Photo-Triggered C-Arylation of Active-Methylene Compounds with Diazonium salts Via Electron Donor-Acceptor (EDA) Complex

Shikha Pandey, Arsala Kamal, Ambuj Kumar Kushwaha, Himanshu Kumar Singh, Suresh Kumar Maury and Sundaram Singh*

Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005

* Address for Correspondence

Dr. Sundaram Singh, Department of Chemistry, Indian Institute of Technology (BHU),

Varanasi – 221 005, U.P., India,

E-mail: sundaram.apc@itbhu.ac.in

Tel: +91 9451658650

*Corresponding author: Dr. Sundaram Singh, Associate Professor of Organic chemistry. ORCID: <u>https://orcid.org/0000-0001-7931-9652</u>

E-mail: <u>sundaram.apc@iitbhu.ac.in</u>, Tel: +919451658650

Table of Content

1. General considerations	S3
2. Experimental Procedures	S3
2.1 General procedure for the preparation of compound	S3
3. Mechanism Study	S 3
3.1. Radical trapping experiments	S3
3.2 UV-Vis absorption experiment	S5
3.3 On/off experiment	S5
3.4 Jobs Plot	S6
4. Characterization of product	S6
5. ¹ H NMR ¹³ C NMR Spectra	S16
6. HRMS Spectra (Figures S4-S11)	S43
7. Optimization -Table	S48
8. Comparison-Table	S49

1.General consideration

All commercially available reagents and solvents were used directly without further purification. All reactions were conducted under an oxygen atmosphere and oven-dried glassware were used. All reactions were conducted using a blue light-emitting diode (LED) as the visible light source. The progress of reaction measured by thin-layer chromatography (TLC) and visualized using UV light. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. UV-visible spectroscopy of reaction solution was recorded on a SHIMADZU UV-3600 UV-visible spectrophotometer. Perkin Elmer Micro analyzer was used for (C and H, All the 1H and 13C spectra were recorded through Bruker 500 MHz spectrometer (¹H NMR at 500 MHz, ¹³C NMR at 126 MHz), in DMSO-d 6 and chemical shift was indicated in δ ppm, using TMS as an internal standard. HRMS (m/z) were recorded in an electron ionization or electrospray ionization (ESI) mode on Waters-Q-TOF Premier-HAB213 and Sciex X500R QTOF instruments.

2. Experimental procedure

2.1 General procedure for the preparation compound 4a-4i, 4aa-4ak, 5a-5c and 6a-6d.

At first, the benzene diazonium tetrafluoroborate 2a (1 mmol) was prepared from the amines and after that, added active methylene 1a (1 mmol) compound in presence of pyridine and dry DMSO as a solvent in insitu condition. Then, the reaction-mixture was stirred at roomtemperature and irradiated with blue LED strip at 40-45 min. and thus, the obtained precipitate was filtered and recrystallized.

3. Mechanistic investigation

3.1 Radical trapping experiment

To find out the mechanism of the reaction, control experiments were done. Firstly, a radical scavenger TEMPO was added to the reaction- mixture and found that the compound **4a** was obtained in trace amount which showed that the radicals are involved in this reaction. The TEMPO adduct was confirmed from HRMS data.

3.2 UV-Vis absorption experiment

Figure S1. Absorption spectra of 1a, 2a and mixture of 1a+2a and base (left) and photographs of the solutions of 1a, 2a and mixture (right).

3.3 ON/OFF experiment

The on/off experiment was carried out to see the role of visible light in the reaction. For this, the reaction -mixture was subjected for stirring under visible-light irradiation followed by stirring in the absence of visible-light irradiation at particular time- intervals and we found that reaction proceeds when the mixture was allowed under visible-light and in absence of visible-light, reaction was suspended. Thus, this experiment showed the effect of visible light in the reaction.

3.4 Job's Plot

Figure S3. Job's Plot

The Job's plot approach was used for calculating the stoichiometry of the EDA complexes 1a and 2a. The Job's plot of the EDA complex between 1a and 2a was calculated determining the absorption of Acetonitrile solutions at 490 nm with different donor/acceptor ratios with constant concentration (0.02 M) of the two components. The molar fraction (%) of 2a was plotted against the absorbance values. A Job's plot study of the EDA complex between 1a and 2a revealed a highest absorbance at 50% of 2a's molar fraction, indicating that the EDA complex in solution is 1:1 stoichiometric.

4. Characterization data of compounds

6-hydroxy-5-phenylpyrimidine-2,4(1H,3H)-dione (4a): 84% yield. Yellow solid. m.p: 247-248 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.15 (s, 1H), 11.51 (s, 1H), 11.29 (s, 1H), 7.58 (d, J = 9.6 Hz, 2H), 7.50 – 7.44 (m, 2H), 7.25 (t, J = 7.8 Hz, 1H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.6, 160.3, 150.2, 141.8, 130.1, 126.5, 118.2, 117.1.

HRMS (ESI) m/z: [M+H] + calculated for $C_{10}H_9N_2O_3$ 205.0613; found: 205.0615.

6-hydroxy-5-(4-methoxyphenyl) pyrimidine-2,4(1H,3H)-dione (4b): 91% yield. Yellow solid. m.p: 236-237 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.29 (s, 1H), 11.43 (s, 1H), 11.21 (s, 1H), 7.56 (d, *J* = 9.1 Hz, 2H), 7.0 (d, *J* = 9.1 Hz, 2H), 3.79 (s, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.7, 160.4, 158.3, 150.3, 135.2, 118.7, 115.4, 55.9.

HRMS (ESI) m/z: [M+H] + calculated for $C_{11}H_{11}N_2O_4$ 235.0718; found: 235.0716.

6-hydroxy-5-(o-tolyl) pyrimidine-2,4(1H,3H)-dione (4c): 79% yield. Brownish solid. m.p: 229-230 °C

¹H NMR (500 MHz, DMSO-d₆) δ 14.50 (s, 1H), 11.60 (s, 1H), 11.34 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.21 – 7.14 (m, 1H), 2.36 (s, 3H).
¹³C NMR (126 MHz, DMSO-d₆) δ 163.3, 160.2, 150.2, 139.6, 131.6, 128.0, 126.3, 126.0, 118.9, 115.3, 16.7.

HRMS (ESI) m/z: [M+H] + calculated for $C_{11}H_{11}N_2O_3$ 219.0769; found: 219.0761.

5-(4-chlorophenyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione(4d): 89% yield. Yellow solid. m.p: 217-218 °C ¹**H NMR** (500 MHz, DMSO-d₆) δ 14.04 (s, 1H), 11.53 (s, 1H), 11.32 (s, 1H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.50 (d, *J* = 8.9 Hz, 2H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.3, 160.2, 150.2, 140.9, 130.1, 130.0, 118.7, 118.6.
HRMS (ESI) m/z: [M+H] + calculated for C₁₀H₈ClN₂O₃ 239.0223; found: 239.0224.

5-(4-bromophenyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione (4e): 81% yield. Yellow solid. m.p: 221-222 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.04 (s, 1H), 11.53 (s, 1H), 11.32 (s, 1H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.50 (d, *J* = 8.9 Hz, 2H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.3, 160.2, 150.2, 140.9, 130.1, 130.0, 118.7, 118.6.
HRMS (ESI) m/z: [M+H] + calculated for C₁₀H₈BrN₂O₃ 282.9718; found: 282.9719.

6-hydroxy-5-(4-nitrophenyl) pyrimidine-2,4(1H,3H)-dione (4f): 78% yield. Yellow solid. m.p: 239-240 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 13.98 (s, 1H), 11.66 (s, 1H), 11.44 (s, 1H), 8.32 (d, *J* =9.2 Hz, 2H), 7.79 (d, *J* = 9.2 Hz, 2H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.0, 159.9, 150.2, 147.4, 144.2, 126.0, 121.2, 117.1.
HRMS (ESI) m/z: [M+H] + calculated for C₁₀H₈N₃O₅ 250.0463; found; 250.0464.

5-(3-chlorophenyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione (4g): 82% yield. Light yellow solid. m.p: 225-226°C

¹**H NMR** (500 MHz, DMSO-d₆)δ 13.96 (s, 1H), 11.56 (s, 1H), 11.35 (s, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.46 (t, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (126 MHz, DMSO-d₆) δ 162.2, 160.2, 150.2, 143.4, 134.5, 131.7, 125.7, 119.1, 116.6, 115.8.

HRMS (ESI) m/z: [M+H] + calculated for $C_{10}H_8ClN_2O_3 239.0223$; found: 239.0236.

5-(3-bromophenyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione (4h): 75% yield. Yellow solid. m.p: 220-221 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 13.96 (s, 1H), 11.56 (s, 1H), 11.35 (s, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.27 (dd, *J* = 8.2, 1.0 Hz, 1H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 162.2, 160.2, 150.2, 143.4, 134.5, 131.7, 125.7, 119.1, 116.6, 115.8.

HRMS (ESI) m/z: [M+H] + calculated for $C_{10}H_8BrN_2O_3$ 282.9718; found: 282.9717.

6-hydroxy-5-(3-nitrophenyl) pyrimidine-2,4(1H,3H)-dione (4i): 73% yield. Yellow solid. m.p: 231 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.00 (s, 1H), 11.60 (s, 1H), 11.40 (s, 1H), 8.45 (s, 1H), 8.05 (d, *J* = 2.1 Hz, 1H), 8.03 (d, *J* = 2.1 Hz, 1H), 7.73 (t, *J* = 8.2 Hz, 1H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 150.2, 149.1, 143.4, 131.4, 123.3, 120.1, 119.9, 111.4, 56.4, 19.0.

HRMS (ESI) m/z: [M+H] + calculated for $C_{10}H_8N_3O_5$ 250.0463; found: 250.0455.

6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4aa): 90% yield. Shiny red solid. m.p: 239-240 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.89 (s, 1H), 7.61 (d, *J* = 9.5 Hz, 2H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 2.65 (s, 2H), 2.57 (s, 2H), 1.04 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.3, 193.1, 141.9, 130.5, 130.1, 126.9, 117.5, 52.4, 52.1, 30.7, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{14}H_{17}O_2$ 217.1228; found: 217.1229.

6-hydroxy-4,4,4'-trimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4ab): 89% yield. Yellow solid. m.p: 219-220 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 15.00 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 2.63 (s, 2H), 2.55 (s, 2H), 2.32 (s, 3H), 1.03 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.2, 193.1, 139.5, 136.7, 130.6, 130.2, 117.5, 52.4, 52.0, 30.7, 28.4, 21.0.

HRMS (ESI) m/z: [M+H] + calculated for $C_{15}H_{19}O_2$ 231.1385; found: 231.1386.

H₃CO HO

6-hydroxy-4'-methoxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4ac) :92% yield. Brown solid. m.p: 246-247 ℃

¹**H NMR** (500 MHz, DMSO-d₆) δ 15.15 (s, 1H), 7.58 (d, *J* = 9.0 Hz, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 3.79 (s, 3H), 2.61 (s, 2H), 2.53 (s, 2H), 1.03 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 196.7, 192.9, 158.6, 135.2, 129.9, 119.1, 115.4, 55.9, 52.3, 51.9, 30.8, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{15}H_{19}O_3$ 247.1334; found: 247.1322.

4'-chloro-6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4ad): 88% yield. Yellow solid. m.p: 248 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.73 (s, 1H), 7.65 (d, *J* = 8.9 Hz, 2H), 7.52 (d, *J* = 8.9 Hz, 2H), 2.65 (s, 2H), 2.57 (s, 2H), 1.04 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.3, 193.2, 144.5, 144.3, 141.0, 130.0, 126.8, 119.2, 52.4, 52.2, 30.7, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{14}H_{16}ClO_2$ 251.0838; found: 251.0838.

4'-bromo-6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4ae): 83% yield. Yellow solid. m.p: 219 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.73 (s, 1H), 7.65 (d, *J* = 8.9 Hz, 2H), 7.52 (d, *J* = 8.9 Hz, 2H), 2.65 (s, 2H), 2.57 (s, 2H), 1.04 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.3, 193.2, 144.5, 144.3, 141.0, 130.0, 126.8, 119.2, 52.4, 52.2, 30.7, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₆BrO₂ 295.0333; found: 295.0334.

 O_2N

4af

6-hydroxy-4,4-dimethyl-4'-nitro-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one(4af): 79% yield. reddish solid. m.p: 247-248 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.49 (s, 1H), 8.32 (d, *J* = 9.2 Hz, 2H), 7.83 (d, *J* = 9.2 Hz, 2H), 2.71 (s, 2H), 2.63 (s, 2H), 1.05 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.8, 193.5, 147.6, 146.2, 144.6, 132.2, 126.1, 126.0, 52.5, 52.4, 30.6, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₆NO₄ 262.1079; found: 262.1078.

4ag

6-hydroxy-4,4-dimethyl-3'-nitro-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one(4ag): 77% yield. black solid. m.p: 219°C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.57 (s, 1H), 8.48 (s, 1H), 8.07 (d, *J* = 2.2 Hz, 1H), 8.05 (d, *J* = 2.2 Hz, 1H), 7.73 (t, *J* = 8.2 Hz, 1H), 2.69 (s, 2H), 2.62 (s, 2H), 1.05 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.4, 193.4, 149.1, 143.6, 131.4, 123.8, 120.5, 111.9, 52.5, 52.3, 30.6, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{14}H_{16}NO_4 262.1079$; found: 262.1080.

3'-chloro-6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one(4ah): 82% yellow solid. yield. m.p: 245-246 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 14.60 (s, 1H), 7.70 (s, 1H), 7.60 – 7.57 (m, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 2.66 (s, 2H), 2.58 (s, 2H), 1.04 (s, 6H).

¹³**C NMR** (126 MHz, DMSO-d₆) δ 197.4, 193.2, 143.6, 134.5, 134.3, 131.7, 131.0, 126.1, 117.0, 116.2, 52.4, 52.2, 30.6, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{14}H_{16}ClO_2 251.0838$; found: 251.0839.

3'-bromo-6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one(4ai): 78% yield. yellow solid. m.p: 227-228 °C
¹H NMR (500 MHz, DMSO-d₆) δ 14.60 (s, 1H), 7.70 (s, 1H), 7.58 (d, J = 9.5 Hz, 1H), 7.47 (t, J = 8.1 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 2.66 (s, 2H), 2.58 (s, 2H), 1.04 (s, 6H).
¹³C NMR (126 MHz, DMSO-d₆) δ 197.4, 193.2, 143.6, 134.5, 134.3, 131.7, 131.0, 126.1, 117.0, 116.2, 52.4, 52.2, 30.6, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for $C_{14}H_{16}BrO_2$ 295.0333; found: 295.0335.

6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-carbonitrile(4aj): 76% yield. reddish solid. m.p: 229 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 15.20 (s, 1H), 7.90 (dd, *J* = 13.2, 4.9 Hz, 2H), 7.82 (t, *J* = 7.9 Hz, 1H), 7.39 (t, *J* = 7.1 Hz, 1H), 2.73 (s, 2H), 2.63 (s, 2H), 1.06 (s, 6H).

¹³C NMR (126 MHz, DMSO-d₆) δ 198.8, 193.2, 144.4, 135.5, 133.7, 132.3, 126.4, 116.4, 100.4, 52.4, 52.2, 30.6, 28.4.

HRMS (ESI) m/z: [M+H] + calculated for C₁₅H₁₆NO₂ 242.1181; found: 242.1182.

6-hydroxy-2',4,4-trimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (4ak): 78% yield. Black solid. m.p: 209 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 15.33 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 2.68 (s, 2H), 2.57 (s, 2H), 2.37 (s, 3H), 1.05 (s, 6H).

¹³C NMR (126 MHz, DMSO-d₆) δ 197.8, 193.1, 139.7, 131.6, 131.3, 128.1, 126.8, 126.6, 115.5, 52.4, 52.0, 30.8, 28.4, 16.8.

HRMS (ESI) m/z: [M+H] + calculated for C₁₅H₁₉O₂ 231.1385; found:231.1384.

3-imino-2-(p-tolyl) acrylonitrile(5a): 88% yield. Shiny yellow solid. m.p: 156-157 °C ¹H NMR (500 MHz, DMSO-d₆) 7.37 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 2.30 (s, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 139.6, 135.8, 130.4, 116.9, 114.9, 110.5, 84.2, 20.9. HRMS (ESI) m/z: [M+H] + calculated for C₁₀H₉N₂ 157.0765; found: 157.0764

3-imino-2-(3-nitrophenyl) acrylonitrile (5b): 77% yield. Brown solid. m.p: 163°C ¹H NMR (500 MHz, DMSO-d₆) δ 8.24 (s, 1H), 8.02 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.86 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.70 (t, *J* = 8.2 Hz, 1H).

¹³C NMR (126 MHz, DMSO-d₆) δ 148.9, 143.4, 131.5, 122.8, 120.1, 114.5, 111.5, 110.2, 87.2. HRMS (ESI) m/z: [M+H] + calculated for C₉H₆N₃O₂ 188.0460; found: 188.0461.

3-imino-2-(4-nitrophenyl) acrylonitrile (5c): 88% yield. Shiny orange solid. m.p: 159 °C
¹H NMR (500 MHz, DMSO-d₆) δ 8.28 (d, J = 9.3 Hz, 2H), 7.64 (d, J = 9.3 Hz, 2H).
¹³C NMR (126 MHz, DMSO-d₆) δ 147.7, 144.3, 126.0, 117.2, 114.5, 110.1, 88.7.

HRMS (ESI) m/z: [M+H] + calculated for C₉H₆N₃O₂ 188.0460; found: 188.0462.

(Z)-2-(4-chlorophenyl)-3-ethoxy-3-hydroxyacrylonitrile(6a): 83% yield. Yellow solid. m.p: 161-162°C

¹**H NMR** (500 MHz, DMSO-d₆) δ 12.94 (s, 1H), 7.57 (d, *J* = 9.0 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 160.8, 140.7, 129.8, 118.4, 118.1, 116.1, 105.4, 62.4, 14.3. HRMS (ESI) m/z: [M+H] + calculated for C₁₁H₁₁ClNO₂ 224.0478; found: 224.0479.

6b

(Z)-2-(4-bromophenyl)-3-ethoxy-3-hydroxyacrylonitrile (6b): 78% yield. Yellow solid. m.p: 136 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 12.94 (s, 1H), 7.57 (d, *J* = 9.0 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 160.8, 140.7, 129.8, 118.4, 118.1, 116.1, 105.4, 62.4, 14.3. HRMS (ESI) m/z: [M+H] + calculated for C₁₁H₁₁BrNO₂ 267.9973; found: 267.9975.

(Z)-3-ethoxy-3-hydroxy-2-(4-nitrophenyl) acrylonitrile (6c): 79% yield. Yellow solid. m.p: 146-147 °C

¹**H NMR** (500 MHz, DMSO-d₆) δ 12.59 (s, 1H), 8.31 (d, *J* = 9.3 Hz, 2H), 7.65 (d, *J* = 9.3 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 160.7, 147.0, 143.7, 126.0, 116.6, 111.3, 108.2, 62.4, 14.5. HRMS (ESI) m/z: [M+H] + calculated for C₁₁H₁₁N₂O₄ 235.0718; found: 235.0719.

6d

(Z)-3-ethoxy-3-hydroxy-2-(3-nitrophenyl) acrylonitrile (6d): 76% yield. Yellow solid. m.p: 137-138 °C

¹H NMR (500 MHz, DMSO-d₆) δ 12.50 (s, 1H), 8.26 (s, 1H), 7.96 -7.93 (m, 1H), 7.84 -7.81 (m, 1H), 7.68 (t, *J* = 8.2 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).
¹³C NMR (126 MHz, DMSO-d₆) δ 160.8, 148.9, 143.5, 131.4, 122.3, 119.2, 111.4, 110.9, 106.5, 62.3, 14.5.

HRMS (ESI) m/z: [M+H] + calculated for $C_{11}H_{10}N_2O_4$ 234.0640; found: 234.0641.

5. Copies of NMR spectra

S34

S35

6. HRMS Spectra

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10

Figure S11

7. Optimization-Table

Table S1. Optimization of the reaction- conditions^a

	⊕ ⊖ N₂BF₄	dine, dry DMSO	
ot N to +		Blue LED	о п о
1a	2a		4a
Entry	Bases	Solvents	Yield ^b (%)
1	Na ₂ CO ₃	CH ₃ CN	19
2	Cs_2CO_3	CH ₃ CN	26
3	NaHCO ₃	CH ₃ CN	21
4	K ₂ CO ₃	acetone	49
5	DIPEA	DMSO	10
6	Pyridine	DMSO	80
7 ^C	Pyridine	dry DMSO	92
8	Pyridine	DMF	71
9	Pyridine	H ₂ O	nr
10	Pyridine	CH ₃ CN	22
11	Pyridine	Ethanol	nr
12	Pyridine	DCM	trace
13	Pyridine	-	49
14	-	CH ₃ CN	nr
15 ^d	Pyridine	dry DMSO	nr
16 ^e	Pyridine	dry DMSO	36
17 ^f	Pyridine	dry DMSO	79

^aReaction condition: **1a** (1.0 mmol), **2a** (1.0 mmol), Pyridine (3 equiv), solvents (5 mL) at room temperature, for 40-45 min, and irradiate under blue LED. ^b Isolated yield, ^cBlue LED, ^dIn the dark, ^ea green LED, ^fWhite LED room temperature, reaction for 40-45 min. (nr = no reaction)

Table S2. Optimization of catalyst^a

Entry	Catalysts(mol%)	Base	Solvent	Yield ^{b(} %)
1	Eosin-Y (2)	Pyridine	dry DMSO	29
2	Rose-Bengal(5)	Pyridine	dry DMSO	36
3	Acridine-red(10)	Pyridine	dry DMSO	31
4	Rhodamine-B(15)	Pyridine	dry DMSO	19

^aReaction condition: **1a** (1.0 mmol), **2a** (1.0 mmol), Pyridine (3 equiv), catalysts (mol%), dry DMSO (5 mL) at room temperature, for 40-45 min, and irradiate under blue LED. ^b Isolated yield.

8. Comparison Table

Table S3. Advantages and disadvantages of methods used for C-arylation of active methylene compounds.^{47-49.}

S.no.	Methods used	Advantages and disadvantages	Time
1.	Iodobenzene + $acetylacetone + Cs_2CO_3$ at 80 °C in DMSO, in the presence of CuO- nanoparticles	 Disadvantages: Use of CuO nanoparticles catalyst High temperature Long reaction time 	8-10h
2.	2-aryl-1,3-dicarbonyl+ aryl iodides and aryl bromides in DMSO at 40-50°C in the presence of Cs ₂ CO ₃ . by a CuI/L- proline-catalyzed compounds	 Disadvantages: Use of proline and CuI catalyst Long reaction time 	4-24h
3.	Sonochemical arylation of active methylene compounds and haloarene in DMSO + potassium carbonate heated at 100-150 °C	Disadvantages:High temperatureEnergy-intensive	30 min.
4.	Visible light mediated diazonium salt+ active- methylene compounds+dry DMSO (this study)	 No such disadvantages Advantages: No metal catalyst Dry DMSO used as solvent. Greener approach as visible light Easy work-up Via EDA complex Less-time 	40-45 min.

S50