ¹H NMR of 34 in CDCl₃

Deuteration of N-(Quinolin-8-yl)cyclohexanecarboxamide (35)

General procedure to afford **35-[d]** as colorless oily liquid (114.0 mg, 90%) with D-incorporation 21% for methylene (equatorial bond) by ¹H NMR; $R_f = 0.45$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.83 – 8.72 (m, 2H), 8.08 (dd, J = 8.3, 1.8 Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.42 (dd, J = 8.3, 1.5 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 2.44 (tt, J = 11.7, 3.5 Hz, 1H), 2.14 – 2.00 (m, 2H), 1.90 – 1.79 (m, 2H), 1.76 – 1.54 (m, 3H), 1.43 – 1.18 (m, 3H)..

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.85 – 8.76 (m, 2H), 8.17 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.58 – 7.41 (m, 3H), 2.55 – 2.43 (m, 1H), **<u>2.14 – 2.02 (m, 1.58H, Labelled)</u>**, 1.88 (dt, *J* = 12.6, 3.3 Hz, 2H), 1.79 – 1.56 (m, 3H), 1.47 – 1.22 (m, 3H).

Figure S113 ¹H NMR spectrum comparison

Figure S115 ¹H NMR of 35-[d] in CDCl₃

Deuteration of 5-(2,5-dimethylphenoxy)-2,2-dimethyl-N-(quinolin-8-yl)pentanamide (37)

General procedure to afford **37-[d]** as light yellow oily liquid (171.8 mg, 96%) with D-incorporation 90% for methyl by ¹H NMR.

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.84 – 8.77 (m, 2H), 8.17 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.59 – 7.42 (m, 3H), 6.95 (d, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.4 Hz, 1H), 6.57 (d, *J* = 1.7 Hz, 1H), 3.95 (t, *J* = 5.8 Hz, 2H), 2.26 (s, 3H), 2.13 (s, 3H), 1.97 – 1.82 (m, 4H), 1.47 (s, 6H).

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.84 – 8.77 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 – 7.42 (m, 3H), 6.95 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 7.4 Hz, 1H), 6.57 (d, J = 1.6 Hz, 1H), 3.95 (t, J = 5.8 Hz, 2H), 2.26 (s, 3H), 2.13 (s, 3H), 1.97 – 1.81 (m, 4H), <u>1.43 (d, J = 2.2 Hz, 0.61H, Labelled)</u>.

Figure S116 ¹H NMR spectrum comparison

1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.60 1.59 1.58 1.57 1.56 1.55 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.30 11 (ppa)

Figure S117 ¹H NMR of 37 in CDCl₃

Figure S118 ¹H NMR of 37-[d] in CDCl₃

Deuteration of (S)-2-(6-Methoxynaphthalen-2-yl)-N-(quinolin-8-yl)propenamide (38)

General procedure to afford **38-[d]** as white solid (161.2 mg, 91%) with D-incorporation 56% for methyl and 56% for aromatic ring by ¹H NMR; $R_f = 0.30$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 8.78 (dd, *J* = 7.5, 1.4 Hz, 1H), 8.61 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.09 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.87 (d, *J* = 1.8 Hz, 1H), 7.76 (dd, *J* = 8.6, 4.2 Hz, 2H), 7.57 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 1H), 7.45 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.36 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.18 – 7.11 (m, 2H), 4.08 (q, *J* = 7.1 Hz, 1H), 3.91 (s, 3H), 1.76 (d, *J* = 7.6, 1.4 Hz, 1H), 8.61 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.09 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.87 (s, 1H), 7.76 (q, *J* = 4.2 Hz, 2H), **7.57 (dd,** *J* **= 8.5, 1.8 Hz, 0.44H, Labelled)**, 7.51 (t, *J* = 7.9 Hz, 1H), 7.45 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.36 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.18 – 7.10 (m, 2H), 4.08 (t, *J* = 6.4 Hz, 1H), 3.91 (s, 3H), **1.79 – 1.70 (m, 1.36H, Labelled)**.

Figure S119 ¹H NMR spectrum comparison

Figure S120 ¹H NMR of 38 in CDCl₃

Figure S121 ¹H NMR of 38-[d] in CDCl₃

Deuteration of (S)-2-(4-IsobutyIphenyI)-N-(quinolin-8-yI)propanamide (39)

General procedure to afford **39-[d]** as white solid (157.2 mg, 95%) with D-incorporation 46% for methyl and 36% for aromatic ring by ¹H NMR; $R_f = 0.60$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.78 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.66 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.10 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 1H), 7.45 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.39 (dt, *J* = 8.3, 2.2 Hz, 3H), 7.20 – 7.14 (m, 2H), 3.92 (q, *J* = 7.2 Hz, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.88 (dh, *J* = 13.6, 6.8 Hz, 1H), 1.69 (d, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 6.7 Hz, 6H).

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.78 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.67 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.11 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.55 – 7.43 (m, 2H), 7.41 – 7.36 (m, 2H), **7.20 – 7.13 (m, 2.29H, Labelled)**, 3.91 (t, *J* = 6.5 Hz, 1H), 2.47 (d, *J* = 7.1 Hz, 2H), 1.86 (dh, *J* = 13.5, 6.8 Hz, 1H), **1.68 (dd,** *J* **= 7.8, 5.8 Hz, 1.71H, Labelled)**, 0.91 (d, *J* = 6.6 Hz, 6H).

Figure S122 ¹H NMR spectrum comparison

Figure S123 ¹H NMR of 39 in CDCl₃

Figure S124 ¹H NMR of 39-[d] in CDCl₃

Deuteration of 2-(1-Oxo-1-(quinolin-8-yl)propan-2-yl)isoindoline-1,3-dione (41)

General procedure to afford **41-[d]** as light yellow solid (140.5 mg, 81%, 2 mL DCE and 1 mL acetone- d_6 was used because of solubility) with D-incorporation 0% for methyl and 20% for methine by ¹H NMR; R_f = 0.35 (Petroleum ether/DCM/EtOAc = 1.5/1/0.1).

NMR data for starting material: ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.77 – 8.66 (m, 2H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.90 (dd, J = 5.5, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.1 Hz, 2H), 7.57 – 7.47 (m, 2H), 7.42 (dd, J = 8.3, 4.3 Hz, 1H), 5.27 (q, J = 7.4 Hz, 1H), 1.98 (d, J = 7.3 Hz, 3H).

NMR data for deuterated product : ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.77 – 8.66 (m, 2H), 8.16 (dd, J = 8.3, 1.6 Hz, 1H), 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H), 7.57 – 7.48 (m, 2H), 7.43 (dd, J = 8.3, 4.3 Hz, 1H), 5.28 (q, J = 7.3 Hz, 0.80H, Labelled), 1.98 (d, J = 7.4 Hz, 2H).

Figure S125 ¹H NMR spectrum comparison

Figure S126 ¹H NMR of 41 in CDCl₃

6. References

- [1] Liene Grigorjeva Olafs Daugulis. Cobalt-Catalyzed Direct Carbonylation of Aminoquinoline Benzamides. *Organic Letters*, 2014, 16, 4688 – 4690.
- [2] Xin-Qi Hao, Li-Juan Chen, Baozeng Ren, Liu-Yan Li, Xin-Yan Yang, Jun-Fang Gong, Jun-Long Niu, Mao-Ping Song. Copper-mediated direct aryloxylation of benzamides assisted by an N, O -bidentate directing group. Organic Letters, 2014, 16, 1104 – 1107.
- [3] Junhua Kong, Zhi-Jiang Jiang, Jiayuan Xu, Yan Li, Hong Cao, Yanan Ding, Bencan Tang, Jia Chen, Zhanghua Gao. Ortho-Deuteration of Aromatic Aldehydes via a Transient Directing Group-Enabled Pd-Catalyzed Hydrogen Isotope Exchange. *The Journal of Organic Chemistry* 2021, 86, 13350-13359.
- [4] Yangyang Cheng, Yimin Wu, Guangyin Tan, Jingsong You. Nickel Catalysis Enables Oxidative C(sp²)– H/C(sp²)–H Cross-Coupling Reactions between Two Heteroarenes Angewante Chemie International Edition, 2016, 55, 12275-12279.