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I. GENERAL 
Solvents and reagents were reagent grade and used without purification unless otherwise noted. 

All reactions were carried out in flame dried glassware unless otherwise specified. Squaraine dyes 
4 and ylides 3 were prepared according to literature procedures.1 1H nuclear magnetic resonance 
(NMR) spectra were obtained at either 400 or 500 MHz. 13C NMR were obtained at 100 or 125 
MHz. Chemical shifts are reported in parts per million (ppm, δ), and referenced from the TMS. 
Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as s, 
singlet; d, doublet; t, triplet; q, quartet; m, multiplet; comp, complex; app, apparent; and br, broad. 
High- and low-resolution fast atom bombardment (FAB) measurements were made with a Bruker 
MicroTOF II mass 207 spectrometer. Absorption spectra were collected using V-670 JASCO UV-
Vis spectrophotometer. Fluorescence spectra were collected using a Horiba Fluoromax-4 
Fluorometer with FluoroEssence software. Analytical thin layer chromatography (TLC) was 
performed using EMD 250 micron 60 F254 silica gel plates, visualized with UV light (250 nm 
lamp) and stained with either p-anisaldehyde, ceric ammonium nitrate or potassium permanganate 
solutions. Flash column chromatography was performed according to Still’s procedure (Still, W. 
C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923) using Silicycle SiliaFlash P60 40-63 μm 
60 Å silica gel.  
 
II. EXPERIMENTAL PROCEDURES 
 
1H NMR spectroscopy Experiments: A solution of ylide 31 (0.4 mL, 0.02 M) in CDCl3 was 
added to a solution of MLn (0.4 mL, 0.02 M). 1H NMR (500 MHz) was used to monitor the metal-
mediated conversion of ylide 3 to squaraine 4 at rt, revealing complete conversion with 
[Rh(COD)Cl]2, [Ir(COD)Cl]2, and Pd(OAc)2, and partial conversion with Au(PPh3)Cl and 
Rh(PPh3)3Cl. Integration of hydroxy group peaks determined the 4/3 ratio. 
Concentration experiment of ylide 3a: Separately, solutions of 3a (100 mM, 50 mM, 10 mM, 5 
mM, 1 mM, 500 µM and 100 µM) were prepared in CDCl3, and to monitor the effect of 
concentration on ylide 3a, the samples were analyzed by 1H NMR spectroscopy. The ratio of 3a/4a 
was determined by 1H NMR integration of hydroxy group peaks. 
General procedure: Titrations monitored by UV-Vis spectroscopy: Separately, stock solutions 
of 3 (5µM in DMSO) and MLn (50µM in DMSO) were prepared. A 1 ml aliquot of the stock 
solution containing solution 3 was placed in a 10.00 mm helmaTM quartz, silica and glass standard 
cuvette, and the initial absorbance was measured at the indicated wavelength. A 10 µL aliquot (0.1 
eq.) of the requisite transition metal complex in DMSO was added to the cuvette containing 
solution 3 and mixed for 5 min to ensure equilibration. The absorbance was measured again, and 
the process was repeated until a total of 1.5 equivalents of the metal had been added to the 
phosphonium ylides solution.2 

General procedure: Fluorescence titrations of metals with oxindole ylide 3b: Separately, stock 
solutions of 3 (5µM in DMSO) and MLn (i.e., Pd(OAc)2 and HgCl2) (50µM in DMSO) were 
prepared. A 1 mL aliquot of oxindole ylide 3b solution was transferred to the fluorescence cuvette 
and initial fluorescence was measured. Titration was performed by adding successive 10 µL of the 
MLn to the oxindole ylide 3b solution and spectra were recorded 5 min after each aliquot addition. 
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UV-Vis spectral analysis of 4a in DMSO is shown in Figure S1.  Beer’s law analysis shows a λmax 
at 655 nm over the concentration range tested. Linear adherence to the Beer plot was maintained 
as high as 1.61 absorbance units. The molar extinction coefficient in DMSO was determined to be 
1.82 x 107 L mol-1 cm-1 from the slope of the absorbance/concentration plot at 655 nm for 4a.   

 

Beer’s law analysis of SQ 4a in DMSO

Figure S1: Beer’s law analysis of squaraine of SQ 4a from 0.1 µM to 9 µM. Linearity is maintained as high as 1.61 absorbance
Units at 655 nm and an extinction coefficient of 1.82 x 107 L mol-1cm-1 was obtained. 
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Figure S2: Titration of [Rh(COD)Cl]2 into a solution of benzofuranone ylide 3a at 5.46 µM in DMSO.
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Figure S3: Titration of  50.3 µM of Pd(OAc)2 into a solution of benzofuran ylide 4a at 4.97 µM in DMSO.
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Figure S4: Titration of Au(PPh3)Cl  into a solution of benzofuranone ylide 3a at 4.95 µM in DMSO.
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Figure S5: Titration of Rh(PPh3)3Cl  into a solution of benzofuranone ylide 3a at 4.96 µM in DMSO.
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Figure S6: Titration of HgCl2 into a solution of benzofuranone ylide 3a at 4.95 µM in DMSO.
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Figure S7: Titration of AgNO3 into a solution of benzofuranone ylide 3a at 4.96 µM in DMSO.
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Figure S8: Titration of PtCl2 into a solution of benzofuranone ylide 3a at 4.96 µM in DMSO.
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Figure S9: Titration of Pb(NO3)2 into a solution of benzofuranone ylide 3a at 4.96 µM in DMSO.
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Figure S10: Titration of Cu(OAc)2 into a solution of benzofuran ylide 3a at 4.95 µM in DMSO.
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UV-Vis spectral analysis of 4b in DMSO is shown in Figure S11. Beer’s law analysis shows a λmax 
at 685 nm over the concentration range tested. Linear adherence to the Beer plot was maintained 
as high as 2.28 absorbance units. The molar extinction coefficient in DMSO was determined to be 
2.26 x 107 L mol-1 cm-1 from the slope of the absorbance/concentration plot at 685 nm for 4b. 
 

 
 

Beer’s law analysis of SQ 4b in DMSO

Figure S11: Beer’s law analysis of squaraine of SQ 4b from 0.6 µM to 10 µM. Linearity is maintained as high as 2.28 absorbance
Units at 685 nm and an extinction coefficient of 2.26 x 107 L mol-1cm-1 was obtained. 
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Figure S12: Titration of [Rh(COD)Cl]2 into a solution of oxindole ylide 3b at 5.03 µM in DMSO.
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Figure S13: Titration of Pd(OAc)2 into a solution of oxindole ylide 3b at 5.02 µM in DMSO.
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Figure S14: Titration of Au(PPh3)Cl into a solution of oxindole ylide 3b at 5.03 µM in DMSO.
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Figure S15: Titration of Rh(PPh3)3Cl into a solution of oxindole ylide 3b at 5.03 µM in DMSO.
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Figure S16: Titration of HgCl2 into a solution of oxindole ylide 3b at 5.03 µM in DMSO.
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Figure S17: Titration of AgNO3 into a solution of oxindole ylide 3b at 5.00 µM in DMSO.
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Figure S18: Titration of PtCl2 into a solution of oxindole ylide 3b at 5.00 µM in DMSO.
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Figure S19: Titration of Pb(NO3)2 into a solution of oxindole ylide 3b at 5.00 µM in DMSO.
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Figure S20: Titration of Cu(OAc)2 into a solution of oxindole ylide 3b at 5.03 µM in DMSO.
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Figure S21: Changes in emission of ylide 3b upon addition of Pd(OAc)2 (0-2 eq.) in DMSO (5.00 µM)
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Figure S22: Changes in emission of ylide 3b upon addition of HgCl2 (0-1.5 eq.) in DMSO (5.00 µM)
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Figure S23: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a upon addition 
of [Rh(COD)Cl]2. The ratio of 4a/3a was determined by 1H NMR. 

 
Figure S23: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a upon addition 
of [Ir(COD)Cl]2. The ratio of 4a/3a was determined by 1H NMR. 
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Figure S25: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a upon addition 
of Pd(OAc)2. The ratio of 4a/3a was determined by 1H NMR. 

 
Figure S26: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a upon addition 
of Au(PPh3)Cl. The ratio of 4a/3a was determined by 1H NMR. 
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Figure S27: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a upon 
addition of Rh(PPh3)3Cl. The ratio of 4a/3a was determined by 1H NMR.   

 
Figure S28: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3b to 4b upon 
addition of [Rh(COD)Cl]2. The ratio of 4b/3b was determined by 1H NMR.  
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Figure S29: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3b to 4b upon 
addition of [Ir(COD)Cl]2. The ratio of 4b/3b was determined by 1H NMR.  

 

Figure S30: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3b to 4b upon 
addition of Pd(OAc)2. The ratio of 4b/3b was determined by 1H NMR. 
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Figure S31: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3b to 4b upon 
addition of Au(PPh3)Cl. The ratio of 4b/3b was determined by 1H NMR.  

 

 

Figure S32: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3b to 4b upon 
addition of Rh(PPh3)3Cl. The ratio of 4b/3b was determined by 1H NMR.  
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Figure S33: Partial 1H NMR spectra (500 MHz, CDCl3) that illustrates conversion of 3a to 4a with different 
concentration. The ratio of 3a/4a was determined by 1H NMR a/e peaks integration. 
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