- Supporting Information -

Cp*Rh(III)-Catalyzed Regioselective Cyclization of Aromatic Amides with

Allenes
Jing Liu, ${ }^{a}$ Deng-Yin Liu, ${ }^{\text {a }}$ Qian Yang, ${ }^{a}$ Yao-Fu Zeng, ${ }^{\text {b }}$ Xiao-Li Wang, ${ }^{\text {a }}$ Peng-Fei Wang, ${ }^{a}$ Yu-Jun Ruan, ${ }^{\text {a }}$ Miao-Miao Wen, ${ }^{\text {a }}$ Shang-Shi Zhang, ${ }^{\mathrm{c}}$ Li-da Du, ${ }^{\mathrm{d}}$ Xu-Ge Liu,* ${ }^{\text {a }}$ ${ }^{a}$ Zhongzhou Laborator, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
${ }^{5}$ School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421000, P. R. China.
${ }^{c}$ Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China, E-mail:
${ }^{d}$ Institute of Molecular Medicine \& Innovative Pharmaceutics, Qingdao University, Qingdao 266071, China,

> E-mail: liuxg7@henu.edu.cn.

1. General Information 2
2. Synthesis of Starting Materials 2
3. General Procedure for the synthesis of products 10
4.Application and Preliminary mechanistic investigation 13
4. X-Ray crystal data for compound 3oa and 5ja. 17
5. Characterization Data 31
6. References 59
7. Characterization of NMR spectra 60

1. General Information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in flame-dried glassware. If reaction was not carried out at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under argon: THF (Nabenzophenone), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$. Anhydrous triethylamine, DMF, dioxane, EtOH and MeOH were purchased from Acros Organics and stored over molecular sieves under argon.

Proton NMR $\left({ }^{1} \mathrm{H}\right)$ were recorded at $300 / 400 / 500 \mathrm{MHz}$, and Carbon NMR $\left({ }^{13} \mathrm{C}\right)$ at 101/126 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m : multiplet, br s: broad singlet for proton spectra. Coupling constants (J) are reported in Hertz (Hz).

Analytical thin layer chromatography was performed on Polygram SILG/UV254 plates. Visualization was accomplished with short wave UV light, or KMnO_{4} staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh or 600-800 mesh) with solvents distilled prior to use.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV 300 or AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicate. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=\right.$ $77.16 \mathrm{ppm} ; \mathrm{d}_{6}$-DMSO: $\delta \mathrm{H}=2.50 \mathrm{ppm}, \delta \mathrm{C}=39.52 \mathrm{ppm} ; \mathrm{d}_{4}-\mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{H}=3.31 \mathrm{ppm}$, $\delta \mathrm{C}=49.00 \mathrm{ppm})$. ESI mass spectra were recorded on a Bruker Daltonics MicroTof. No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of Starting Materials

2.1 Synthesis of N -(pivaloyloxy)benzamide

General Procedure 1a

N-(pivaloyloxy)benzamide were prepared according to the literature reported procedures:
1)To a solution of the carboxylic acid ($3.0 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise oxalyl chloride ($1.0 \mathrm{~mL}, 6 \mathrm{mmol}, 2.0$ equiv) followed by a catalytic amount of dry DMF (2 drops). The reaction was allowed to stir at room temperature until completion (typically 2 h). The solvent was then removed under reduce pressure to afford the corresponding crude acid chloride.
2) O-pivaloylhydroxamine triflic acid ($801 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.2$ equiv) was added to a biphasic mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(635 \mathrm{mg}, 6.0 \mathrm{mmol}, 2.0$ equiv) in a $2: 1$ mixture of EtOAc $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of the unpurified acid chloride dissolved in a minimum amount of EtOAc. The flask containing the acid chloride was then rinsed with additional EtOAc. The reaction was allowed to stir for 3 h . Afterwards, the phases were separated and the aqueous phase was extracted twice with EtOAc. The combined organic layers were dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The pure products were obtained without any further purification or purified by column chromatography.

General Procedure 1b

Benzhydroxamic acid ($1.37 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), triethylamine ($1.5 \mathrm{~mL}, 11 \mathrm{mmol}$, 1.1 equiv) and pivaloyl chloride ($1.4 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1$ equiv) in dry THF (30 mL) was stirred for overnight at rt . EtOAc (20 mL) was added and the reaction was washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water (2 x 20 mL) and then brine (20 mL). After drying theorganic layer over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation of the solvent gave a white solid. Recrystallization from pentane/EtOAc gave the pure product as a white solid (1.5 g , $6.8 \mathrm{mmol}, 68 \%)$.

Others have previously reported the synthesis of N-(pivaloyloxy)benzamides shown below. Substrates of $\mathbf{1 a - 1} \mathbf{r}^{[1-3]}$ were synthesized according to the above general procedure, and all the spectroscopic data matched those reported.

2.2 Synthesis of O-pivaloyl 1-indolehydroxamic acid

General Procedure 2

The synthesis of 1 H -indole-1-carboxylic acid: To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of indole $(2 \mathrm{~g}, 17 \mathrm{mmol})$ in THF (30 mL) was added dropwise a solution of $\mathrm{n}-\mathrm{BuLi}(13 \mathrm{~mL}, 1.6$ M in hexane) under a nitrogen atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the flask is freed of nitrogen by alternately evacuating and repressuring with CO_{2} gas to 1 atmosphere. The mixture was stirred for 3 hours, then, quenched carefully with water $(5.0 \mathrm{~mL})$. The solution was then concentrated to 10 mL , followed by adding HCl solution (3 M aq.) to adjust the pH to 2 . The organic phase was extracted by ethyl acetate and dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. The pure product could be obtained by recrystallization by using hexane as a white solid ($2.45 \mathrm{~g}, 89 \%$ yield), which could be used directly in next step without further purification.

The synthesis of O-pivaloyl 1-indolehydroxamic acid: In a nitrogen-filled flask, the mixture of 1 H -indole-1-carboxylic acid ($1.61 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv), oxalyl chloride ($2.2 \mathrm{~mL}, 25 \mathrm{mmol}, 2.5$ equiv) and few drops of DMF (ca. 0.1 equiv) in dichloromethane (15 mL) was stirred 3 h at room temperature. After evaporated under vacuum, the obtained residue was reacted with $\mathrm{PivONH}_{4} \cdot \mathrm{TfOH}(2.67 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(2.14 \mathrm{~g}, 20 \mathrm{mmol}, 2.0\right.$ equiv) for 3 h at $0^{\circ} \mathrm{C}$ by using $\mathrm{EtOAc} /$ water ($20 \mathrm{~mL}, 3: 1$) as a solvent. After reaction, the reaction mixture was extracted with EtOAc. The combined organic layers were dried over MgSO_{4}. The solvent was removed in vacuo and 3 a was obtained by silica gel column chromatography (PE/EtOAc) in 54\% yield (white solid, 1.4 g)

Others have previously reported the synthesis of O-pivaloyl 1-indolehydroxamic acid shown below. $4 \mathrm{a}-4 \mathrm{~m}^{[4-6]}$ were synthesized according to the above general procedure, and all the spectroscopic data matched those reported.

2.3 Synthesis of allenes 3

General Procedure 3a for Synthesizing Allenoate

Step 1: To a solution of ROH ($3 \mathrm{mmol}, 1.0$ equiv.) and 2-Bromoacetic acid (3.6 mmol , 1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) were added DCC (3.6 mmol , 1.2 equiv.) and DMAP ($0.3 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The reaction was stirred overnight. After the alcohol was consumed completely as determined by TLC analysis, the solvent was
evaporated. The residue was purified by column chromatography on silica gel (5\% $\mathrm{EtOAc} /$ petroleum ether) to afford bromoacetic esters.

Step 2: To a solution of PPh_{3} ($1.5 \mathrm{mmol}, 1.0$ equiv.) in toluene 20 mL) was added bromoacetic esters ($1.5 \mathrm{mmol}, 1.0$ equiv.) at room temperature. The reaction was stirred overnight. The formed precipitate was filtered, washed with toluene and dried t to afford the phosphonium salts.

Step 3: To a solution of the phosphonium salt (1.5 mmol) in a mixed solvent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added 1 drop solution of phenolphthalein in alcohol. sat. aq. NaOH was added dropwise until a permanent pink color was obtained. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to give phosphorus ylide.

Step 4: To a solution of phosphorus ylide ($1.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 mmol, 1.2 equiv.). The reaction mixture was stirred for 0.5 h at room temperature before adding a solution of acetyl chloride ($1.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature. The reaction was stirred overnight at room temperature. After the phosphorus ylide was consumed completely as determined by TLC analysis, the solvent was evaporated under reduced pressure. The residue was treated with petroleum ether $(30 \mathrm{~mL})$ and EtOAc $(15 \mathrm{~mL})$ with stirring for 0.5 h . The mixture was filtered and the filtrate was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (5\% EtOAc/ petroleum ether) to afford allenoates .

General Procedure 3b

Step 1: To a solution of 2-(triphenylphosphanylidene)acetate in $25 \mathrm{~mL} \mathrm{CHCl}{ }_{3}$ was added the RX (1.1 equiv, 1.0 mmol) at room temperature. The reaction mixture was
heated under reflux until 2-(triphenylphosphanylidene)acetate disappeared as monitored by TLC. The solvent was evaporated under reduced pressure to afford the phosphonium salts.

Step 2: The mixture of the above phosphonium salt and triethylamine (2.2 equiv, 2.2 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at room temperature for 1 h before addition of a solution of acyl chloride (1.0 equiv, 1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) slowly over 30 min using a syringe pump. The mixture was stirred overnight before passing through a Buchner funnel packed with silica gel and washing several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were carefully concentrated under reduced pressure. The residue was purified by a flash column chromatography (eluent: 10-15\% EtOAc in hexanes) to afford allenoates 2 .

Others have previously reported the synthesis of allenes shown below. $\mathbf{2 a - 2} \mathbf{i}^{[7-9]}$ were synthesized according to the above general procedure, and all the spectroscopic data matched those reported.

($8 R, 9 S, 13 S, 14 S$)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl buta-2,3-dienoate (2g)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=9.4,4.3 \mathrm{~Hz}$, 2H), 2.53 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 ($\mathrm{s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 2.16$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.26$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.7,169.9,164.6,148.8,138.1,137.6,126.5,121.6$, $118.8,87.8,79.8,50.6,48.1,44.3,38.1,36.0,31.7,29.5,26.5,25.9,21.7,14.0$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 337.1798$; found, 337.1805
(4R,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-tetramethyl-
1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-
icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl buta-2,3dienoate (2h)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dp}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ $3.31(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.79$ $(\mathrm{s}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~s}$, $1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H})$, $0.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.78,165.28,139.78,122.55,109.38,88.50,80.92$, $79.35,74.66,66.95,62.22,56.56,50.06,41.74,40.38,39.84,38.17,37.07,36.85$, 32.17, 31.96, 31.53, 30.41, 29.81, 28.93, 27.82, 20.94, 19.46, 17.25, 16.39, 14.64.

HRMS (ESI): m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 481.3313$; found,481.3323.

3. General Procedure for the synthesis of products

3.1 General procedure 4 for the synthesis of isoquinolin-1(2H)-ones 3

To a 10 mL reaction tube equipped with a stirring bar, corresponding $\mathrm{N}-\mathrm{OPiv}$ benzamide ($1,0.2 \mathrm{mmol}, 1.0$ equiv), allenes 2 (1.2 equiv, 41.8 mg), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5$ $\mathrm{mol} \%, 6.1 \mathrm{mg}$), $\mathrm{AgOAc}\left(20 \mathrm{~mol} \%, 6.7 \mathrm{mg}\right.$), $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.0$ equiv, 98 mg) and 1,4-dioxane (2 ml) were added under Ar atmosphere. Then the reaction tube was capped and placed in a pre-heated oil bath at $60{ }^{\circ} \mathrm{C}$ for the given time. After completion of the reaction as monitored by TLC, Then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The aqueous layer was then extracted with EtOAc, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified using column chromatography on silica gel ($300-400 \mathrm{mesh}$), and Petroleum/EA mixture as eluent to yield the corresponding isoquinolin- $1(2 \mathrm{H})$-ones 3 .

3.2 General procedure 5 for the synthesis of pyrimido[1,6-a]indol-1(2H)-ones (5)

To a 10 mL reaction tube equipped with a stirring bar, corresponding N (pivaloyloxy)indol ($0.2 \mathrm{mmol}, 1.0$ equiv), allenes 2 (1.5 equiv, 52.6 mg), $\left[\mathrm{Cp}{ }^{*} \mathrm{RhCl}_{2}\right]_{2}$
$(5 \mathrm{~mol} \%, 6.1 \mathrm{mg}), \mathrm{AgOAc}(20 \mathrm{~mol} \%, 6.7 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv, 55 mg) and THF $(2 \mathrm{ml})$ were added under N_{2} atmosphere. Then the reaction tube was capped and placed in a pre-heated oil bath at $30{ }^{\circ} \mathrm{C}$ for the given time. After completion of the reaction as monitored by TLC, Transfer to 25 ml flask and concentrate. The residue was purified using column chromatography on silica gel (300-400 mesh), and The residue was purified by flash column chromatography on silica gel using Petroleum ether /EtOAc as eluant.

3.3 Optimization conditions

3.3.1 Optimization of the $\mathrm{Rh}(\mathrm{III})$-caltlyzed regioselective annulation of benzamide with allene

		[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (5 mol\%) silver salt ($20 \mathrm{~mol} \%$) Additive (2.0 equiv) solvent, $60^{\circ} \mathrm{C}$, Ar,16h				
Entry	1a:2a	Catalyst	$\begin{aligned} & \text { Silver salt (x } \\ & 20 \mathrm{~mol} \% \text {) } \end{aligned}$	$\begin{aligned} & \text { Additive (2.0 } \\ & \text { equiv) } \end{aligned}$	Solvent (0.2 M)	Yield (\%)
1	1:1	[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	NaOAc	$\mathrm{CH}_{3} \mathrm{CN}$	44\%
2	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgBF_{6}	NaOAc	$\mathrm{CH}_{3} \mathrm{CN}$	40\%
3	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	NaOAc	$\mathrm{CH}_{3} \mathrm{CN}$	49\%
4	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	PivOH	$\mathrm{CH}_{3} \mathrm{CN}$	39\%
5	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{Zn}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	45\%
6	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	56\%
7	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	THF	66\%
8	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	DCM	35\%
9	1:1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	71\%
10	1:1.2	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	83\%
11	1:1.2	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	26\%
12	1:1.2	$\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	-
13	1:1.2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	-
14	1:1.2	$\left[\mathrm{Cp}{ }^{*} \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}\right]_{2}$	AgOAc	$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	-

Conditions: 1a (0.2 mmol), isolated yields

3.3.2 Optimization of the $\mathbf{R h}($ III $)$-caltlyzed regioselective annulation of indole-1carboxamide with allene

| Entry | Catalyst | Silver salt (20 mol\%) | Additive
 equiv) | | Solvent |
| :--- | :--- | :--- | :--- | :--- | :--- | Yield (\%)

Conditions: $4 \mathrm{a}(0.2 \mathrm{mmol})$, isolated yields

4.Application and Preliminary mechanistic investigation

4.1 Large-scale synthesis

To a 100 mL reaction tube equipped with a stirring bar, corresponding N -OPiv benzamide 1 ($1 \mathrm{mmol}, 1.0$ equiv), allenyl 2 a (1.2 equiv, 209 mg), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (5 $\mathrm{mol} \%, 30 \mathrm{mg}$), $\mathrm{AgOAc}\left(20 \mathrm{~mol} \%, 34 \mathrm{mg}\right.$), $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.0$ equiv, 490 mg) and 1,4-dioxane $(10 \mathrm{ml})$ were added under Ar atmosphere. Then the reaction tube was capped and placed in a pre-heated oil bath at $60{ }^{\circ} \mathrm{C}$ for the given time. After completion of the reaction as monitored by TLC, Then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The aqueous layer was then extracted with EtOAc, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel using Petroleum ether/EtOAc as eluant afforded as oil 3aa ($223 \mathrm{mg}, 76 \%$)

To a 35 mL reaction tube equipped with a stirring bar, corresponding N -OPiv benzamide 1 (1 mmol , 1.0 equiv), allenyl 2 a (1.5 equiv, 261 mg), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (5 $\mathrm{mol} \%, 30 \mathrm{mg}$), $\mathrm{AgOAc}\left(20 \mathrm{~mol} \%, 34 \mathrm{mg}\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv, 276 mg) and THF (10 $\mathrm{ml})$ were added under N_{2} atmosphere. Then the reaction tube was capped and placed in a pre-heated oil bath at $30^{\circ} \mathrm{C}$ for the given time. After completion of the reaction as monitored by TLC, Transfer to 25 ml flask and concentrate. The residue was purified using column chromatography on silica gel (300-400 mesh), and The residue was
purified by flash column chromatography on silica gel using Petroleum ether /EtOAc as eluant afforded as oil 5 aa ($188 \mathrm{mg}, 57 \%$)

4.2 Late-state functionalization of product

To an oven dried screw cap reaction tube, isoquinolin- $1(2 \mathrm{H})$-one derivative 3aa (0.1 mmol, 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 3.1 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.2$ equiv, 0.1 $\mathrm{mmol}, 18.0 \mathrm{mg}$) , diphenylacetylene (1.0 equiv, $0.1 \mathrm{mmol}, 17.8 \mathrm{mg}$) and DCE (1.0 ml) were added under N_{2} atmosphere. After that, the reaction mixture was stirred at 110 ${ }^{\circ} \mathrm{C}$ for 12 hours. The crude mixture was diluted with ethyl acetate, concentrated and purified by column chromatography on silica gel (300-400 mesh) and ethyl acetate /hexane as eluent (35/65) to yield corresponding annulation product in 68% yield $(32.0 \mathrm{mg})$.

benzyl 2-(2,3-diphenylpyrano[4,3,2-ij]isoquinolin-8-yl)ethaneperoxoate(7)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 10 \mathrm{H}), 7.14$ $(\mathrm{s}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (s, 2H), 3.78 (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,159.6,150.9,147.6,139.5,136.0,134.9,134.4$, $133.3,132.6,130.9,129.5,129.3,128.9,128.7,128.4,128.3,128.1,127.8,121.0$, 117.9, 117.9, 116.1, 114.6, 66.9, 43.6.

HRMS (ESI): m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 486.1700$; found,486.1705

4.3 Deuterium exchange experiment

$\mathrm{N}-\mathrm{OPiv}$ benzamide 1a ($0.1 \mathrm{mmol}, 1.0$ equiv) was reacted with allenyl 2a in presence of $\mathrm{CH}_{3} \mathrm{COD}$ (10.0 equiv) under standard conditions. The reaction was monitored by TLC and stopped after 6 h ., followed by column chromatography of the crude mixture gave the isoquinolin-1-(2H)-one product 3aa in 78% yield with 7% deuterium incorporation in the ortho proton. When the reaction was carried out in absence of allene coupling partner, the starting amide 1a was isolated in 72% yield with 8% deuterium incorporation.
en
i
i

$\stackrel{\ominus}{\stackrel{\circ}{-}}$

5. X-Ray crystal data for compound 3oa and 5ja.

Crystal structure of 30a

Figure S1: The crystal structure of 3oa by X-ray analysis.

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a methyl alcohol solution of 5 ja at room temperature under air. Thermal ellipsoids drawn at the 50% probability level. A suitable crystal was selected and on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 150.00 (16) K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation.

Crystal structure determination of 3oa

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}(M=362.19 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$ (no. 15), $a=30.7988(15) \AA, b=4.6614(3) \AA, c=22.7529(15) \AA, \beta=94.524(5)^{\circ}, V=$ $3256.4(3) \AA^{3}, Z=8, T=150.00(16) \mathrm{K}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=0.415 \mathrm{~mm}^{-1}$, Dcalc $=1.478 \mathrm{~g} / \mathrm{cm}^{3}$, 6399 reflections measured $\left(4.294^{\circ} \leq 2 \Theta \leq 49.996^{\circ}\right.$), 2875 unique ($R_{\text {int }}=0.0380$, $\mathrm{R}_{\text {sigma }}=0.0519$) which were used in all calculations. The final R_{1} was 0.0392 (I > $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0970 (all data).

Table 1 Crystal data and structure refinement for 3oa.

Identification code 3oa

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$
Formula weight	362.19
Temperature/K	150.00(16)
Crystal system	monoclinic
Space group	C2/c
a/Å	30.7988(15)
b/Å	4.6614(3)
c/Å	22.7529(15)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.524(5)
$\gamma{ }^{\circ}$	90
Volume/Å ${ }^{3}$	3256.4(3)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.478
μ / mm^{-1}	0.415
F(000)	1488.0
Crystal size/ mm^{3}	$0.15 \times 0.12 \times 0.1$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.294 to 49.996
Index ranges	$-22 \leq \mathrm{h} \leq 36,-4 \leq \mathrm{k} \leq 5,-27 \leq 1 \leq 26$
Reflections collected	6399
Independent reflections	$2875\left[\mathrm{R}_{\text {int }}=0.0380, \mathrm{R}_{\text {sigma }}=0.0519\right]$
Data/restraints/parameters	2875/0/217
Goodness-of-fit on F^{2}	1.061

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0392, \mathrm{wR}_{2}=0.0900$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0481, \mathrm{wR}_{2}=0.0970$
Largest diff. peak/hole / e $\AA^{-3} 0.22 /-0.23$

Refinement model description

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for hn-cl. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
Cl 1	4698.0(2)	6703.0(13)	6068.7(3)	38.01(19)
Cl 2	4313.1(2)	-442.8(10)	4256.4(2)	29.52(17)
O1	3010.1(4)	8081(3)	5401.2(6)	27.3(4)
O2	2621.1(5)	5733(3)	3200.0(7)	29.5(4)
O3	2014.4(4)	3085(3)	3196.3(6)	27.1(4)
N1	2856.9(5)	4963(3)	4647.6(7)	21.9(4)
C1	3137.7(6)	6213(4)	5065.6(9)	22.1(5)
C2	3586.2(6)	5156(4)	5092.3(9)	20.6(4)
C3	3888.0(6)	6267(4)	5524.6(9)	24.4(5)
C4	4308.6(7)	5290(4)	5553.6(9)	25.8(5)
C5	4441.3(7)	3204(4)	5165.1(9)	25.6(5)
C6	4143.0(7)	2128(4)	4743.4(9)	23.5(5)
C7	3704.3(6)	3052(4)	4688.4(9)	20.5(5)
C8	3381.8(7)	1939(4)	4262.3(9)	23.3(5)
C9	2966.2(7)	2877(4)	4254.4(9)	22.1(5)
C10	2595.4(7)	1713(4)	3858.2(10)	26.0(5)
C11	2420.5(6)	3776(4)	3388.6(9)	20.9(5)
C12	1815.2(7)	4891(5)	2725.3(10)	31.1(5)
C13	1376.3(7)	3646(4)	2548.9(9)	26.0(5)
C14	1326.1(7)	1616(4)	2105.6(10)	29.8(5)
C15	920.6(7)	424(5)	1950.4(10)	34.9(6)
		19 / 107		

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for hn-cl. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$
C16	$564.9(7)$	$1273(5)$	$2239.0(10)$	$35.5(6)$
C17	$612.1(8)$	$3286(5)$	$2679.3(11)$	$40.8(6)$
C18	$1014.2(8)$	$4476(5)$	$2830.8(11)$	$37.6(6)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for hn-cl. The Anisotropic displacement factor exponent takes the form: $2 \pi^{2}\left[h^{2} a^{*} \mathbf{U}_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	\mathbf{U}_{33}	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
Cl1	$22.1(3)$	$55.3(4)$	$34.9(4)$	$-4.6(3)$	$-9.0(2)$	$-2.3(3)$
Cl2	$25.2(3)$	$26.3(3)$	$37.4(3)$	$0.5(2)$	$4.9(2)$	$5.6(2)$
O1	$18.5(8)$	$36.3(8)$	$27.0(8)$	$-5.7(7)$	$2.3(6)$	$1.8(6)$
O2	$23.6(8)$	$28.6(8)$	$35.8(9)$	$4.9(7)$	$-0.5(7)$	$-7.8(7)$
O3	$17.5(8)$	$33.0(8)$	$29.7(9)$	$6.4(7)$	$-5.0(6)$	$-5.4(6)$
N1	$13.3(9)$	$27.2(9)$	$24.9(10)$	$1.0(8)$	$-0.6(7)$	$0.0(7)$
C1	$17.0(11)$	$26.1(11)$	$23.7(11)$	$3.5(9)$	$3.6(9)$	$-2.3(9)$
C2	$16.1(10)$	$23.6(10)$	$22.2(11)$	$7.6(9)$	$1.8(8)$	$-0.7(8)$
C3	$20.3(12)$	$30.4(11)$	$22.3(11)$	$1.4(9)$	$1.3(9)$	$-1.6(9)$
C4	$17.4(11)$	$32.6(11)$	$26.3(12)$	$6.6(10)$	$-5.7(9)$	$-3.7(9)$
C5	$16.6(11)$	$28.6(11)$	$31.5(13)$	$10.1(10)$	$1.3(9)$	$1.9(9)$
C6	$20.0(11)$	$22.7(10)$	$28.0(12)$	$7.0(9)$	$3.7(9)$	$0.6(9)$
C7	$18.3(11)$	$20.8(10)$	$22.2(11)$	$7.5(8)$	$0.7(9)$	$-1.4(8)$
C8	$23.1(12)$	$20.4(10)$	$26.2(12)$	$3.4(9)$	$2.1(9)$	$-0.4(9)$
C9	$23.1(11)$	$21.6(10)$	$21.4(11)$	$3.6(9)$	$0.2(9)$	$-2.9(9)$
C10	$23.0(12)$	$22.8(10)$	$31.5(13)$	$1.7(9)$	$-1.3(9)$	$-4.7(9)$
C11	$16.6(11)$	$22.1(10)$	$23.8(11)$	$-6.4(9)$	$1.1(9)$	$-1.2(9)$
C12	$26.7(13)$	$35.0(12)$	$30.5(13)$	$6.6(10)$	$-6.0(10)$	$-1.6(10)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for hn-cl. The Anisotropic displacement factor exponent takes the form: $2 \pi^{2}\left[h^{2} a^{*} \mathbf{U}_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
C13	$21.1(11)$	$28.9(11)$	$26.7(12)$	$5.5(10)$	$-5.5(9)$	$0.2(9)$
C14	$22.8(12)$	$35.5(12)$	$31.3(13)$	$0.5(10)$	$3.8(10)$	$3.9(10)$
C15	$33.7(14)$	$39.4(13)$	$30.6(13)$	$-8.1(11)$	$-2.7(10)$	$-2.9(11)$
C16	$20.3(12)$	$47.0(14)$	$38.2(14)$	$-1.4(12)$	$-4.3(10)$	$-5.3(10)$
C17	$22.7(13)$	$57.2(16)$	$43.1(16)$	$-12.5(13)$	$6.6(11)$	$0.4(11)$
C18	$31.1(14)$	$46.8(14)$	$34.9(14)$	$-15.0(11)$	$2.3(11)$	$-0.6(11)$

Table 4 Bond Lengths for 3oa.

Atom Atom		Length/Å	Atom	Atom	Length/Å
Cl1	C4	1.739(2)	C5	C6	1.370 (3)
Cl 2	C6	1.741(2)	C6	C7	1.414(3)
O1	C1	1.242(2)	C7	C8	1.430(3)
O 2	C11	1.200(2)	C8	C9	1.351(3)
O3	C11	1.332(2)	C9	C10	1.499(3)
O3	C12	1.459(2)	C10	C11	1.505(3)
N1	C1	1.365(3)	C 12	C13	1.496 (3)
N1	C9	1.381(3)	C 13	C14	1.383(3)
C1	C2	1.463(3)	C 13	C18	1.385(3)
C2	C3	1.398(3)	C 14	C15	1.387(3)
C2	C7	1.411(3)	C15	C16	1.379(3)
C3	C4	1.370(3)	C16	C17	1.372(3)
C4	C5	1.396(3)	C 17	C18	1.376(3)

Table 5 Bond Angles for 3oa.
Atom Atom Atom
Angle $/{ }^{\circ}$
Atom Atom Atom
115.55(15) C6 C7 C8
Angle ${ }^{\circ}$
123.88(19)

Table 5 Bond Angles for 3oa.

Atom Atom Atom			Angle $/^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C1	N1	C9	125.35(17)	C9	C8	C7	119.89(19)
O1	C1	N1	120.91(18)	N1	C9	C10	115.55(17)
O1	C1	C2	123.64(18)	C8	C9	N1	119.89(18)
N1	C1	C2	115.44(17)	C8	C9	C10	124.51(19)
C3	C2	C1	118.51(18)	C9	C10	C11	114.12(16)
C3	C2	C7	121.61(18)	O 2	C11	O3	124.27(18)
C7	C 2	C1	119.87(18)	O 2	C11	C10	125.02(18)
C4	C3	C2	119.0(2)	O 3	C11	C10	110.68(16)
C3	C4	Cl1	120.38(17)	O 3	C12	C13	106.96(16)
C3	C4	C5	121.59(19)	C 14	C13	C 12	120.5(2)
C5	C4	Cl1	118.01(16)	C14	C13	C18	118.8(2)
C6	C5	C4	118.98(19)	C 18	C13	C12	120.7(2)
C5	C6	Cl 2	118.62(16)	C 13	C14	C15	120.5(2)
C5	C6	C7	122.25(19)	C16	C15	C14	119.8(2)
C7	C6	Cl 2	119.13(15)	C 17	C16	C15	120.1(2)
C2	C7	C6	116.60(18)	C16	C17	C18	120.0(2)
C2	C7	C8	119.51(18)	C17	C18	C13	120.9(2)

Table 6 Torsion Angles for 3oa.

A B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
Cl1 C4	C5	C6	-177.94(15)	C5	C6	C7	C2	0.0 (3)
C12 C6	C7	C2	-179.49(14)	C 5	C6	C7	C8	-178.68(18)
C12 C6	C7	C8	1.9(3)	C6	C7	C8	C9	177.72(18)
O1 C1	C2	C3	1.1(3)	C7	C2	C3	C4	0.3(3)
O1 C1	C2	C7	-179.20(18)	C7	C8	C9	N1	1.7(3)
O3 C12	C13	C14	-90.6(2)	C 7	C8	C9	C10	-175.35(17)
O3 C12	C13	C18	88.6(2)	C8	C9		C11	-111.1(2)
N1 C1	C2	C3	-177.71(17)	C9	N1	C1	O1	179.92(18)
N1 C1	C2	C7	2.0(3)	C9	N1	C1	C2	-1.2(3)
N1 C9	C10	C11	71.7(2)	C9	C10	C11	O 2	23.8(3)

Table 6 Torsion Angles for 3oa.

A B	C	D	Angle $/^{\circ}$	A B Cll	Angle ${ }^{\circ}$
C1 N1	C9	C8	-0.6(3)	C9 C 10 C 11 O 3	-157.99(17)
C1 N1	C9	C10	176.71(17)	C 11 O 3 C 12 C 13	176.35(17)
C1 C2	C3	C4	179.95(18)	C 12 O 3 C 11 O 2	0.0 (3)
C1 C2	C7	C6	-179.71(17)	C 12 O 3 C 11 C 10	-178.17(17)
C1 C2	C7	C8	-1.0(3)	C 12 C 13 C 14 C 15	178.75(19)
C2 C3	C4	Cl1	177.85(15)	C 12 C 13 C 18 C 17	-178.4(2)
C2 C3	C4	C5	-0.4(3)	C13 C14 C15 C16	0.2(3)
C2 C7	C8	C9	-0.9(3)	C 14 C 13 C 18 C 17	0.8(3)
C3 C2	C7	C6	0.0(3)	C 14 C 15 C 16 C 17	-0.1(4)
C3 C2	C7	C8	178.69(18)	C 15 C 16 C 17 C 18	0.4(4)
C3 C4	C5	C6	0.4(3)	C 16 C 17 C 18 C 13	-0.8(4)
C4 C5	C6	Cl 2	179.32(15)	C 18 C 13 C 14 C 15	-0.5(3)
C4 C5	C6	C7	-0.1(3)		

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for 3oa.

Atom	\boldsymbol{x}	y	z	U(eq)
H1	2583.7	5533.48	4626.94	26
H3	3802.6	7677.16	5794.09	29
H5	4733.92	2542.07	5192.83	31
H8	3459.46	541.95	3985.25	28
H10A	2356.12	1168.91	4102.1	31
H10B	2693.89	-49.66	3665.65	31
H12A	1996.89	4906.67	2385.28	37
H12B	1785.81	6885.41	2866.47	37
H14	1570.92	1034.8	1906	36
H15	888.09	-973.13	1646.11	42
H16	286.69	461.9	2132.92	43
H17	367.09	3858.75	2879.55	49
H18	1043.79	5886.53	3132.7	45

Crystal structure of $\mathbf{5 j a}$

Figure S2: The crystal structure of 5ja by X-ray analysis.

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a methyl alcohol solution of 5 ja at room temperature under air. Thermal ellipsoids drawn at the 50% probability level. A suitable crystal was selected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 150.00 (16) K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation.

Crystal structure determination of $\mathbf{5 j a}$

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3}(M=411.25 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{c}$ (no. 14), $a=5.3629$ (4) $\AA, b=17.7232(15) \AA, c=18.1847$ (18) $\AA, \beta=94.638(8)^{\circ}, V=$ $1722.7(3) \AA^{3}, Z=4, T=150.00(18) \mathrm{K}, \mu(\mathrm{Cu} \mathrm{K} \alpha)=3.452 \mathrm{~mm}^{-1}$, Dcalc $=1.586 \mathrm{~g} / \mathrm{cm}^{3}$, 6971 reflections measured $\left(6.976^{\circ} \leq 2 \Theta \leq 147.824^{\circ}\right)$, 3388 unique ($R_{\text {int }}=0.1122$, $\mathrm{R}_{\text {sigma }}=0.1316$) which were used in all calculations. The final R_{1} was 0.0913 (I > $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.2834 (all data).

Table 8 Crystal data and structure refinement for 5ja

Identification code	5 ja
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3}$

Formula weight	411.25
Temperature/K	150.00(18)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	5.3629(4)
b/Å	17.7232(15)
c/Å	18.1847(18)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.638(8)
γ°	90
Volume/A ${ }^{3}$	1722.7(3)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.586
μ / mm^{-1}	3.452
$F(000)$	832.0
Crystal size/ mm^{3}	$0.15 \times 0.13 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.976 to 147.824
Index ranges	$-6 \leq \mathrm{h} \leq 5,-21 \leq \mathrm{k} \leq 19,-20 \leq 1 \leq 22$
Reflections collected	6971
Independent reflections	$3388\left[\mathrm{R}_{\text {int }}=0.1122, \mathrm{R}_{\text {sigma }}=0.1316\right]$
Data/restraints/parameters	3388/363/235
Goodness-of-fit on F^{2}	1.046
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0913, \mathrm{wR}_{2}=0.2469$
	$25 / 107$

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1268, \mathrm{wR}_{2}=0.2834$
Largest diff. peak/hole /e $\AA^{-3} \quad 1.68 /-2.24$
Table 9 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for br0525. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	y	z		U(eq)
Br1	10417.8(14)		3123.5(4)	6826.8(4)	38.2(3)
O1	2847(7)		4660(2)	5463(2)	20.3(8)
O2	7279(7)		7896(2)	5679(2)	26.7(9)
O3	5256(7)		8882(2)	6126(2)	20.8(8)
N1	4971(8)		5588(3)	6123(2)	15.7(8)
N2	1402(9)		5872(3)	5378(2)	19.5(8)
C1	8436(10)		5682(3)	6908(3)	18.7(9)
C2	10580(11)		5408(3)	7313(3)	21.6(10)
C3	11122(10)		4644(3)	7278(3)	21.5(10)
C4	9520(11)		4156(3)	6862(3)	23.1(10)
C5	7407(10)		4401(3)	6449(3)	18.9(9)
C6	6900(10)		5171(3)	6475(3)	17.7(9)
C7	7358(10)		6420(3)	6809(3)	20.5(9)
C8	5284(10)		6357(3)	6340(3)	18.2(9)
C9	3426(11)		6877(3)	6053(3)	19.8(9)
C10	1533(10)		6619(3)	5591(3)	20.2(9)
C11	3048(9)		5325(3)	5648(3)	15.1(8)
C12	3475(10)		7689(3)	6306(3)	20.4(9)
C13	5562(10)		8148(3)	6000(3)	19.1(9)
C14	7074(10)		9371(3)	5826(3)	20.6(10)
C15	6347(10)		10178(3)	5912(3)	19.2(9)
C16	4326(10)		10414(3)	6281(3)	21.8(10)
C17	3830(11)		11184(3)	6347(3)	23.8(10)
C18	5303(12)		11719(4)	6049(3)	26.2(11)
C19	7325(11)		11482(4)	5687(3)	27.5(11)
C20	7872(11)		10719(3)	5612	23.6(10)

Table 10 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for br0525. The Anisotropic displacement factor exponent takes the form: $2 \pi^{2}\left[h^{2} a^{*} \mathbf{U}_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	U_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	U_{12}
Br1	36.8(5)	24.4(5)	50.3(5)	0.7(3)	-15.6(3)	11.9(3)
O1	15.0(16)	16.6(13)	27.5(17)	-2.7(12)	-9.9(13)	-0.9(12)
O2	18.6(16)	23.4(18)	38.0(19)	2.5(16)	1.3(14)	3.2(14)
O3	19.7(14)	18.9(12)	23.7(14)	-1.4(11)	0.1(11)	-1.2(11)
N1	14.1(13)	16.8(13)	15.3(14)	-0.5(11)	-5.0(10)	0.4(11)
N2	16.4(14)	18.8(13)	22.0(15)	-0.6(12)	-7.4(12)	$0.7(11)$
C1	17.7(14)	18.3(14)	19.3(16)	0.2(12)	-3.5(12)	-1.0(12)
C2	18.8(15)	22.4(15)	22.1(17)	-0.3(13)	-7.4(13)	-1.3(13)
C3	18.0(16)	23.8(14)	21.8(17)	$0.6(13)$	-3.2(13)	1.9(12)
C4	22.6(15)	22.2(16)	23.3(17)	-0.4(13)	-4.8(13)	3.5(13)
C5	19.4(15)	17.2(14)	19.5(16)	-1.4(13)	-2.8(12)	0.4(13)
C6	16.1(14)	17.1(13)	18.8(16)	1.6(12)	-5.0(11)	$0.2(11)$
C7	19.2(15)	17.8(15)	23.0(16)	-0.6(13)	-6.9(12)	-2.1(12)
C8	16.9(14)	16.6(14)	20.1(15)	-0.4(12)	-4.8(12)	-1.0(11)
C9	18.8(15)	18.2(14)	21.6(16)	$0.6(12)$	-3.0(12)	1.4(11)
C10	18.3(15)	19.9(15)	21.9(16)	-1.4(13)	-2.0(12)	1.8(12)
C11	12.5(14)	16.6(13)	15.8(15)	-0.8(11)	-2.1(11)	-1.3(11)
C12	18.2(16)	19.7(14)	22.8(17)	-0.8(13)	-2.1(13)	0.7(13)
C13	15.7(15)	17.9(13)	22.6(16)	0.3(12)	-5.6(12)	1.0(11)
C14	18.3(16)	20.2(14)	22.7(17)	0.3(13)	-2.1(14)	-1.0(12)
C15	16.5(15)	20.3(14)	19.9(16)	0.2(13)	-4.7(12)	0.0(12)
C16	17.1(16)	22.8(15)	24.5(17)	0.8(13)	-3.8(13)	-0.3(13)
C17	23.2(17)	24.3(14)	23.2(17)	-0.4(13)	-1.3(14)	2.0(13)
C18	26.2(17)	23.8(16)	28.0(18)	0.1(14)	-2.0(14)	0.7(13)
C19	26.5(17)	25.2(15)	30.4(18)	0.8(14)	-1.2(14)	-1.2(14)
C20	20.6(16)	23.1(14)	26.1(18)	0.7(13)	-3.2(14)	-2.9(13)

Table 11 Bond Lengths for 5ja.

Atom	Atom	Length $/ \AA$	Atom Atom	Length/ $/ \AA$
$\mathrm{Br} 1 \quad \mathrm{C} 4$	$1.895(6)$	C 4	C 5	$1.378(8)$

O1	C11	1.228(6)	C5	C6	1.394(8)
O2	C13	1.214(7)	C7	C8	1.350(7)
O3	C13	1.333(7)	C 8	C9	1.425(7)
O3	C14	$1.444(6)$	C9	C10	1.344(8)
N1	C6	1.386(7)	C9	C12	1.512(7)
N1	C8	1.425(7)	C 12	C13	1.525(7)
N1	C11	1.372(6)	C14	C15	1.495(8)
N2	C10	1.380(7)	C 15	C16	1.384(7)
N2	C11	1.374(7)	C 15	C20	1.399(8)
C1	C2	1.401(7)	C16	C17	1.396(8)
C1	C6	1.419(7)	C17	C18	1.374(8)
C1	C7	$1.435(8)$	C18	C19	1.379(8)
C2	C3	1.387(8)	C 19	C20	1.393(8)
C3	C4	1.398(8)			

Table 12 Bond Angles for 5ja.

Atom	Ato	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C13	O3	C14	115.1(4)	C8	C9	C12	120.6(5)
C6	N1	C8	108.4(4)	C10	C9	C8	118.7(5)
C11	N1	C6	127.2(5)	C10	C9	C12	120.5(5)
C11	N1	C8	124.4(5)	C9	C10	N2	121.4(5)
C11	N 2	C10	124.0(5)	O 1	C11	N1	122.9(5)
C2	C1	C6	119.0(5)	O 1	C11	N2	122.6(5)
C2	C1	C7	133.4(5)	N1	C11	N2	114.5(5)
C6	C1	C7	107.6(5)	C 9	C12	C13	113.1(4)
C3	C2	C1	118.8(5)	O 2	C13	O3	123.4(5)
C2	C3	C4	120.4(5)	O 2	C13	C12	125.9(5)
C3	C4	Br1	117.9(4)	O 3	C13	C12	110.7(5)
C5	C4	Br1	119.0(4)	O 3	C14	C15	110.2(4)
C5	C4	C3	123.0(5)	C16	C15	C14	124.2(5)
C4	C5	C6	116.3(5)	C16	C15	C20	119.1(5)
N1	C6	C1	107.1(5)	C20	C15	C14	116.7(5)

Table 12 Bond Angles for 5ja.

Atom Atom Atom			Angle/ ${ }^{\circ}$	Atom Atom Atom			Angle ${ }^{\circ}$
N1	C6	C5	130.3(5)	C15	C16	C17	120.0(5)
C5	C6	C1	122.6(5)	C18	C17	C16	121.4(5)
C8	C7	C1	107.9(5)	C17	C18	C19	118.5(6)
C7	C8	N1	109.0(5)	C18	C19	C20	121.5(6)
C7	C8	C9	134.0(5)	C19	C20	C15	119.5(5)
C9	C8	N1	116.9(5)				

Table 13 Torsion Angles for 5ja.

A	B	C	D	Angle $/{ }^{\circ}$	A B	C D	Angle $/^{\circ}$
Br1	C4	C5	C6	-177.6(4)	C8 N1	C6 C5	179.4(5)
O3	C14	C15	C16	4.7(8)	C8 N1	C11 O1	179.0(5)
O3	C14		C20	-176.9(5)	C8 N1	C11 N2	0.9 (7)
N1	C8	C9	C10	-1.0(7)	C8 C9	C10N2	-1.9(8)
N1	C8	C9	C12	174.5(4)	C8 C9	C12C13	72.8(6)
C1	C2	C3	C4	-1.7(8)	C9 C12	2 C 13 O 2	-10.8(8)
C1	C7	C8	N1	-0.2(6)	C9 C12	2 C 13 O 3	168.7(4)
C1	C7	C8	C9	178.0(6)	C 10 N 2	C 11 O 1	178.0(5)
C2	C1	C6	N1	-178.6(5)	C10N2	C11 N1	-4.0(7)
C2	C1	C6	C5	1.4(8)	C 10 C 9	C12 C13	-111.8(6)
C2	C1	C7	C8	178.7(6)	C11 N1	C6 C1	179.9(4)
C2	C3	C4	Br1	178.9(4)	C11 N1	C6 C5	-0.1(9)
C2	C3	C4	C5	2.4(9)	C11 N1	C8 C7	-179.9(5)
C3	C4	C5	C6	-1.2(8)	C11 N1	C8 C9	1.5(7)
C4	C5	C6	N1	179.2(5)	C11 N2	C10C9	4.6(8)
C4	C5	C6	C1	-0.7(8)	C 12 C 9	C 10 N 2	-177.4(5)
C6	N1	C8	C7	0.6(6)	C 13 O 3	C14C15	172.4(4)
C6	N1	C8	C9	-178.0(5)	C14O3	C 13 O 2	2.4(8)
C6	N1	C11	O1	-1.6(8)	C 14 O 3	C 13 C 12	-177.2(4)
C6	N1			-179.7(5)	C14C15	5 C 16 C 17	178.5(5)
C6	C1	C2	C3	-0.1(8)	C 14 C 15	5 C 20 C 19	-178.7(5)
C6	C1	C7	C8	-0.2(6)	C 15 C 16	6 C 17 C 18	0.4(9)

Table 13 Torsion Angles for 5ja.

A	B	C	D	Angle ${ }^{\circ}$	A B C \quad D	Angle/ ${ }^{\circ}$
C7	C1	C2	C3	-178.9(6)	C16C15C20 C19	-0.2(8)
C7	C1	C6	N1	0.5(6)	C16C17 C18 C19	-0.8(9)
C7	C1	C6	C5	-179.6(5)	C17-18 C19 C20	0.8(10)
C7	C8	C9	C10	-179.1(6)	C18 C19 C20 C15	-0.2(10)
C7	C8	C9	C12	-3.6(9)	C 20 C 15 C 16 C 17	0.2(8)
C8	N1	C6	C1	-0.6(5)		

Table 14 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for 5 ja .

Atom	\boldsymbol{x}	\boldsymbol{y}		\boldsymbol{z}
H2	219.59	5740.14	5055.49	23
H2A	11619.31	5731.39	7599.38	26
H3	12561.4	4455.22	7533.2	26
H5	6376	4069.71	6167.44	23
H7	7978.56	6862.38	7029.21	25
H10	285.13	6950.65	5412.14	24
H12A	3684.54	7702.09	6840.66	25
H12B	1880.17	7922.26	6153.17	25
H14A	7175.09	9257.56	5307.04	25
H14B	8708.44	9283.24	6080.16	25
H16	3299.47	10061	6483.67	26
H17	2472.8	11336.55	6597.76	29
H18	4944.19	12230.17	6090.92	31
H19	8347.48	11840.24	5488.71	33
H20	9241.14	10570.03	5364.66	28

6. Characterization Data

benzyl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3aa)

Prepared from 1a ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3aa (49 mg, 83\% yield) as solid.
$\mathrm{Rf}=0.36(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45$ (dd, $J=14.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H})$, 3.72 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,164.2,138.1,135.4,133.4,132.8,128.7,128.6$, $128.5,127.6,126.7,126.1,125.1,106.5,67.5,38.8$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 294.1125$; found, 294.1136.

benzyl 2-(6-methyl-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ba)

Prepared from 1b ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a (0.24 mmol , 1.2 equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ba ($31 \mathrm{mg}, 50 \%$ yield) as solid.
$\mathrm{Rf}=0.34(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.27(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27$ (m, 7H), 7.27 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.3$, 162.2, 142.6, 137.9, 135.9, 135.1, 128.5, 128.1, 128.0, 127.7, 126.6, 125.6, 122.7, 104.9, 66.1, 37.7, 21.3.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 308.1281$; found, 308.1292.

benzyl 2-(6-methoxy-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ca)

Prepared from 1c ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded 3ca ($26 \mathrm{mg}, 40 \%$ yield) as solid.
$\mathrm{Rf}=0.22(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.17$ ($\mathrm{s}, 1 \mathrm{H}$), 8.05 ($\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42-7.32 $(\mathrm{m}, 5 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.2,162.4,161.9,139.9,135.9,135.6,128.6$, 128.4, 128.0, 127.9, 118.5, 115.4, 107.0, 104.8, 66.0, 55.4, 37.7.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 324.1230$; found, 324.1242.

benzyl 2-(1-oxo-6-(trifluoromethyl)-1,2-dihydroisoquinolin-3-yl)acetate (3da)

Prepared from 1d ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a (0.24 mmol , 1.2 equiv) according to the general procedure 4, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded 3da ($56 \mathrm{mg}, 78 \%$ yield) as solid.
$\mathrm{Rf}=0.31(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.51(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.81,163.58,138.03,135.30,135.24,134.45\left(\mathrm{q}, J_{\mathrm{C}-}\right.$ $\left.\mathrm{F}_{\mathrm{F}}=32.8 \mathrm{~Hz}\right), 128.76,128.67,128.62,128.50,126.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=280.99\right) 123.47\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.78 \mathrm{~Hz}), 123.41,122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.78\right), 106.28,67.60,38.66$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 384.0818; found, 384.0824.
methyl 3-(2-(benzyloxy)-2-oxoethyl)-1-oxo-1,2-dihydroisoquinoline-6-carboxylate (3ea)

Prepared from 1e ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{3 e}$ ($65 \mathrm{mg}, 93 \%$ yield) as solid.
$\mathrm{Rf}=0.28(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.75 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 169.1,165.8,161.7$, 137.7, 136.3, 135.9, 132.9, $128.4,128.1,128.0,127.6,127.5,127.4,125.6,105.1,66.2,52.6,37.8$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 352.1179$; found, 352.1176.
benzyl 2-(6-chloro-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3fa)

Prepared from 3 f ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{3 f a}$ ($59 \mathrm{mg}, 90 \%$ yield) as solid.
$\mathrm{Rf}=0.35(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.51$ ($\mathrm{s}, 1 \mathrm{H}$), 8.13 (d, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71(\mathrm{~s}, 1 \mathrm{H})$, $7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 169.1,161.7,139.3,137.5,136.8,135.9,128.9$, $128.5,128.1,128.0,126.4,125.1,123.3,104.1,66.1,37.8$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 328.0735$; found, 328.0744.

benzyl 2-(6-bromo-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ga)

Prepared from 1 g ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded 3ga ($68 \mathrm{mg}, 91 \%$ yield) as solid.

Rf $=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
H NMR (500 MHz, DMSO- d_{6}) $\delta 11.52(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 169.1,161.8,139.5,136.8,135.9,129.1,128.9$, $128.5,128.2,128.1,128.0,126.6,123.6,104.0,66.2,37.8$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 372.0230$; found, 372.0238.

benzyl 2-(6-iodo-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ha)

Prepared from 1h ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $($ EtOAc/Petroleum Ether $=1 / 3)$ afforded 3ha ($65 \mathrm{mg}, 78 \%$ yield) as solid.
$\mathrm{Rf}=0.34(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.47$ ($\mathrm{s}, 1 \mathrm{H}$), $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,163.9,139.5,135.8,135.2,134.9,134.7,129.0$, $128.8,128.7,128.5,124.1,105.3,100.9,67.6,38.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{INaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 441.9911; found, 441.9911.
benzyl 2-(1-oxo-6-phenyl-1,2-dihydroisoquinolin-3-yl)acetate (3ia)

Prepared from 1i ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ia ($40 \mathrm{mg}, 54 \%$ yield) as solid.
$\mathrm{Rf}=0.32(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}$, 4H), 7.51-7.41 (m, 4H), 7.37-7.31 (m, 4H), 6.49 (s, 1H), $5.20(\mathrm{~s}, 2 \mathrm{H}), 3.73$ (s, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 170.4, 147.3, 138.0, 136.0, 131.1, 130.9, 128.4, $128.3,128.2,128.1,128.0,128.0,126.4,121.9,119.0,116.7,103.8,95.7,66.0,33.5$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 370.1438$; found, 370.1447.

benzyl 2-(1-oxo-6-vinyl-1,2-dihydroisoquinolin-3-yl)acetate (3ja)

Prepared from 1 j ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{3 j a}$ ($36 \mathrm{mg}, 57 \%$ yield) as solid.
$\mathrm{Rf}=0.37(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.36(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.3$, 162.0, 140.9, 138.2, 136.1, 135.9, 135.5, $128.5,128.1,128.0,127.0,124.1,123.9,123.5,117.2,105.0,66.1,37.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 320.1281$; found,320.1287.

benzyl 2-(7-methyl-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ka)

Prepared from 1 k ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a (0.24 mmol , 1.2 equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{3 k a}$ ($37 \mathrm{mg}, 60 \%$ yield) as solid.

Rf $=0.39($ EtOAc/Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.36 (m, 1H), 7.35-7.29 (m, 5H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 169.4,162.2,135.9,135.6,135.5,134.0,133.8$, 128.4, 128.1, 129.0, 126.1, 126.0, 124.8, 104.9, 66.1, 37.7, 21.0.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 308.1281$; found, 308.1285.

benzyl 2-(7-chloro-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3la)

Prepared from 11 ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $($ EtOAc/Petroleum Ether $=1 / 3)$ afforded 3la ($42 \mathrm{mg}, 63 \%$ yield) as solid.
$\mathrm{Rf}=0.39(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.24(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}) $\delta 169.2$, 161.6, 137.1, 135.9, 135.3, 132.8, 129.1, $128.5,128.1,128.0,126.7,126.4,126.0,100.7,66.2,37.9$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 350.0554; found, 350.0564.

benzyl 2-(7-bromo-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ma)

Prepared from 1m ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded 3ma ($51 \mathrm{mg}, 69 \%$ yield) as solid.
$\mathrm{Rf}=0.39(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.67(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.67$ (s, 1H), 5.16 (s, 2H), 3.83 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 169.1,161.6,137.2,136.7,136.3,135.9,128.4$, 128.1, 128.0, 127.1, 126.7, 126.5, 119.8, 103.2, 66.1, 37.9.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrNaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}, 394.0049$; found, 394.0047.

benzyl 2-(5,7-dimethyl-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3na)

Prepared from 1 n ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3na (32 mg, 50\% yield) as solid.
$\mathrm{Rf}=0.34(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~s}$, 1H), 5.19 (s, 2H), 3.69 ($\mathrm{s}, 2 \mathrm{H}$), 2.46 ($\mathrm{s}, 3 \mathrm{H}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.4,162.4,136.0,135.0,134.5,134.3,133.7$, $132.9,128.4,128.1,128.0,125.0,124.1,101.8,66.0,37.9,21.0,18.6$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 322.1438$; found, 322.1445 benzyl 2-(5,7-dichloro-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (30a)

Prepared from 1o ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded $\mathbf{3 0 a}$ ($60 \mathrm{mg}, \mathbf{8 3 \%}$ yield) as solid.
$\mathrm{Rf}=0.34(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.85$ (s, 1H), 8.07 ($\mathrm{s}, 1 \mathrm{H}$), $7.99(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.31$ $(\mathrm{m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 169.0, 160.6, 137.7, 135.9, 134.2, 132.4, 130.5, 130.4, 128.4, 128.1, 128.0, 127.0, 125.2, 100.4, 66.2, 37.9.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 362.0345$; found, 362.0347.

benzyl 2-(5,7-dibromo-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3pa)

Prepared from 1 p ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $($ EtOAc/Petroleum Ether $=1 / 3)$ afforded 3pa ($60 \mathrm{mg}, 67 \%$ yield) as solid.
$\mathrm{Rf}=0.39(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.85(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.45-$ 7.30 ($\mathrm{s}, 5 \mathrm{H}$), 6.65 ($\mathrm{s}, 1 \mathrm{H}$), 5.16 ($\mathrm{s}, 2 \mathrm{H}$), 3.83 ($\mathrm{s}, 2 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 169.0,160.5,138.0,137.9,135.9,129.5,128.9$, 128.5, 128.1, 128.0, 127.3, 121.0, 118.6, 103.0, 66.2, 37.9.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 471.9154; found, 471.9153

benzyl 2-(7-oxo-6,7-dihydrothieno[2,3-c]pyridin-5-yl)acetate (3qa)

Prepared from 1q ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4 , Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
afforded 3qa ($35 \mathrm{mg}, 58 \%$ yield) as solid.
$\mathrm{Rf}=0.43(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 1)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.74(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.23(\mathrm{~m}$, $7 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,160.9,146.9,135.5,133.9,129.6,129.1,128.7$, 128.5, 128.4, 123.2, 109.7, 67.1, 36.2

HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 300.0689$; found, 300.0691 benzyl 2-(6-(N,N-dipropylsulfamoyl)-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ra)

Prepared from 1 r ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ra ($36 \mathrm{mg}, 40 \%$ yield) as oil.
$\mathrm{Rf}=0.33(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.68$ ($\mathrm{s}, 1 \mathrm{H}$), 8.31 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07 ($\mathrm{s}, 1 \mathrm{H}$), 7.77 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H})$, $3.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.47(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.1,161.5,143.0,138.1,137.0,135.9,128.5$, $128.3,128.2,128.1,126.9,124.8,123.3,105.0,66.2,49.7,37.8,21.7,11.0$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 457.1792$; found, 457.1794
ethyl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ab)

Prepared from $1(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~b}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ab ($33 \mathrm{mg}, 72 \%$ yield) as solid.
$\mathrm{Rf}=0.4(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.30(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 169.3,162.2,137.8,135.2,132.5,126.6,126.1$, $126.0,124.8,104.9,60.6,37.8,14.1$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 232.0968$; found, 232.0978

benzyl 2-(4-methyl-1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ac)

Prepared from $1(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{c}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ac ($47 \mathrm{mg}, 76 \%$ yield) as solid.

Rf $=0.4(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{q}, J=9.1$, $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H})$, 2.26 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.2,161.5,138.2,136.0,132.5,131.1,128.4$, 128.1, 127.9, 126.8, 126.0, 125.2, 123.4, 108.8, 66.1, 35.9, 12.2.

HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 308.1281$; found, 308.1284

benzyl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)propanoate (3ad)

Prepared from $1(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~d}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
afforded 3ad ($48 \mathrm{mg}, 79 \%$ yield) as solid.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.43(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~d}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.23-5.10(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,164.0,138.9,138.1,135.4,132.8,128.7,128.5$, $128.3,127.6,126.7,126.3,125.3,104.5,67.4,43.5,17.0$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NaNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}, 330.1101$; found, 330.1103

(2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-

 yl)methyl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ae)

Prepared from $1(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{i}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ae ($46 \mathrm{mg}, 52 \%$ yield) as oil.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 1)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.31(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 169.4,162.3,137.8,135.0,132.4,126.6,126.1$, $126.0,124.8,108.7,108.0,104.9,95.6,70.2,70.0,69.7,65.3,63.7,37.7,25.9,25.7$, 24.9, 24.3.

HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 446.1809$; found, 446.1815
methyl 2-((tert-butoxycarbonyl)amino)-3-(4-(2-(1-oxo-1,2-dihydroisoquinolin-3yl)acetoxy)phenyl)propanoate (3af)

Prepared from 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{f}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3af ($53 \mathrm{mg}, 55 \%$ yield) as oil.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 1)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=14.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 172.6, 168.3, 162.3, 155.4, 149.1, 137.7, 135.3, $134.7,132.5,130.2,128.2,127.5,126.6,126.3,126.1,124.9,121.4,105.3,78.3,55.1$, 51.8, 37.8, 35.8, 28.1.

HRMS (ESI): m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaN}_{2} \mathrm{O}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 503.1789; found, 503.1794
(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)acetate (3ag)

Prepared from 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~g}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ag ($29 \mathrm{mg}, \mathbf{3 2 \%}$ yield) as solid.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.06(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.56$ (s, 1H), 3.93 (s, 2H), 2.85 ($\mathrm{q}, ~ J=4.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.60-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.46(\mathrm{~m}$, $6 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,164.2,148.5,138.3,138.1,138.0,133.0,127.7$, $127.0,126.6,126.2,125.23,124.3,121.5,118.6,106.9,50.6,48.1,44.3,39.0,38.1$, 36.0, 31.7, 29.8, 29.5, 26.4, 25.9, 21.7, 14.0.

HRMS (ESI): m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 456.2169$; found, 456.2168
(4S,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-tetramethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-
icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)acetate(3ah)

Prepared from $1(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~h}(0.24 \mathrm{mmol}, 1.2$ equiv) according to the general procedure 4, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 3ah ($47 \mathrm{mg}, \mathbf{3 9 \%}$ yield) as solid.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~s}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.18(\mathrm{~m}$, $1 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(3,3 \mathrm{H}), 0.82(3$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,163.5,139.4,138.0,133.2,132.9,127.7,126.8$, $126.1,125.3,122.9,109.4,106.3,80.9,75.7,67.0,62.2,56.6,50.0,41.8,40.4,39.8$, $39.2,38.1,37.0,36.8,32.2,32.0,31.5,31.5,30.4,29.0,27.8,21.0,19.5,17.3,16.4$, 14.7.

HRMS (ESI): m/z calculated for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 572.4098$; found, 572.4107

benzyl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)acetate (5aa)

Prepared from 4 a ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5aa (58mg, 87% yield) as solid.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.69-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H})$, 3.59 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,147.6,136.5,136.0,132.4,129.7,128.4,128.1$, $128.0,125.5,123.5,122.0,119.7,115.3,103.9,96.2,66.0,33.6$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 333.1234$; found, 333.1237.

benzyl 2-(6-methoxy-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ba)

Prepared from 4 b ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ba (43 mg, 59\% yield) as solid.
$\mathrm{Rf}=0.37(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.55$ ($\mathrm{s}, 1 \mathrm{H}$), 5.14 ($\mathrm{s}, 2 \mathrm{H}$), 3.92 ($\mathrm{s}, 3 \mathrm{H}), 3.72$ (s, 2H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.4,151.8,147.6,136.0,135.2,133.4,128.3$, $128.0,127.8,124.9,123.1,120.2,108.4,104.1,103.7,93.4,65.9,55.2,33.6$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaN}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 385.1159; found, 385.1162

benzyl 2-(6-chloro-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ca)

Prepared from 4 c ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{a}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $5 \mathrm{ca}(45 \mathrm{mg}, 61 \%$ yield) as solid.
$\mathrm{Rf}=0.33(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.13(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27$ (m, 6H), 7.07 (s, 1H), 6.60 (s, 1H), 5.16 (s, 2H), 3.80 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.4,147.3,137.6,136.0,133.1,128.4,128.0$, $127.9,126.6,123.5,123.1,122.9,114.3,103.9,94.0,66.0,33.5$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 367.0844$; found, 367.0847. benzyl 2-(7-(benzyloxy)-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5da)

Prepared from 4d ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5da (55 mg, 63\% yield) as solid.
$\mathrm{Rf}=0.38(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.85(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO) $\delta 170.4,155.2,147.3,137.3,137.1,136.0,130.7,128.4$, $128.0,127.9,127.7,127.6,127.3,125.4,116.0,112.0,103.7,103.0,96.0,69.5,65.9$, 33.6.

HRMS (ESI): m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 439.1652$; found, 439.1650 benzyl 2-(7-methoxy-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ea)

Prepared from $4 \mathrm{e}(0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded $\mathbf{5 e a}$ ($57 \mathrm{mg}, \mathbf{7 9 \%}$ yield) as solid.
$\mathrm{Rf}=0.28(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.14$ (s, 2H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.71 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.5,156.2,147.4,137.1,136.1,130.8,128.4$, $128.1,128.0,127.2,125.4,116.1,111.4,103.8,101.6,96.1,66.0,55.3,33.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 363.1339$; found, 363.1321
benzyl 2-(7-chloro-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5fa)

Prepared from 4 f ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{a}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{5 f} \mathbf{~ (~} 42 \mathrm{mg}, \mathbf{5 8 \%}$ yield) as solid.
$\mathrm{Rf}=0.27(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.03(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J$ $=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 170.4, 147.3, 138.0, 136.0, 131.2, 130.9, 128.4, 128.1, 128.1, 128.0, 126.4, 121.9, 119.0, 116.7, 103.8, 95.7, 66.0, 33.5.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNaN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}, 389.0663$,found, 389.0665

benzyl 2-(7-bromo-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ga)

Prepared from 4 g ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{5 g a}$ ($42 \mathrm{mg}, \mathbf{5 1 \%}$ yield) as solid.
$\mathrm{Rf}=0.30(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$, 7.41 (d, J = $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, 3.73 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.4,147.4,137.9,136.0,131.7,131.2,128.4$, 128.1, 128.0, 126.4, 124.5, 122.0, 117.1, 116.3, 103.8, 95.6, 66.0, 33.5.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 411.0339$; found, 411.0345

benzyl 2-(7-methyl-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ha)

Prepared from 4 h ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ha ($24 \mathrm{mg}, \mathbf{3 5 \%}$ yield) as solid.
$\mathrm{Rf}=0.31(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.84$ ($\mathrm{s}, 1 \mathrm{H}$), 8.38 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 ($\mathrm{s}, 1 \mathrm{H}$), $7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, 5.14 (s, 2H), 3.71 ($\mathrm{s}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.5,147.5,136.6,136.1,132.5,130.7,130.0$, $128.4,128.1,128.0,125.3,123.5,119.4,115.0,103.9,95.8,66.0,33.6,21.3$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 347.1390$; found, 347.1395.
benzyl 2-(8-methyl-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ia)

Prepared from 4i ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{5 i a}$ ($40 \mathrm{mg}, \mathbf{5 8 \%}$ yield) as solid.
$\mathrm{Rf}=0.33(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.80(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.53$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.45 (s, 1H), 5.14 (s, 2H), 3.70 (s, 2H), 2.47 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6})) $\delta 170.5,147.7,136.1,136.0,132.8,131.4,128.4$, 128.1, 128.0, 127.5, 125.1, 124.9, 119.4, 115.3, 104.0, 96.1, 66.0, 33.7, 21.6.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 347.1390$; found, 347.1395

benzyl 2-(8-bromo-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ja)

Prepared from 4 j ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{a}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{5 j a}$ ($49 \mathrm{mg}, \mathbf{6 0 \%}$ yield) as solid.

Rf $=0.31($ EtOAc/Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.3,147.4,137.3,136.0,132.9,128.8,128.4$, $128.0,127.9,126.4,126.0,121.5,117.7,114.2,104.0,96.1,66.0,33.5$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 411.0339$; found, 411.0341

benzyl 2-(8-chloro-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5ka)

Prepared from 4 k ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ka ($42 \mathrm{mg}, \mathbf{5 7 \%}$ yield) as solid.
$\mathrm{Rf}=0.34(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.02(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, $5.14(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.4,147.4,137.4,136.0,132.6,128.5,128.4$, $128.1,128.0,126.2,125.9,123.8,121.1,114.9,104.0,96.1,66.0,33.5$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNaN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 389.0663; found, 389.0673

benzyl 2-(8-fluoro-1-oxo-1,2-dihydropyrimido[1,6-a]indol-4-yl)acetate (5la)

Prepared from $4 \mathrm{l}(0.2 \mathrm{mmol}, 1.0$ equiv) and 2 a ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5la (42 mg, 62\% yield) as solid.
$\mathrm{Rf}=0.32(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.29$ (dd, $J=10.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (dd, $J=8.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{td}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}$, 1H), 5.14 (s, 2H), 3.69 (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 170.5,158.3(\mathrm{~d}, J=237.4 \mathrm{~Hz}), 147.5,137.2(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 136.0,132.1(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 128.4,128.1,128.0,126.4,125.3,120.9(\mathrm{~d} . J=10.1$ $\mathrm{Hz}), 112.0(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 104.1,101.9(\mathrm{~d}, J=28.3 \mathrm{~Hz}), 96.1,66.0,33.6$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNaN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, 373.0959; found, 373.0963

benzyl 2-(1-oxo-1,2-dihydropyrrolo[1,2-c]pyrimidin-4-yl)acetate(5ma)

Prepared from $4 \mathrm{~m}(0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{a}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ma (46 mg, 82\% yield) as solid.
$\mathrm{Rf}=0.3(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=3.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 170.5,146.0,136.0,132.0,128.4,128.1,127.9$, $121.2,114.0,113.8,104.9,102.7,65.9,33.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 283.1077$; found, 283.1075 ethyl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)acetate (5ab)

Prepared from $4(0.2 \mathrm{mmol}, 1.0$ equiv $)$ and $2 \mathrm{~b}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5 , Purification by flash column (EtOAc/Petroleum Ether $=1 / 3$) afforded 5ab (19 mg, 69\% yield) as oil.
$\mathrm{Rf}=0.43(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.67-8.63(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.35(\mathrm{t}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54(\mathrm{~s}, 2 \mathrm{H}), 1.31-1.25(\mathrm{t}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,149.0,135.9,133.4,130.2,124.1,123.3,123.1$, 120.1, 116.2, 105.5, 98.0, 61.5, 35.0, 14.3.

HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 271.1077$; found, 271.1077

benzyl 2-(4-methyl-1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)acetate (5ac)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 c ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ca ($23 \mathrm{mg}, 33 \%$ yield) as solid.
$\mathrm{Rf}=0.37(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.78(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, 3.74 (s, 2H), 2.10 (s, 3H).
${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}) $\delta 168.9,147.6,137.9,135.9,132.5,130.1,128.4$, $128.1,127.9,127.7,123.5,121.8,119.7,115.3,104.3,96.1,66.2,34.5,11.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 347.1390$; found, 347.1392

benzyl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)propanoate (5ad)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 d ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded $\mathbf{5 a d}$ ($37 \mathrm{mg}, \mathbf{5 4 \%}$ yield) as solid.
$\mathrm{Rf}=0.40(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16$ (m, 4H), 7.15 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11$ (m, 1H), 7.09 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 171.5,148.0,137.8,135.9,135.7,132.0,130.3$, $128.4,128.1,127.8,123.5,121.7,119.6,115.2,96.8,95.8,66.2,41.7,15.7$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 347.1390$; found, 347.1393

(2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-

 yl)methyl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)acetate (5ae)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{e}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$ afforded 5ae ($60 \mathrm{mg}, \mathbf{6 2 \%}$ yield) as oil.
$\mathrm{Rf}=0.35(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 2)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.62(\mathrm{t}, 1 \mathrm{H}), 7.69-$ $7.62(\mathrm{t}, 1 \mathrm{H}), 7.39-7.33(\mathrm{t}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, 1.37 (s, 3H), 1.30 (s, 3H), 1.29 (s, 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,149.1,135.8,133.4,130.3,124.0,123.5,123.0$, $120.2,116.2,109.9,109.0,105.2,97.9,96.4,71.1,70.8,70.5,66.1,64.4,34.7,26.1$, 25.9, 25.0, 24.6.

HRMS (ESI): m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 485.1918$; found, 485.1920 (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3yl)acetate (5ag)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~g}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $($ EtOAc/Petroleum Ether $=1 / 4)$ afforded $\mathbf{5 a g}$ ($28 \mathrm{mg}, \mathbf{2 8 \%}$ yield) as solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dd, $J=6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dt}, J=6.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.89-$ $6.82(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J=9.0$, $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=18.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.17(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 169.4,149.0,148.6,138.3,137.8,135.7,133.5,130.2$, $126.6,124.2,123.7,123.2,121.5,120.2,118.6,116.2,105.0,98.1,50.6,48.1,44.3$, 38.1, 36.0, 35.1, 31.7, 29.8, 29.5, 26.4,25.9, 21.7,13.9.

HRMS (ESI): m/z calculated for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 495.2278$; found, 495.2284
(4S,5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-tetramethyl-

:4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3-yl)acetate (5ah)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{~h}(0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 4)$ afforded 5ah ($42 \mathrm{mg}, 33 \%$ yield) as oil.
$\mathrm{Rf}=0.35(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{dd}, J=8.1,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38 (q, $J=3.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.46-3.31(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.81(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{q}, J=5.8,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 7 \mathrm{H}), 1.17(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H})$, 0.97 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.78(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,139.4,135.7,133.3,130.1,124.0,123.1,123.0$, 122.6, 1200, 116.1, 109.3, 105.5, 97.9, 80.8, 75.0, 66.9, 62.1, 56.4, 49.9.41.6, 40.3, 39.7, 38.0, 36.9, 36.7, 35.1, 32.0, 31.8, 31.4, 30.3, 29.7, 28.8, 27.7, 20.8, 19.3, 17.1, 16.3, 14.5, 14.1 .

HRMS (ESI): m/z calculated for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 639.3793$; found, 639.3796
(3S,8S,9S,10R,13R,14S,17R)-17-((R)-heptan-2-yl)-10,13-dimethyl-
$\mathbf{2 , 3}, 4,7,8,9,10,11,12,13,14,15,16,17-t e t r a d e c a h y d r o-1 H-$
cyclopenta[a]phenanthren-3-yl 2-(1-oxo-1,2-dihydropyrimido[1,6-a]indol-3yl)acetate (5ai)

Prepared from 4 ($0.2 \mathrm{mmol}, 1.0$ equiv) and 2 i ($0.3 \mathrm{mmol}, 1.5$ equiv) according to the general procedure 5, Purification by flash column $(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 4)$ afforded $\mathbf{5 a i}$ ($82 \mathrm{mg}, 69 \%$ yield) as solid.
$\mathrm{Rf}=0.35(\mathrm{EtOAc} /$ Petroleum Ether $=1 / 3)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, $7.38(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}$, $2 \mathrm{H}), 2.33$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.96$ (d, $J=15.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.48(\mathrm{~s}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 4 \mathrm{H}), 1.15-1.09(\mathrm{~m}, 5 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 6 \mathrm{H}), 0.91$ (d, $J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 7 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,149.9,139.6,134.0,131.1,124.1,123.1,123.1$, $120.1,116.2,105.7,98.1,75.3,56.9,56.3,50.2,42.5,39.9,39.7,38.2,37.1,36.8$, $36.4,35.9,35.3,32.0,28.4,28.2,27.9,24.4,24.0,23.0,22.7,21.2,19.5,18.9,12.0$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 611.4207$; found, 611.4211

7. References

[1] Wang, H.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 7318-7322.
[2] Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592-19595.
[3] Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.-S.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; H. Wang. J. Am. Chem. Soc. 2017, 139, 3537-3545.
[4] Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490-6500.
[5] Zhang, J.; Wang, M.; Wang, H..; Xu, H.; Chen, J.; Guo, Z.; Ma, B.; Ban S.-R.; Dai H.-X. Chem. Commun., 2021, 57, 8656-8659.
[6] Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2015, 17, 2494-2497.
[7] Chen, X.; Yang, S.; Li, H.; Wang, B.; Song. G. ACS Catal. 2017, 7, 2392-2396.
[8] Lin, L.-Z.; Che, Y.-Y.; Bai, P.-B.; Feng, C. Org. Lett. 2019, 21, 7424-7429.
[9] Tang, X.; Zhang, Y.; Tang, Y.; Li, Y.; Zhou, J.; Wang, D.; Gao, L.; Su, Z.; Song, Z. ACS Catal. 2022, 12, 5185-5196.

8. Characterization of NMR spectra

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) Spectra of compound $\mathbf{2 g}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 2 g

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) Spectra of compound 2 h

${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 2 h

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 7

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 7

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3aa
$\stackrel{\stackrel{\circ}{+}}{\stackrel{\circ}{+}}$

$\stackrel{\infty}{i} \underset{i}{\infty}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3aa

${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ba

${ }^{13}$ C NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ba

$64 / 107$
${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) Spectra of compound 3ca

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3ca

$65 / 107$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3da

$\begin{aligned} & \stackrel{50}{\rightleftharpoons} \\ & \stackrel{1}{1} \end{aligned}$	$\underbrace{\text { P }}$	F	,

${ }^{13}$ C NMR (126 MHz, CDCl_{3}) Spectra of compound 3da
$\stackrel{\circ}{\stackrel{\circ}{\circ}}$
$\stackrel{\otimes}{\infty}$

$66 / 107$
${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ea

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3ea

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6}) Spectra of compound 3fa

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) Spectra of compound 3fa

$68 / 107$
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ga

${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) Spectra of compound 3ga

${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) Spectra of compound 3ha

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ha

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ia
$\stackrel{\stackrel{\sim}{\circ}}{\stackrel{\circ}{\circ}}$

 80
1
1

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) Spectra of compound 3ia

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ja

${ }^{13}$ C NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ja

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ka

$\stackrel{\infty}{\stackrel{\infty}{+}}$		$\stackrel{\infty}{0}$	$\stackrel{\infty}{i}$	$\stackrel{\circ}{\circ}$

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) Spectra of compound 3ka

$73 / 107$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3la

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3la

${ }^{1}$ H NMR (500 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ma

${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) Spectra of compound 3ma

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3na

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{gathered} \text { t } \\ \infty \\ \text { in } \end{gathered}$		$\begin{aligned} & \text { oq} \\ & \dot{0} \\ & 1 \end{aligned}$	$\stackrel{\stackrel{\sigma}{\dot{\rho}}}{\dot{j}}$	$\stackrel{\otimes}{\dot{\circ}}$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3na

\downarrow
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3oa
$\stackrel{\infty}{\stackrel{\infty}{+}}$
$\stackrel{\circ}{\infty} \stackrel{\infty}{\stackrel{\infty}{\circ}} \stackrel{\stackrel{\circ}{0}}{\stackrel{\circ}{1}}$
$\stackrel{\oplus}{\stackrel{0}{6}}$
$\stackrel{\infty}{\infty}$

${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) Spectra of compound 3oa

\bigcirc	$\stackrel{5}{6}$		$\stackrel{\circ}{0}$	$\stackrel{\infty}{\sim}$
$\stackrel{\text { - }}{-}$	$\stackrel{\square}{\circ}$		\bigcirc	\%
I	I	4	I	

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3pa
$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\rightleftharpoons}}$

$\stackrel{e}{i}$
∞
∞
j
j

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) Spectra of compound 3pa

¢ิ	$\stackrel{\infty}{\square}$		¢	∞
$\stackrel{\infty}{\oplus}$	$\stackrel{\circ}{\circ}$		-	$\stackrel{\square}{\circ}$
\|	I	$\xrightarrow{\text { a }}$	I	I

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3qa
$\stackrel{\text { N }}{\stackrel{\text { N }}{~+~}}$
N$\underset{\sim}{N} \underset{N}{N}$
$\stackrel{m}{i n}$
$\stackrel{\stackrel{2}{\infty}}{\substack{1}}$

Sill

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3qa

$\stackrel{\underset{\sim}{\circ}}{\stackrel{\text { N }}{0}}$

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ra

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3ra

$80 / 107$
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6}) Spectra of compound 3ab

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) Spectra of compound 3ab

	$\underset{\substack{\text { N } \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$		$\begin{aligned} & \stackrel{\circ}{+} \\ & \dot{+} \\ & \hline \end{aligned}$	¢	$\stackrel{\circ}{\stackrel{\circ}{\text { m }}}$

NH

$81 / 107$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ac

$\stackrel{8}{+}$		$\stackrel{\square}{10}$	$\stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 3ac

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ad

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ad

(illoin

$83 / 107$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ae
$\underset{\underset{\sim}{m}}{\substack{\text { mon }}}$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 3ae

$84 / 107$
${ }^{1}$ H NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) Spectra of compound 3af

${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) Spectra of compound 3af

$85 / 107$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ag.

(

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound $\mathbf{3 a g}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 3ah

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5aa

	$\stackrel{\infty}{\sim}$
	ம

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5aa

$88 / 107$
${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5ba

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound $\mathbf{5 b a}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5ca

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 5ca

8
9
6
1
i

$90 / 107$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) Spectra of compound 5da

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 5da

$91 / 107$
${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ea

${ }^{13}$ C NMR (300 MHz , DMSO- d_{6}) Spectra of compound 5ea

ก	
$\stackrel{\sim}{\circ}$	$\mathfrak{\sim}$
I	-

${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5fa

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound $\mathbf{5 f a}$

${ }^{1}$ H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ga
$\stackrel{\stackrel{\circ}{+}}{\stackrel{+}{+}}$
$\stackrel{\substack{0 \\ \infty}}{\infty}$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ga

94/107
${ }^{1}$ H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ha

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ha

${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5ia

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 5ia

$96 / 107$
${ }^{1}$ H NMR (400 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ja

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \mathbf{d}_{6}) Spectra of compound $\mathbf{5 j a}$

${ }^{1}$ H NMR (400 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound 5ka
$\stackrel{\stackrel{N}{+}}{\stackrel{\sim}{+}}$

$\stackrel{\pi}{i}$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- \boldsymbol{d}_{6}) Spectra of compound $\mathbf{5 k a}$

$98 / 107$
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5la

${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) Spectra of compound 5la

$99 / 107$
${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) Spectra of compound 5ma

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) Spectra of compound 5ma

100 / 107
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ab

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ab

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) Spectra of compound 5ac

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) Spectra of compound 5ac

8		N
$\stackrel{\infty}{\circ}$		$\stackrel{\circ}{\circ}$
	为	

102 / 107
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) Spectra of compound 5ad

${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) Spectra of compound 5ad

$\stackrel{\square}{+}$	
E	
।	- vim

[^0]${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）Spectra of compound 5ae

${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）Spectra of compound 5ae

$\begin{aligned} & \text { f} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	\circ $\stackrel{\circ}{\top}$ $\stackrel{-}{\square}$	 		さへべす。络

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ag

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound $\mathbf{5 a g}$

105 / 107
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ah

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ah

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ai
(

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of compound 5ai

${ }_{210}$	200	190	180	170	160	150	140	130	120	110		90	80	70	${ }_{60}$	50	40	30	20	10	0	-10
										107 / 107												

[^0]:
 103 / 107

