Supplementary Information for

Storing electrons from H₂ for transfer to CO₂, all at room temperature

Daiki Shimauchi, Takeshi Yatabe, Yuka Ikesue, Yuu Kajiwara, Taro Koide, Tatsuya Ando, Ki-Seok Yoon, Hidetaka Nakai and Seiji Ogo*

*To whom correspondence should be addressed. E-mail: ogo.seiji.872@m.kyushu-u.ac.jp

This PDF file includes:

Materials and Methods Tables S1 to S3 Figures S1 to S12 References

A Table of Contents

Experimental Section	page 1
Table S1	page 4
Table S2	page 5
Table S3	page 6
Fig. S1	page 7
Fig. S2	page 8
Fig. S3	page 9
Fig. S4	page 10
Fig. S5	page 11
Fig. S6	page 12
Fig. S7	page 13
Fig. S8	page 14
Fig. S9	page 15
Fig. S10	page 16
Fig. S11	page 17
Fig. S12	page 18
References	page 19

Experimental Section

Materials and Methods. All experiments were carried out under an N₂ atmosphere using standard Schlenk techniques and a glovebox. H₂ (99.9999%) and CO₂ gas (99.9999%) were purchased from Sumitomo Seika Chemical Co., Ltd, ¹³CO₂ gas (99%) were purchased from Shoko Co., Ltd, CD₃CN was purchased from Cambridge Isotope Laboratories, Inc, *n*-hexane was purchased from Kanto Chemical Co., inc, distilled water was purchased from Hayashi Pure Chemical Ind., Ltd, hydrochloric acid and CD₃OD were purchased from FUJIFILM Wako Pure Chemical Corporation and 2,2':6',2"terpyridine (tpy) and [Ir^I(COD)(Cl)]₂ (COD = 1,5-cyclooctadiene) was purchased from Tokyo Chemical Industry Co. Ltd. These were used without further purification.

NMR spectra were recorded on a Bruker Avance III 600 FT-NMR spectrometer at 25 °C. ¹H and ¹³C NMR experiments in CD₃OD were measured using tetramethylsilane (TMS) as an internal standard. Electrospray ionisation mass spectrometry (ESI-MS) data were obtained by a JEOL JMS-T100LC AccuTOF. IR spectra were recorded on a PerkinElmer Spectrum Two as a solid state. Ultraviolet-visible-near-infrared (UV-vis-NIR) spectra were recorded on a JASCO V-670 UV-Visible-NIR Spectrophotometer (light pass length: 0.10 cm). Elemental analysis data were obtained by a Yanaco CHN-coder MT-5. X-ray photoelectron (XP) spectra were recorded on an ULVAC PHI 5000 VersaProbe II system with an Al anode X-ray source. Binding energies were calibrated by the C 1s peak of carbon at 284.5 eV.¹

[Ir^{II}₂(tpy)₂(CH₃CN)₂(Cl)₂]Cl₂ {[1]Cl₂}. An acetonitrile solution (18 mL) of tpy (0.14 g, 0.60 mmol) was added to an acetonitrile solution (30 mL) of [Ir^I(COD)(Cl)]₂ (0.20 g, 0.30 mmol) at room temperature. After stirring for 1 h at room temperature, the colour of the solution changed from yellow to blue. An HCl aqueous solution at pH 2 (100 mL) was added to the blue solution and stirred for 2 h at room temperature. After stirring for 4 h at 60 °C, the blue solution turns red. Then, the solvents were removed under reduced pressure. The residue was dissolved in water (3 mL) and acetonitrile (1 mL), and the solution to afford red solid. The red solid was collected by filtration and washed with acetonitrile (3 × 5 mL) and diethyl ether (3 × 5 mL) and dried in vacuo {yield: 87% based on [Ir^I(COD)(Cl)]₂}. ¹H NMR (600 MHz, in CD₃OD, referenced to TMS, 25 °C): δ 3.25 (s, 6H, –NCCH₃), 7.67–7.70 (dd, 4H, 5 and 5"–*H* of tpy), 8.01–8.05 (dd, 2H, 4'–*H* of tpy), 8.06–8.09 (d, 4H, 3' and 5'–*H* of tpy), 8.10–8.15 (m, 8H, 3, 3', 5'

and 3"-*H* of tpy), 8.49–8.52 (d, 4H, 6 and 6"-*H* of tpy). ESI-MS (in methanol): m/z 461.0 { $0.5[1-2CH_3CN)]^+$, relative intensity (I) = 100% in the range m/z 100–2000}. Anal. Calcd for [1]Cl₂·4H₂O: C₃₄H₃₆Cl₄Ir₂N₈O₄: C, 35.61; H, 3.16; N, 9.77%. Found: C, 35.55; H, 3.01; N, 9.62%.

 $[Ir^{II}_{2}(tpy)_{2}(CH_{3}CN)_{2}(Cl)_{2}](PF_{6})_{2} \{[1](PF_{6})_{2}\}$. An aqueous solution (10 mL) of NH₄PF₆ (45 mg, 0.28 mmol) and [1]Cl₂ (30 mg, 0.028 mmol) was stirred for 1 h at room temperature to afford red solid. The red solid was collected by filtration. The solid was washed with H₂O (3 × 3 mL) and dried in vacuo {yield: 83% based on [1]Cl₂}.

[Ir^I(tpy)(Cl)] (2). A methanol solution (5.0 mL) of [1]Cl₂ (50 mg, 0.047 mmol) and sodium acetate (7.6 mg, 0.093 mmol) was stirred under an H₂ atmosphere (0.1–0.8 MPa) for 6 h at room temperature to afford a blue solution. The solvent was removed under reduced pressure to afford dark blue solid. The solid was purified by a Sephadex LH-20 column eluted with methanol. The filtrate was evaporated under reduced pressure to yield black solid {yield: 94% based on [1]Cl₂}. ESI-MS (in methanol): m/z 454.1 {[2–Cl+N₂]⁺, I = 100% in the range m/z 100–2000}. Anal. Calcd for [2]·H₂O: C₁₅H₁₃ClIrN₃O: C, 37.62; H, 2.74; N, 8.77%. Found: C, 37.31; H, 2.89; N, 9.00%.

[Ir^{III}(tpy)(COO)(CH₃CN)(Cl)] (3). Acetonitrile (6.0 mL), acetone (2.0 mL) and dichloromethane (1.0 mL) were added to 2 (4.0 mg, 8.7 µmol). The suspension was stirred under a CO₂ atmosphere (0.5 MPa) for 48 h at room temperature. The resulting solution was analysed by ESI-MS. ESI-MS (in CH₃CN/acetone/dichloromethane): m/z 547.0 {[3+H]⁺, I = 70% in the range m/z 100–2000}.

[Ir^{III}(tpy)(COO)(CD₃CN)(Cl)] (D₃-labelled 3). [Ir^{III}(tpy)(COO)(CD₃CN)(Cl)] was prepared by the same method for the synthesis of **3** except the use of CD₃CN instead of CH₃CN. ESI-MS (in CD₃CN/acetone/dichloromethane: m/z 550.0 {[D₃-labelled **3**+H]⁺, I = 50% in the range m/z 100–2000}.

[Ir^{III}(tpy)(COOCH₃)(NHCOCH₃)(Cl)] (4). A methanol/acetonitrile (1/1) solution (40 mL) of **2** (40 mg, 87 µmol) was stirred under a CO₂ atmosphere (0.5 MPa) for 12 h at room temperature. Diethyl ether (300 mL) and hexane (160 mL) were added to the resulting solution to yield a brown solid (yield: 72% based on **2**). ¹H NMR (600 MHz, in CD₃OD, referenced to TMS, 25 °C): δ 2.40 {s, 3H, -HNC(O)CH₃}, 3.21 {s, 3H, -C(O)OCH₃}, 7.86–7.90 (dd, 2H, 5 and 5"–*H* of tpy), 8.32–8.36 (dd, 2H, 4 and 4"–*H* of tpy), 8.37–8.42 (dd, 1H, 4'–*H* of tpy), 8.58–8.62 (d, 2H, 3' and 5'–*H* of tpy),

8.63–8.65 (d, 2H, 3 and 3"–*H* of tpy), 8.78–8.81 (d, 2H, 6 and 6"–*H* of tpy). ¹³C NMR (150 MHz, in CD₃OD, referenced to TMS, 25 °C): δ 25.3, 48.1, 124.3, 125.9, 129.3, 141.5, 141.7,147.0, 153.9, 157.8, 160.2, 182.6. FT-IR (cm⁻¹, solid state): 1602 (v_{C=0}). ESI-MS (in acetonitrile): *m/z* 543.1 {[4–C1]⁺, *I* = 100% in the range *m/z* 100–2000}. Anal. Calcd for [4]·H₂O: C₁₉H₂₀ClIr N₄O₄: C, 38.29; H, 3.38; N, 9.40%. Found: C, 38.61; H, 3.43; N, 9.35%.

[Ir^{III}(tpy)(COOCD₃)(NDCOCH₃)(Cl)] (D₄-labelled 4). A CD₃OD/CH₃CN (1/1) solution (2 mL) of 2 (2 mg, 4.35 μ mol) was stirred under a CO₂ atmosphere (0.5 MPa) for 12 h at room temperature. The resulting solution was analysed by ESI-MS. ESI-MS (in CD₃OD/CH₃CN): *m*/*z* 547.1 {[D₄-labelled 4–Cl]⁺, *I* = 100% in the range *m*/*z* 100–2000}.

[Ir^{III}(tpy)(COOCH₃)(NHCOCD₃)(Cl)] (D₃-labelled 4). A CH₃OH/CD₃CN (1/1) solution (2 mL) of 2 (2 mg, 4.35 µmol) was stirred under a CO₂ atmosphere (0.5 MPa) for 12 h at room temperature. The resulting solution was analysed by ESI-MS. ESI-MS (in CH₃OH/CD₃CN): m/z 546.1 {[D₃-labelled 4–Cl]⁺, I = 100% in the range m/z 100–2000}.

Formation of 4 in the presence of H₂¹⁸O. A methanol/acetonitrile (1/1) solution (2 mL) of 2 (2 mg, 4.35 μ mol) with H₂¹⁸O (10 μ L) was stirred under a CO₂ atmosphere (0.5 MPa) for 12 h at room temperature. The resulting solution was analysed by ESI-MS. ESI-MS (in methanol): *m/z* 543.1 {[4–C1]⁺, *I* = 100% in the range *m/z* 100–2000}.

pH Adjustment. The pH values of the solutions were determined by a pH meter (IQ Scientific Instruments, Inc., IQ200) equipped with a stainless-steel micro pH probe (IQ Scientific Instruments, Inc., PH15-SS).

X-ray Crystallographic Analysis. A single crystal of $[1](PF_6)_2$ was obtained by diffusion of diethyl ether into the acetonitrile solution. A single crystal of 4 was obtained by diffusion of diethyl ether into the reaction solution under an N₂ atmosphere. Measurements were made on a Rigaku XtalLAB/HyPix-6000HE with graphite monochromated Mo-K α radiation ($\lambda = 0.71070$ Å). Data were collected and processed using the CrysAlis Pro program. All calculations were performed using the Olex2 except for refinement, which was performed using SHELXL-97. Crystallographic data for [1](PF₆)₂ and 4 have been deposited with the Cambridge Crystallographic Data Centre under reference numbers CCDC-2302205 and 2302206, respectively.

	Ir ^{II} dinuclear	Ir ^I low-valent	Ir ^{III} CO ₂ ²⁻	Ir ^{III} methoxy-
	complex 1	complex 2	complex 3	carbonyl
				complex 4
X-ray	Figure 1	_	—	Figure 4
ESI-MS	Figure S2	Figure 2	Figure 3	Figure S11
¹ H NMR	Figure S1	_	_	Figure S7
¹³ C NMR	_	_	_	Figure S8
UV-vis-NIR	Figure S4	Figure S4	_	Figure S6
XPS	Figure S3	Figure S3	_	_
FT-IR	_	_	_	Figure S10

 Table S1. Characterisation of Ir complexes 1–4

Entry	Hydrogenase model complex	Substrates	Ref.
1†		_	2
2		Cu ^{II}	3
3		O ₂	4
4	$ \begin{array}{c} $	Cu ^{II}	5
5		aryl fluoride	6
6		methyl iodide	7
7		ferrocenium ion	8
8		aryl iodide	9
9		O ₂	10
10	Ph Ph T0 Ph P N03 Ph P Ni Ph P Ni Ph P Ph Ph	ferrocenium ion	11
11		CO ₂	This work
[†] Electroche	mical H ₂ oxidation.		

Table S2. The hydrogenase model complexes that extract electrons from H_2 at room temperature and use it for the reduction of substrates at room temperature

 Table S3. Mononuclear CO₂-complex synthesised from the reaction of low-valent metal complex with CO₂ at room temperature or below

Entry	CO ₂	Detection method	Temp.	Electron source	Ref.
1	00 □0	IR	r.t.	$[Ir^{I}(COE)_{2}(Cl)]_{2}$	12
				COE = cyclooctene	
2		X-ray, IR,	r.t.	Na	13
		NMR			
3		X-ray	_	$[Rh^{I}(C_{2}H_{4})_{2}(Cl)]_{2}$	14
4		NMR, IR	r.t.	Mg	15
	PMe ₃				
5	, ^t Bu [□] 0 ∕−-R ^{−-t} Bu	NMR, IR	r.t.	[Ir ^I (COD)(Cl)] ₂	16
				COD = 1,5-cyclooctadiene	
6	tBu ⊐0 人	X-ray	r.t.	$[U^{III}(N(SiMe_3)_2)_3]$	17
	Ad N O=C=O tBu Ad O O O=C=O				
7		ESI-MS	r.t.	H_2	This
					work

Fig. S1 A ¹H NMR spectrum of **1** in CD₃OD. **†**: Peak of methanol. Tetramethylsilane (TMS), reference with the methyl proton resonance set at 0.00 ppm. Inset: the enlarged ¹H NMR spectrum between 7.3 and 8.8 ppm.

Fig. S2 (a) Positive-ion ESI mass spectrum of 1 in methanol. The signal at m/z 461.0 corresponds to half of $[1-2CH_3CN]^+$. (b) The signal at m/z 461.0 for half of $[1-2CH_3CN]^+$. (c) The calculated isotopic distribution for half of $[1-2CH_3CN]^+$.

Fig. S3 XPS spectra of the Ir 4*f* region for (a) 1 and (b) 2 and the C 1*s* region for (c) 1 and (d) 2.

Fig. S4 UV-vis-NIR absorption spectra of (a) **1** (0.4 mM) in methanol and (b) **2** (0.8 m M) in methanol. The light path length is 0.1 cm.

Fig. S5 (a) Positive-ion ESI mass spectrum of a thermodynamically transient **3** in CH₃CN/acetone/CH₂Cl₂. The signal at m/z 547.0 corresponds to $[3+H]^+$. (b) The enlarged positive-ion ESI mass spectrum of **3** in CH₃CN/acetone/CH₂Cl₂ between m/z 900–1150. The signal at m/z 998.0 corresponds to $[1-CH_3CN+CI]^+$. The signal at m/z 980.0 corresponds to $[1-2CH_3CN+CH_3CONH]^+$. †: m/z 957.0 for $[1-2CH_3CN+CI]^+$. ‡: Not assigned signal. (c) The signal at m/z 998.0 corresponds to $[1-CH_3CN+CI]^+$. (d) The calculated isotopic distribution for $[1-CH_3CN+CI]^+$. (e) The signal at m/z 980.0 corresponds to $[1-2CH_3CN+CI]^+$. (f) The calculated isotopic distribution for $[1-2CH_3CN+CH_3CONH]^+$.

Fig. S6 UV-vis-NIR absorption spectra of (a) **2** (0.8 mM) in methanol/CH₃CN and (b) the reaction solution of **2** (0.8 mM) with CO₂ in methanol/CH₃CN. The light path length is 0.1 cm.

Fig. S7 A ¹H NMR spectrum of 4 in CD₃OD. \ddagger : peak of methanol. TMS, reference with the methyl proton resonance set at 0.00 ppm. Inset: the enlarged ¹H NMR spectrum between 7.5 and 9.2 ppm.

Fig. S8 A ¹³C NMR spectrum of **4** in CD₃OD. **†**: Peaks of diethyl ether. TMS, reference with the methyl proton resonance set at 0.00 ppm. Inset: the enlarged ¹³C NMR spectrum between 110 and 170 ppm.

Fig. S9 (a) A heteronuclear single quantum correlation (HSQC) spectrum of 4 in CD₃OD.
(b) The enlarged HSQC spectrum of 4 in the aromatic region. †: Peak of methanol. ‡: Peaks of diethyl ether.

Fig. S10 An IR spectrum of 4.

Fig. S11 (a) Positive-ion ESI mass spectrum of 4 in CH₃CN/methanol. The signal at m/z 543.1 corresponds to $[4-C1]^+$. (b) The signal at m/z 543.1 for $[4-C1]^+$. (c) The calculated isotopic distribution for $[4-C1]^+$. (d) Positive-ion ESI mass spectrum of the reaction solution of 2 with CO₂ in CD₃CN/methanol. The signal at m/z 546.1 corresponds to $[D_3-labelled 4-C1]^+$. (e) Positive-ion ESI mass spectrum of the reaction solution of 2 with CO₂ in CD₃CN/methanol at m/z 547.1 corresponds to $[D_4-labelled 4-C1]^+$. (f) Positive-ion ESI mass spectrum of the reaction solution of 2 with CO₂ in CH₃CN and CD₃OD. The signal at m/z 547.1 corresponds to $[D_4-labelled 4-C1]^+$. (f) Positive-ion ESI mass spectrum of the reaction solution of 2 with CO₂ in CH₃CN and CD₃OD. The signal at m/z 543.1 corresponds to $[D_4-labelled 4-C1]^+$. (f) Positive-ion ESI mass spectrum of the reaction solution of 2 with CO₂ in CH₃CN and CD₃OD. The signal at m/z 543.1 corresponds to $[D_4-labelled 4-C1]^+$.

Fig. S12. Proposed reaction mechanism of the formation of **4** from **3** in the presence of methanol and CH₃CN.

References

- J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, In *Handbook of X-ray Photoelectron Spectroscopy*, J. Chastin, R. C. Jr. King, Eds., Physical Electronics, Inc.: Eden Prairie, MN, **1995**, pp 40–41.
- J. Y. Yang, S. E. Smith, T. Liu, W. G. Dougherty, W. A. Hoffert, W. S. Kassel, M. R. DuBois, D. L. DuBois and R. M. Bullock, *J. Am. Chem. Soc.*, 2013, 135, 9700–9712.
- 3 T. Matsumoto, B. Kure and S. Ogo, *Chem. Lett.*, 2008, **37**, 970–971.
- 4 D. Inoki, T. Matsumoto, H. Hayashi, K. Takashita, H. Nakai and S. Ogo, *Dalton Trans.*, 2012, **41**, 4328–4334.
- 5 D. Inoki, T. Matsumoto, H. Nakai and S. Ogo, *Eur. J. Inorg. Chem.*, 2013, 3978–3986.
- H. Nakai, K. Jeong, T. Matsumoto and S. Ogo, *Organometallics*, 2014, 33, 4349–4352.
- T. Yatabe, K. Kamitakahara, K. Higashijima, T. Ando, T. Matsumoto, K.-S. Yoon,
 T. Enomoto and S. Ogo, *Chem. Commun.*, 2021, 57, 4772–4774.
- 8 Y. Zhang, T. J. Woods and T. B. Rauchfuss, J. Am. Chem. Soc., 2021, 143, 10065– 10069.
- 9 T. Yatabe, T. Tome, Y. Takahashi, T. Matsumoto, K.-S. Yoon, H. Nakai and S. Ogo, *Chem.–Eur. J.*, 2021, 27, 17326–17330.
- 10 S. Ogo, T. Yatabe, T. Tome, R. Takenaka Y. Shiota and K. Kato, J. Am. Chem. Soc., 2023, 145, 4384–4388.
- 11 C. Takahashi, T. Yatabe, H. Nakai and S. Ogo, *Chem.-Eur. J.*, 2023, DOI: 10.1002/chem.202302297.
- 12 T. Herskovitz, J. Am. Chem. Soc., 1977, 99, 2391–2392.
- 13 G. S. Bristow, P. B. Hitchcock and M.F. Lappert, J. Chem. Soc., Chem. Commun., 1981, 1145–1146.
- 14 J. C. Calabrese, T. Herskovitz and J. B. Kinney, J. Am. Chem. Soc., 1983, 105, 5914– 5915.
- 15 H. G. Alt, K. Schwind and M. D. Rausch, J. Organomet. Chem. 1987, 321, C9–C12.
- 16 D. W. Lee, C. M. Jensen and D. Morales-Morales, *Organometallics*, 2003, 22, 4774–4749.

17 I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold and K. Meyer, Science, 2004, 305, 5691–1757.