Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Synthesis of C–N Axially Chiral Biaryls *via* Asymmetric Chan-Lam Coupling

Moeka Ishida, Rina Adachi, Kazuki Kobayashi, Yukiko Yamamoto, Chinatsu Kawahara, Tsuyoshi Yamada, Hiroshi Aoyama, Kyohei Kanomata, Shuji Akai, Patrick Y. S. Lam, Hironao Sajiki, Takashi Ikawa,*

Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196,

Japan

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-

0871, Japan.

Baruch S. Blumberg Institute, Doylestown, Pennsylvania, 18902, USA

E-mail: <u>ikawa-ta@gifu-pu.ac.jp</u>

Table of contents

The ratio and amount optimizations of copper and ligand 4j	S2
General considerations	S3
Experimental procedure, spectroscopic and numerical data	
3-1. Synthesis of ligand 4j	S5
3-2. Preparation of optically active catalyst Stock Solution (A)	S7
3-3. Preparation of none-optically active catalyst Stock Solution (B)	S7
3-4. Asymmetric coupling between imidazole and boronic acid	S7
3-5. Synthesis of racemic coupling product between imidazole and aryl boronic acid	S7
3-6. Spectroscopic and numerical data of the coupling product	S9
3-7. Large scale synthesis of 3b	S13
Transformation of coupling product 3b	
4-1. Recrystallization of 3b	S55
4-2. Suzuki coupling	S57
4-3. Sonogashira coupling	S59
4-4. Reductive dehalogenation	S62
4-5. Metallative methylation	S64
X-Ray Data of 3b	S66
Rotational barrier of (S)- 3w	S68
Experimental references	S69
¹ H, ¹³ C, and ¹⁹ F NMR spectra of new compounds	S70
	The ratio and amount optimizations of copper and ligand 4j General considerations Experimental procedure, spectroscopic and numerical data 3-1. Synthesis of ligand 4j 3-2. Preparation of optically active catalyst Stock Solution (A) 3-3. Preparation of none-optically active catalyst Stock Solution (B) 3-4. Asymmetric coupling between imidazole and boronic acid 3-5. Synthesis of racemic coupling product between imidazole and aryl boronic acid 3-6. Spectroscopic and numerical data of the coupling product. 3-7. Large scale synthesis of 3b Transformation of coupling product 3b 4-1. Recrystallization of 3b 4-2. Suzuki coupling 4-3. Sonogashira coupling 4-4. Reductive dehalogenation 4-5. Metallative methylation. X-Ray Data of 3b Rotational barrier of (<i>S</i>)- 3w . Experimental references ¹ H, ¹³ C, and ¹⁹ F NMR spectra of new compounds

1. The ratio and amount optimizations of copper and ligand 4j:

Table S1	N N H Ia mmol) (2.0 c)	B(OH) ₂ OMe 2a equiv)	Cu(NO ₃); with/withou	$ \begin{array}{c} Et \\ N \\ N \\ Cy \\ Cy \\ 2^{2}3H_{2}O \\ ut MnO_{2} \\ H, O_{2} \end{array} $	
entry	Cu cat. : 4j (mol%)	temp.	MnO ₂	yield (%) of 3a	ee (%) of 3a
1	25: 0	25 °C	+	33	0
2	25: 0	25 °C	_	9	0
3	25 : 12.5	25 °C	+	95	48
4	25 : 12.5	25 °C	_	16	38
5	25 : 25	25 °C	+	90	66
6	25 : 25	25 °C	_	22	64
7	25 : 50	100 °C	+	89	68
8	25 : 50	75 °C	+	90	72
9	25 : 50	50 °C	+	90	72
10	25 : 50	25 °C	+	94	72
11	25 : 50	25 °C	_	37	78
12	25 : 50	−10 °C	+	12	80

Ta	ble S2								
	1 (0.10 r	N Br + N H H mmol)	2a (2.0 e	(OH) ₂ OMe a quiv)	$ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ &$				
	entry	Cu cat. : •	4j (mol%)	time	ratio (%) 1b : 3b	ee (%) of 3b			
	1	25 :	50	1 h	95 : 5	_			
	2	25 :	50	3 h	69: 31	86			
	3	25 :	50	5 h	37: 63	86			
	4	25 :	50	7 h	2: 98	84			
C	5	25 :	50	9 h	0 : 100	84			
	6	50 :	100	22 h	0 : 100	82			
	7	25 :	50	22 h	0 : 100	86			
	8	13 :	26	22 h	0 : 100	80			
	9	8 :	16	22 h	0 : 100	80			
C	10	4 :	8	22 h	0 : 100	82			
	11	2 :	4	22 h	32 : 68	84			
	12	1:	2	22 h	95 : 5	86			

2. General considerations:

Reagents: A test tube and a septum cap were used for the coupling reaction and the reaction temperature was controlled using Chemist Plaza CP-10 purchased from SIBATA SCIENTIFIC TECHNOLOGY. Anhydrous THF was purchased from Kanto Chemical and purified with a Glass Contour solvent dispensing system (Nikko Hansen) using two packed columns of activated molecular sieves. Wako 1st Grade MeOH was used for the coupling reactions. Cu(NO₃)₂.3H₂O, 99.9% and MnO₂, 99.5% were purchased from FUJIFILM Wako Pure Chemical and used without further purification. (4S,4'S)-2,2'-(propane-2,2-diyl)bis(4-isopropyl-4,5-dihydrooxazole) 4a was purchased from Tokyo Chemical Industry and used without further purification. Chiral bisoxazoline ligands ((4S,4'S)-2,2'-(pentane-3,3-diyl)bis(4-isopropyl-4,5-dihydrooxazole) (4b),^[4,3] (4S,4'S)-2,2'-(1,3-diphenylpropane-2,2-diyl)bis(4-isopropyl-4,5-dihydrooxazole) (4c),^[4,3] (4S,4'S)-(2,2'-(2,6-dimethylheptane-4,4-divl)bis(4-isopropyl-4,5-dihydrooxazole) (4d),^[4,3] (4S,4'S)-2,2'-(cyclopentane-1,1-diyl)bis(4-isopropyl-4,5-dihydrooxazole) (4e),^[4,6] (S)-4-((R)-sec-butyl)-2-(2-((S)-4-((S)-sec-butyl)-4,5-dihydrooxazol-2-yl)propan-2-yl)-4,5-dihydrooxazole (4f),^[5,7] (4S,4'S)-(4g),^[5,8] 2,2'-(propane-2,2-divl)bis(4-ethyl-4,5-dihydrooxazole) (4S,4'S)-2,2'-(propane-2,2diyl)bis(4-cyclohexyl-4,5-dihydrooxazole) (4h),^[5,9] (S)-4-((R)-sec-butyl)-2-(3-((S)-4-((S)-secbutyl)-4,5-dihydrooxazol-2-yl)pentan-3-yl)-4,5-dihydrooxazole (**4i**)),^[5,10] 2-methoxy-1-napthyl boronic acid^[11] and 2-methoxymethyl-1-napthyl boronic acid^[12–14] were prepared according to the literature. All other reagents were purchased from FUJIFILM Wako Pure Chemical, Tokyo Chemical Industry, Sigma-Aldrich (Merck), NACALAI TESQUE, Kishida Chemical, Chem Impex International, Oakwood Products, and Combi-Blocks and used without further purification. Flash chromatography was performed with silica gel 60N, spherical neutral (40–50 µm), purchased from Kanto Chemical. All reactions were monitored by thin-layer chromatography (TLC) on glassbacked silica gel 60 F²⁵⁴, 0.2 mm plates (Merck), and compounds were visualized under UV light (254 nm) and dipped with TLC stain with ceric ammonium molybdate solution.

Analytical methods: IR spectra were recorded by a Bruker FT-IR ALPHA. High-resolution mass spectra (HRMS) were measured by Waters AQUITY H-class RDa. Melting points were measured by a SANSYO SMP-300 melting point apparatus. Optical rotations were measured by ATAGO AP-300 automatic polarimeter. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a JEOL JMN-ECA-500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F: 470 MHz), a JEOL JMN-ECS-400 (¹H: 400 MHz, ¹³C: 100 MHz). Instrument with chemical shifts reported in ppm relative to the residual deuterated solvent. GC spectra were taken on SHIMADZU GC-2010. Chiral HPLC measurements

were performed on a Shimadzu system with a quaternary low-pressure LC-20AD pump, an automatic SIL-20A HT injector, a CTO-10AS oven and a SPD-M20 with diode array detector (DAD). The injection volume was 1.0–10 μ L, the temperature of the oven set to 30 °C and the concentration of the sample around 0.10–1.0 mg/L. Preparative recycling gel permeation chromatography (GPC) was performed with LaboACE LC-5060 Plus II equipped with JAIGEL-2HR Plus column (chloroform as an eluent). X-ray single crystal diffraction data were recorded on Rigaku XtaLAB mini II. The chromatogram of the racemic compound is on the left, the one of the enantiomerically enriched compound is on the right. "Yield" refers to the isolated yields of compounds showing at most only trace peaks in the ¹H NMR spectra that are not attributable to the assigned structure. ¹H NMR, ¹³C NMR and melting points (where applicable) of all known compounds were taken. All new products were further characterized by ¹³C NMR, IR, and high resolution mass spectrum (HRMS). The absolute stereochemistry of coupling product (*S*)-**3b** was confirmed by a single-crystal X-ray structure analysis.

3. Experimental procedure, spectroscopic and numerical data:

3-1. Synthesis of ligand 4j

NC CN + Me I
$$(n-Bu)_4NBr, 0 \circ C \text{ to rt}$$
 Me NC CN (S1)
(3.5 equiv)

Diethyl malononitrile:^[1] Malononitrile (20 g, 0.30 mol), tetra(*n*-butylammonium)bromide (3.9 g, 12 mmol) and iodoethane (142 mL, 1.3 mol) were charged in an oven-dried 1.0 L flask and mixed for 30 min at 0 °C by an overhead stirrer. Potassium *tert*-butoxide (74 g, 0.66 mol) was added in the flask and stirred for 2 days. To the obtained mixture was poured water (ca. 100 mL) and Et₂O (*ca.* 300 mL), and then the aqueous phase was washed three times with Et₂O. The ethereal solution was washed with brain, dried over anhydrous magnesium sulfate, and evaporated to afford the crude product. The crude product was purified by a silica-gel column (Et₂O) to afford the titled compound (7.5 g, 20% yield) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 1.27 (6 H, t, *J* = 7.5 Hz), 2.07 (4 H, q, *J* = 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 9.8, 31.0, 39.6, 115.4.

(*R*)-2-Amino-2-cyclohexylethan-1-ol:^[2] Lithium borohydride (ca. 4 mol/L in THF) (25 mL) and anhydrous THF (25 mL) were charged in a 300 mL three-necked flask. After stirring for 15 min at 0 °C, chlorotrimethylsilane (26 mL, 0.2 mol) was added dropwise into the flask and stirred for 15 min at room temperature. The reaction mixture was cooled to 0 °C. A solution of 2-cyclohexylglycine (7.9 g, 50 mmol) in THF (25 mL) was added dropwisely to the mixture at 0 °C. The mixture was stirred overnight at room temperature, quenched with MeOH (80 mL). To the obtained mixture was poured 2.5 M of saturated sodium hydroxide (40 mL). After evaporation of the reaction mixture, the aqueous phase was washed three times with CH₂Cl₂. The combined organic phase was dried over MgSO₄, evaporated to afford the titled compound (4.1 g, 58 % yield) as a colorless solid. $[\alpha]_D^{20} = +6.4$ (c 0.5, MeOH). ¹H NMR (400 MHz, CDCl₃) δ : 0.98–1.32 (6 H,

m), 1.66–1.77 (5 H, m), 2.67 (1 H, brs), 3.36–3.41 (1 H, m), 3.52 (2 H, brs), 3.67–3.70 (1 H, m). ¹³C NMR (100 MHz, CDCl₃) δ: 26.1, 26.3, 29.0, 29.3, 40.7, 57.7, 63.5.

(4*S*,4'*S*)-2,2'-(Pentane-3,3-diyl)bis(4-cyclohexyl-4,5-dihydrooxazole) (4j):^[3,15] Diethyl malononitrile (0.80 g, 6.5 mmol), zinc chloride (2.8 g, 21 mmol), (*R*)-2-amino-2-cyclohexylethan-1-ol (3.0 g, 21 mmol) and *o*-dichlorobenzene (20 mL) were added to a 300 mL two-necked flask. The reaction mixture was stirred at 150 °C for 7 h. The reaction mixture was cooled to room temperature. To the reaction mixture were added water (3.0 mL) and ethylenediamine (6.0 mL), and the reaction mixture was stirred at room temperature for 1 h. Water (30 mL) and Et₂O (100 mL) were added to the reaction mixture and the aqueous phase was washed three times with Et₂O. The combined organic phase was washed three times with saturated ammonium chloride, and dried over MgSO₄. The mixture was evaporated to afford the titled compound (1.9 g, 80% yield) as a pale yellow oil. $[\alpha]_D^{20} = +116.0$ (c 1.0, MeOH). IR: 1653, 2921 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 0.81–0.84 (6 H, m), 1.00 (4 H, m), 1.12–1.24 (4 H, m), 1.45 (2 H, m), 1.57–1.82 (12 H, m), 1.94–2.02 (4 H, m), 3.94–3.99 (4 H, m), 4.14–4.19 (2 H, m). ¹³C NMR (100 MHz, CDCl₃) δ : 8.0, 24.9, 25.8, 25.9, 26.3, 28.2, 29.1, 42.2, 46.3, 69.5, 70.7, 166.7.

3-2. Procedure for the preparation of optically active catalyst Stock Solution (A): $Cu(NO_3)_2 \cdot 3H_2O$ (64 mg, 0.25 mmol) and MeOH (10 mL, 0.025 M) were charged in a 10 mL vial. The mixture was added to **4j** (188 mg, 0.50 mmol) in a 20 mL vial. After the sonication for 15 min, the Stock Solution (A) (0.025 M) was capped with septum and evacuated and back-filled with Ar (This operation was repeated three times).

3-3. Procedure for the preparation of none-optically active catalyst Stock Solution (B): $Cu(NO_3)_2 \cdot 3H_2O$ (64 mg, 0.25 mmol) and MeOH (10 mL, 0.025 M) were charged in a 10 mL vial. The mixture was added to TMEDA or (±)-4j (188 mg, 0.50 mmol) in a 20 mL vial. After the sonication for 15 min, the Stock Solution (B) (0.025 M) was capped with septum and evacuated and back-filled with Ar (This operation was repeated three times).

3-4. Asymmetric coupling between imidazole 1 and aryl boronic acid 2

General Procedure I: To a test tube were added the imidazole **1** (0.20 mmol), the boronic acid **2** (0.40 mmol) and MnO₂ (2.0–20 mmol). After the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (**4j**)] was added, the mixture was evacuated and backfilled with O₂ (This operation was repeated three times). The reaction mixture was stirred under an O₂ atmosphere (balloon) at 25 °C for 22 h and passed through Celite with EtOAc. The filtrate was concentrated in vacuo. The purification of the crude product with a silica-gel column chromatography using hexane/EtOAc gave the *N*-arylation product **3**. If required, the product was further purified by GPC. The enantiomeric excess was determined by HPLC (UV detection monitored at 254 nm).

3-5. Synthesis of racemic coupling product between imidazole 1 and aryl boronic acid 2

General Procedure II: To a test tube were added the imidazole 1 (0.20 mmol), the boronic acid 2

(0.40 mmol) and MnO₂ (2.0–20 mmol). After the Stock Solution (B) [2.0 mL, 0.05 mmol (Cu), 0.1 mmol (TMEDA or (\pm) -**4j**)] was added, the mixture was evacuated and backfilled with O₂ (This operation was repeated three times). The reaction mixture was stirred under an O₂ atmosphere (balloon) at 25 °C for 22 h and passed through Celite with EtOAc. The filtrate was concentrated in vacuo. The purification of the crude product with a silica-gel column chromatography using hexane/EtOAc gave a mixture of the *N*-arylation product. If required, the product was further purified by GPC. The enantiomeric excess was determined by HPLC (UV detection monitored at 254 nm).

3-6. Spectroscopic and numerical data of the coupling product

1-(2-Methoxynaphthalen-1-yl)-2-chloro-benzo[d]imidazole (3a) (Table 2)

(*S*)-1-(2-Methoxynaphthalen-1-yl)-2-chloro-benzo[*d*]imidazole [(*S*)-3a]: Following the General Procedure I, a mixture of 2-chloro-benzimidazole (1a) (31 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3a (65 mg, quant, 74% ee) as a colorless solid. $[\alpha]_D^{20} = +61.3$ (c 1.0, MeOH). Mp: 139–140 °C. IR: 2838 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 3.86 (3 H, s), 6.82 (1 H, d, *J* = 8.0 Hz), 7.13–7.20 (2 H, m), 7.32 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.39–7.43 (2 H, m), 7.46 (1 H, d, *J* = 9.0 Hz), 7.82 (1 H, d, *J* = 8.0 Hz), 7.91–7.94 (1 H, m), 8.09 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 57.4, 111.4, 114.2, 116.6, 120.3, 122.2, 123.8, 124.4, 125.5, 129.3, 129.8, 132.4, 132.8, 137.7, 143.0, 143.3, 154.8 HRMS (ESI, TOF) Calcd for C₁₈H₁₄ClN₂O [M+H]⁺: 309.0795. Found: 309.0784. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/Et₂NH = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 14.20 min (87%), 15.99 min (13%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-chloro-benzo[*d*]imidazole [(*rac*)-3a]: Following the General Procedure II, a mixture of 2-chloro-benzimidazole (1a) (0.61g, 4.0 mmol), 2-methoxynaphthalen boronic acid (2a) (1.6 g, 8.0 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [40 mL, 1.0 mmol (Cu), 2.0 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3a as a colorless solid (1.3 g, 99% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/Et₂NH = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 14.48 min (50%), 16.37 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-chloro-benzo[d]imidazole (3a)

[PDA chromatograms]

(PDA Table) Monitored at 254 nm

Peak#	R	et.time	Area	Area%	
	1	14.483	3756545	49.53	
	2	16.37	3828190	50.47	
То	otal		7584735	100	

Peak#	Re	et.time	Area	Area%	
	1	14.198	9821933	86.80	
	2	15.99	1493828	13.20	
Т	otal		11315761	100	

1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3b) (Table 3)

(*S*)-1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole [(*S*)-3b]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3b (66 mg, 94% isolated yield, 85% ee) as a colorless solid. [α]_D²⁰ = +75.7 (c 1.0, MeOH). Mp: 141–143 °C. IR: 2967 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) & 3.81 (3 H, s), 6.80 (1 H, d, *J* = 8.0 Hz), 7.08 (1 H, d, *J* = 7.0 Hz), 7.13 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.27 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.33–7.43 (3 H, m), 7.83 (1 H, d, *J* = 8.0 Hz), 7.89 (1 H, d, *J* = 8.0 Hz), 8.06 (1 H, d, *J* = 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) & 56.3, 110.4, 113.2, 116.3, 119.2, 121.1, 122.6, 123.4, 124.5, 128.2, 128.7, 131.4, 131.8, 137.2, 143.2, 153.7. HRMS (ESI, TOF) Calcd for C₁₈H₁₄BrN₂O [M+H]⁺: 353.0290. Found: 353.0285. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 5/1, 1.0 mL/min, 30 °C, 254 nm): 23.7 min (92%), 28.4 min (8%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3b]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (0.82 g, 4.0 mmol), 2-methoxynaphthalen boronic acid (2) (1.6 g, 8.0 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [40 mL, 1.0 mmol (Cu), 2.0 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3b as a colorless solid (1.0 g, 73% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 5/1, 1.0 mL/min, 30 °C, 254 nm): 23.5 min (52%), 27.6 min (48%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3b)

[PDA chromatograms]

12

3-7. Large scale synthesis of 3b

1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3b)

(*S*)-1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole [(*S*)-3b]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (0.49 g, 2.5 mmol), 2-methoxynaphthalene boronic acid (2a) (1.0 g, 5.0 mmol) and MnO₂ (2.2 g, 25 mmol) in the chiral Stock Solution (A) [25 mL, 0.63 mmol (Cu), 1.25 mmol (4j)] was stirred for 22 h at 25 °C in 100 mL recovery flask. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3b (0.77 g, 87% isolated yield, 86% ee) as a colorless solid. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 240 nm): 13.98 min (93%), 14.86 min (7%).

HPLC data of 1-(2-Methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3b) prepared in a large scale

[PDA chromatograms]

(*rac*)-**3b**

(S)-**3b**

1-(2-Methoxynaphthalen-1-yl)-2-methyl-benzo[d]imidazole (3c) (Table 3)

(*R*)-1-(2-Methoxynaphthalen-1-yl)-2-methyl-benzo[*d*]imidazole [(*R*)-3c]: Following the General Procedure I, a mixture of 2-methyl-benzimidazole (1c) (27 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*R*)-3c (50 mg, 86% isolated yield, 48% ee) as a pale yellow solid. $[\alpha]_D^{20} = -137.9$ (c 1.0, MeOH). Mp: 124–126 °C. IR: 2936 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 2.36 (3 H, s), 3.84 (3 H, s), 6.78 (1 H, d, *J* = 8.0 Hz), 7.07 (1 H, d, *J* = 8.0 Hz), 7.12 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.28 (1 H, m), 7.35–7.43 (2 H, m), 7.45 (1 H, d, *J* = 9.0 Hz), 7.83 (1 H, d, *J* = 8.0 Hz), 7.92 (1 H, d, *J* = 8.0 Hz), 8.06 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 13.7, 56.4, 110.2, 113.3, 116.8, 118.7, 121.4, 122.2, 122.5, 124.5, 128.23, 128.28, 129.0, 131.2, 131.4, 136.4, 142.3, 153.3, 153.4. HRMS (ESI, TOF) Calcd for C₁₉H₁₇N₂O [M+H]⁺: 289.1341. Found: 289.1330. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 10.47 min (26%), 12.97 min (74%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-methyl-benzo[*d*]imidazole [(*rac*)-3c]: Following the General Procedure II, a mixture of 2-methyl-benzimidazole (1c) (0.54 g, 4.0 mmol), 2-methoxynaphthalen boronic acid (2a) (1.6 g, 8.0 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [40 mL, 1.0 mmol (Cu), 2.0 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3c as a pale yellow solid (0.72 g, 62% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 10.53 min (50%), 13.32 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-methyl-benzo[d]imidazole (3c)

[PDA chromatograms]

(*R*)-3c

1-(2-Methoxymethylnaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3d) (Table 3)

(*S*)-1-(2-Methoxymethylnaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole [(*S*)-3d]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-methoxymethylnaphthalene boronic acid (2b) (93 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3d (57 mg, 74% isolated yield, 90% ee) as a colorless solid. $[\alpha]_D^{20}$ = +62.7 (c 1.0, CHCl₃). Mp: 144–145 °C. IR: 2941 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) &: 3.30 (3 H, s), 5.18 (2 H, s), 6.85 (1 H, d, *J* = 8.0 Hz), 7.12 (1 H, d, *J* = 8.0 Hz), 7.17 (1 H, dd, *J* = 7.0, 7.0 Hz), 7.30 (1 H, dd, *J* = 7.5 Hz), 8.07 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) &: 56.4, 94.6, 110.5, 115.9, 117.6, 119.3, 121.5, 122.8, 123.5, 125.0, 128.2, 129.5, 131.4, 131.7, 135.4, 143.3, 151.7. HRMS (ESI, TOF) Calcd for C₁₉H₁₆BrN₂O₂ [M+H]⁺: 383.0395. Found: 383.0385. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/*i*-PrOH = 98/2, 1.0 mL/min, 30 °C, 254 nm): 15.21 min (95%), 17.14 min (5%).

(*rac*)-1-(2-Methoxymethylnaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3d]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (49.3 mg, 0.25 mmol), 2-methoxymethylnaphthalen boronic acid (2b) (116 mg, 0.5 mmol) and MnO₂ (0.22 g, 2.5 mmol) in the Stock Solution (B) [2.0 mL, 0.063 mmol (Cu), 0.13 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3d with impurity (59% GC yield). This mixture was triturated to afford the pure titled compound (*rac*)-3d as a colorless solid (11 mg, 12% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®])

IB-N, hexane/*i*-PrOH = 98/2, 1.0 mL/min, 30 °C, 254 nm): 13.7 min (51%), 15.37 min (49%).

HPLC data of 1-(2-methoxymethylnaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3d)

[PDA chromatograms]

18

1-(2-Methoxymethylnaphthalen-1-yl)-2-chloro-benzo[d]imidazole (3e)

(*S*)-1-(2-Methoxymethylnaphthalen-1-yl)-2-chloro-benzo[*d*]imidazole [(*S*)-3e]: Following the General Procedure I, a mixture of 2-chloro-benzimidazole (1a) (31 mg, 0.20 mmol), 2-methoxymethylnaphthalene boronic acid (2b) (93 mg, 0.40 mmol) and MnO₂ (0.17 g, 20 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3e (47 mg, 80% isolated yield, 78% ee) as a colorless solid. $[\alpha]_D^{20}$ = +94.8 (c 1.0, CHCl₃). Mp: 162–163 °C. IR: 2917 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) &: 3.29 (3 H, s), 5.18 (2 H, s), 6.83 (1 H, d, *J* = 8.0 Hz), 7.14–7.21 (2 H, m), 7.32 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.40–7.48 (2 H, m), 7.63 (1 H, d, *J* = 9.0 Hz), 7.83 (1 H, d, *J* = 8.0 Hz), 7.93 (1 H, d, *J* = 7.5 Hz), 8.06 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) &: 56.3, 94.7, 110.4, 115.9, 116.9, 119.4, 121.4, 122.9, 123.5, 125.0, 128.21, 128.27, 129.5, 131.4, 131.7, 136.8, 142.0, 142.2, 151.7. HRMS (ESI, TOF) Calcd for C₁₉H₁₆ClN₂O₂ [M+H]⁺: 339.0900. Found: 399.0891. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 12.16 min (89%), 15.39 min (11%).

(*rac*)-1-(2-Methoxymethylnaphthalen-1-yl)-2-chloro-benzo[*d*]imidazole [(*rac*)-3e]: Following the General Procedure II, a mixture of 2-chloro-benzimidazole (1a) (38 mg, 0.25 mmol), 2methoxymethylnaphthalen boronic acid (2b) (0.11 g, mmol) and MnO₂ (0.22 g, 25 mmol) in the Stock Solution (B) [2.5 mL, 0.063 mmol (Cu), 1.3 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3e with impurity (47% GC yield). This mixture was triturated to afford the pure titled compound (*rac*)-3e as a colorless solid (10 mg, 12% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*- PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 12.08 min (50%), 15.26 min (50%).

HPLC data of 1-(2-methoxymethylnaphthalen-1-yl)-2-chloro-benzo[d]imidazole (3e)

Naphthalen-1-yl-2-bromo-benzo[d]imidazole (3f) (Table 3)

(*R*)-Naphthalen-1-yl-2-bromo-benzo[*d*]imidazole [(*S*)-3f]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 1-naphthalene boronic acid (2c) (69 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*R*)-3f (65 mg, quant, 52% ee) as a colorless solid. $[\alpha]_D^{20} = -52.9$ (c 1.0, MeOH). Mp: 124–125 °C. IR: 2931 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.86 (1 H, d, *J* = 8.0 Hz), 7.15–7.20 (2 H, m), 7.31 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.43 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.52–7.59 (2 H, m), 7.64 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.86 (1 H, d, *J* = 8.0 Hz), 8.00 (1 H, d, *J* = 8.0 Hz), 8.09 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 110.5, 119.3, 122.3, 123.0, 123.7, 125.4, 126.9, 127.0, 127.7, 128.5, 130.1, 130.4, 130.9, 131.6, 134.3, 137.9, 143.0. HRMS (ESI, TOF) Calcd for C₁₇H₁₂BrN₂ [M+H]⁺: 323.0184. Found: 323.0175. Rt: (DAICEL CHIRALPAK[®] IC, hexane/*i*-PrOH = 98/2, 1.0 mL/min, 30 °C, 254 nm): 24.90 min (76%), 26.36 min (24%).

(*rac*)-Naphthalen-1-yl-2-bromo-benzo[*d*]imidazole [(*rac*)-3f]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (0.82 g, 4.0 mmol), 1-naphthalene boronic acid (2c) (1.4 g, 8.0 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [40 mL, 1.0 mmol (Cu), 2.0 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3f as a colorless solid (1.0 g, 76% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] IC, hexane/*i*-PrOH = 98/2, 1.0 mL/min, 30 °C, 254 nm): 25.99 min (50%), 27.56 min (50%).

HPLC data of naphthalen-1-yl-2-bromo-benzo[d]imidazole (3f)

total	1435738	100

curn			neu	I IICu /0
	1	24.895	2937619	75.77
	2	26.375	940091	24.24
to	otal		3877710	100

Phenanthrene-1-yl-2-bromo-benzo[d]imidazole (3g) (Table 3)

(*R*)-Phenanthrene-1-yl-2-bromo-benzo[*d*]imidazole [(*R*)-3g]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), phenanthrene boronic acid (2d) (89 mg, 0.40 mmol) and MnO₂ (0.17 g, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*R*)-3g (31 mg, 42% isolated yield, 60% ee) as a colorless solid. $[\alpha]_D{}^{20} = -6.7$ (c 0.84, MeOH). Mp: 164–167 °C. IR: 3052 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.77 (1 H, d, *J* = 11.0 Hz), 6.93 (1 H, d, *J* = 10.0 Hz), 7.14–7.20 (2 H, m), 7.35 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.47–7.54 (2 H, m), 7.75 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.83–7.92 (4 H, m), 8.16 (1 H, d, *J* = 10.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 110.9, 119.5, 123.3, 124.0, 124.3, 126.5, 126.9, 127.2, 127.5, 127.6, 128.1, 128.9, 129.1, 129.8, 130.3, 131.5, 131.8, 133.2, 134.7, 136.7, 143.6. HRMS (ESI, TOF) Calcd for C₂₁H₁₄BrN₂O [M+H]⁺: 373.0340. Found: 373.0342. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/Et₂NH = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 12.22 min (80%), 14.84 min (20%).

(*rac*)-Phenanthrene-1-yl-2-bromo-benzo[*d*]imidazole [(*rac*)-3g]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (82 mg, 0.4 mmol), phenanthrene boronic acid (2d) (0.18 g, 0.80 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [4.0 mL, 0.10 mmol (Cu), 0.20 mmol ((\pm)-4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3g as a colorless solid (55 mg, 37 % isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/Et₂NH = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 12.31 min (50%), 14.95 min (50%).

HPLC data of phenanthrene -yl-2-bromo-benzo[d]imidazole (3g)

1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[d]imidazole (3h) (Table 3)

(*S*)-1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[*d*]imidazole [(*S*)-3h]: Following the General Procedure I, a mixture of 2-phenyl-benzimidazole (1d) (39 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3h (31 mg, 44% isolated yield, 52% ee) as a pale yellow oil. $[\alpha]_D^{20} = +47.8$ (c 1.0, MeOH). IR: 2929 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) & 3.58 (3 H, s), 6.82 (1 H, d, *J* = 8.0 Hz), 7.15–7.19 (3 H, m), 7.24 (1 H, d, *J* = 7.0 Hz), 7.30–7.36 (3 H, m), 7.39–7.44 (2 H, m), 7.54 (2 H, d, *J* = 8.0 Hz), 7.90–7.93 (1 H, m), 7.96 (1 H, d, *J* = 8.0 Hz), 8.01 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) & 110.8, 113.6, 118.7, 119.7, 121.8, 122.6, 123.0, 124.5, 128.0, 128.2, 128.3, 129.0, 129.3, 130.5, 131.0, 131.4, 137.4, 143.3, 153.0, 154.3. HRMS (ESI, TOF) Calcd for C₂₄H₁₉N₂O [M+H]⁺: 351.1497. Found: 351.1498. Rt: (DAICEL CHIRALPAK[®] IK-3, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 21.57 min (24%), 25.94 min (76%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[*d*]imidazole [(*rac*)-3h]: Following the General Procedure II, a mixture of 2-phenyl-benzimidazole (1d) (78 mg, 0.40 mmol), 2-methoxynaphthalen boronic acid (2a) (1.6 g, 8.0 mmol) and MnO₂ (0.35 g, 0.80 mmol) in the racemic Stock Solution (B) of [4.0 mL, 0.10 mmol (Cu), 0.20 mmol ((\pm)-4j)]was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3h as a colorless solid (56 mg, 40% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] IK-3, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 21.54 min (50%), 26 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-phenyl-benzo[d]imidazole (3h)

(S)-**3h**

2700000 1400000 uAU uAU 1200000 2200000 1000000 1700000 800000 1200000 600000 400000 700000 200000 200000 0 -200000 -300000 19 21 23 25 27 29 19 21 23 25 min Peak# Ret. Time Area Peak# Ret. Time Area Area% 1 21.57 23420609 49.6 1 21.54 40655573

50.4

100

[PDA chromatograms]

2

total

26 41391469

82047042

(*rac*)-**3h**

2

total

27

25.94 74005726

97426335

29

min

Area%

24

76

100

1-(2-Methoxynaphthalen-1-yl)-2-thiomrthyl-benzo[d]imidazole (3i) (Table 3)

(*S*)-1-(2-Methoxynaphthalen-1-yl)-2-thiomethyl-benzo[*d*]imidazole [(*S*)-3i]: Following the General Procedure I, a mixture of 2-thiomethyl-benzimidazole (1e) (34 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*S*)-3i (51 mg, 80% isolated yield, 46% ee) as a colorless solid. $[\alpha]_D^{20}$ = +30.1 (c 0.92, MeOH). Mp: 139–142 °C. IR: 2930 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) &: 2.73 (3 H, s), 3.86 (3 H, s), 6.77 (1 H, d, *J* = 8.0 Hz), 7.07–7.14 (2 H, m), 7.26 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.37–7.43 (2 H, m), 7.45 (1 H, d, *J* = 9.0 Hz), 7.82 (1 H, d, *J* = 8.0 Hz), 7.89–7.92 (1 H, m), 8.06 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) &: 14.4, 56.6, 109.4, 113.6, 116.0, 118.0, 121.6, 121.9, 122.0, 124.5, 128.0, 128.2, 129.0, 131.6, 137.9, 143.8, 154.1, 155.0. HRMS (ESI, TOF) Calcd for C₁₉H₁₇N₂OS [M+H]⁺: 321.1062. Found: 321.1046. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 16.11 min (27%), 19.66 min (73%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-thiomethyl-benzo[*d*]imidazole [(*rac*)-3i]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1e) (26 mg, 0.16 mmol), 2methoxynaphthalen boronic acid (2a) (65 mg, 0.32 mmol) and MnO₂ (0.14 g, 1.6 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3i as a colorless solid (28 mg, 54% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 30 °C, 254 nm): 15.63 min (49%), 19.09 min (51%). HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-thiomethyl-benzo[d]imidazole (3i)

1-(2-Chlorophenyl-1-yl)-2-bromo-benzo[d]imidazole (3j) (Table 3)

(-)-1-(2-Chlorophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3j]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-chlorophenyl boronic acid (2e) (64 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3j (62 mg, quant, 80% ee) as a pale yellow oil. $[\alpha]_D^{20} = -11.2$ (c 0.98, MeOH). IR: 3059 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.97 (1 H, d, *J* = 8.0 Hz), 7.24 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.30 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.42 (1 H, d, *J* = 8.0 Hz), 7.49 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.55 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.65 (1 H, d, *J* = 8.0 Hz), 7.79 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 110.1, 119.4, 123.1, 123.8, 128.1, 129.9, 130.5, 130.8, 131.3, 132.9, 133.5, 136.7, 143.0. HRMS (ESI, TOF) Calcd for C₁₃H₉BrClN₂ [M+H]⁺: 306.9638. Found: 306.9634. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 8.9 min (90%), 10.3 min (10%).

(*rac*)-1-(2-Chlorophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3j]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2chlorophenyl boronic acid (2e) (64 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3j (48 mg, 77% isolated yield) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 8.7 min (50%), 10.01 min (50%).

1-(2-Bromophenyl-1-yl)-2-bromo-benzo[d]imidazole (3k) (Table 3)

(-)-1-(2-Bromophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3k]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-bromophenyl boronic acid (2f) (80 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3k (70 mg, quant, 80% ee) as a pale yellow oil. $[\alpha]_D^{20} = -12.5$ (c 0.94, MeOH). IR: 3057 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.97 (1 H, d, *J* = 8.0 Hz), 7.25 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.31 (1 H, dd, *J* = 8.5, 8.5 Hz), 7.43(1 H, d, *J* = 8.0 Hz), 7.48 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.55 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.79 (1 H, d, *J* = 8.0 Hz), 7.83 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 110.2, 119.4, 123.1, 123.5, 123.8, 128.9, 129.8, 130.6, 131.6, 134.0, 134.6, 136.7, 143.0. HRMS (ESI, TOF) Calcd for C₁₃H₉Br₂N₂ [M+H]⁺: 350.9132. Found: 350.9127. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 19.67 min (10%), 20.87 min (90%).

(*rac*)-1-(2-Bromophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3k]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-chlorophenyl boronic acid (2f) (80 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3k (70 mg, quant) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 21.56 min (50%), 23.24 min (50%).

1-(2-Iodophenyl-1-yl)-2-bromo-benzo[d]imidazole (3l) (Table 3)

(-)-1-(2-Iodophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3l]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-iodophenyl boronic acid (2g) (101 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3l (80 mg, quant, 80% ee) as a pale yellow oil. $[\alpha]_D^{20} = -19.8$ (c 1.1, MeOH). IR: 3055 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.94 (1 H, d, *J* = 8.0 Hz), 7.24 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.28–7.32 (2 H, m), 7.38 (1 H, d, *J* = 8.0 Hz), 7.57 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.79 (1 H, d, *J* = 8.0 Hz), 8.05 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 98.8, 110.3, 119.4, 123.1, 123.8, 129.5, 129.7, 129.9, 131.5, 136.4, 138.1, 140.3, 142.9. HRMS (ESI, TOF) Calcd for C₁₃H₉BrIN₂ [M+H]⁺: 398.8994. Found: 398.8987. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 10.17 min (90%), 13.45 min (10%).

(*rac*)-1-(2-Iodophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3l]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-iodophenyl boronic acid (2e) (101 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3l (80 mg, quant) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 10.04 min (51%), 12.68 min (49%).

HPLC data of 1-(2-iodophenyl-1-yl)-2-bromo-benzo[d]imidazole (3l)

1-(2-Trifluorophenyl-1-yl)-2-bromo-benzo[d]imidazole (3m) (Table 3)

(-)-1-(2-Trifluorophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3m]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-trifluorophenyl boronic acid (2h) (78 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3m (16 mg, 23% isolated yield, 86% ee) as a pale yellow oil. $[\alpha]_D^{20} = -2.8$ (c 0.79, MeOH). IR: 3058 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.85 (1 H, d, *J* = 8.0 Hz), 7.14–7.25 (2 H, m), 7.31 (1 H, d, *J* = 7.5 Hz), 7.67–7.75 (3 H, m), 7.87 (1 H, d, *J* = 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 110.4, 119.3, 122.5 (q, *J* = 273.5 Hz), 123.1, 123.8, 127.8 (q, *J* = 5.0 Hz), 129.5 (q, *J* = 31.5 Hz), 130.5, 130.7, 131.7, 133.2, 133.5, 138.2, 142.9. ¹⁹F NMR (471 MHz, CDCl₃) δ : -60.7. HRMS (ESI, TOF) Calcd for C₁₄H₉BrF₃N₂ [M+H]⁺: 340.9901. Found: 340.9892. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 7.6 min (7%), 8.99 min (93%).

(*rac*)-1-(2-Trifluorophenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3m]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-trifluorophenyl boronic acid (2h) (78 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3m (65 mg, 93% isolated yield) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 7.56 min (51%), 9.08 min (49%).

HPLC data of 1-(2-trifluorophenyl-1-yl)-2-bromo-benzo[d]imidazole (3m)

1-(2-Isopropylphenyl-1-yl)-2-bromo-benzo[d]imidazole (3n) (Table 3)

(-)-1-(2-Isopropylphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3n]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-isopropylphenyl boronic acid (2i) (67 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3n (28 mg, 44% isolated yield, 80% ee) as a colorless solid. $[\alpha]_D{}^{20} = -30.7$ (c 1.0, MeOH). Mp: 87–88 °C. IR: 2960 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 0.98 (3 H, d, *J* = 7.0 Hz), 1.11 (3 H, d, *J* = 7.0 Hz), 2.36–2.43 (1 H, m), 6.87 (1 H, d, *J* = 8.0 Hz), 7.11–7.24 (3 H, m), 7.30 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.47–7.53 (2 H, m), 7.71 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 23.4, 24.0, 28.1, 110.3, 119.3, 122.9, 123.6, 127.1, 127.2, 129.0, 130.7, 130.8, 132.7, 137.7, 143.0, 147.5. HRMS (ESI, TOF) Calcd for C₁₃H₁₆BrN₂ [M+H]⁺: 315.0497. Found: 315.0485. Rt: (DAICEL CHIRALPAK[®] ID-3, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 6.92 min (90%), 7.3 min (10%).

(*rac*)-1-(2-Isopropylphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3n]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (21 mg, 0.10 mmol), 2-isopropylphenyl boronic acid (2i) (34 mg, 0.20 mmol) and MnO₂ (87 mg, 1.0 mmol) in the Stock Solution (B) [1.0 mL, 0.025 mmol (Cu), 0.05 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3n (27 mg, 88% isolated yield) as a colorless solid. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] ID-3, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 7.28 min (50%), 7.85 min 50%).

HPLC data of 1-(2-isopropylphenyl-1-yl)-2-bromo-benzo[d]imidazole (3n)

[PDA chromatograms]

38

1-(2-Benzyloxyphenyl-1-yl)-2-bromo-benzo[*d*]imidazole (30) (Table 3)

(-)-1-(2-Benzyloxylphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3o]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-benzyloxyphenyl boronic acid (2j) (91 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3o (76 mg, quant, 60% ee) as a pale yellow oil. $[\alpha]_D^{20} = -4.91$ (c 0.94, MeOH). IR: 3062 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 4.96 (1 H, d, *J* = 12.5 Hz), 5.00 (1 H, d, *J* = 12.5 Hz), 6.95 (1 H, d, *J* = 8.0 Hz), 7.02–7.05 (2 H, m), 7.07–7.09 (2 H, m), 7.12–7.22 (5 H, m), 7.28 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.42 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.70 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 70.3, 110.4, 114.1, 119.1, 121.3, 122.7, 123.4, 124.2, 126.7, 127.9, 128.5, 129.8, 130.9, 131.2, 135.9, 137.3, 143.0, 154.5. HRMS (ESI, TOF) Calcd for C₂₀H₁₆BrN₂ [M+H]⁺: 379.0446. Found: 379.0448. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 10.15 min (80%), 11.87 min (20%).

(*rac*)-1-(2-Benzyloxyphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3o]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (0.41 g, 2.0 mmol), 2-benzyloxyphenyl boronic acid (2j) (0.91 g, 4.0 mmol) and MnO₂ (1.7 g, 20 mmol) in the Stock Solution (B) [20 mL, 0.50 mmol (Cu), 1.0 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3o (0.28 g, 37% isolated yield) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 10.59 min (50%), 12.27 min (50%).

HPLC data of 1-(2-benzyloxyphenyl-1-yl)-2-bromo-benzo[d]imidazole (30)

1-(2-Methylphenyl-1-yl)-2-bromo-benzo[d]imidazole (3p) (Table 3)

(-)-1-(2-Methylphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(-)-3p]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-methylphenyl boronic acid (2k) (91 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (-)-3p (76 mg, quant, 56% ee) as a pale yellow oil. $[\alpha]_D^{20} = -4.91$ (c 0.94, MeOH). IR: 3054 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 2.01 (3 H, s), 6.95 (1 H, d, *J* = 8.0 Hz), 7.21–7.31 (3 H, m), 7.38–7.51 (3 H, m), 7.79 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 17.4, 110.2, 119.3, 122.9, 123.6, 127.3, 128.8, 130.1, 131.4, 134.1, 136.8, 136.9, 143.1. HRMS (ESI, TOF) Calcd for C₁₄H₁₂BrN₂ [M+H]⁺: 287.0184. Found: 287.0174. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 6.96 min (78%), 7.56 min (22%).

(*rac*)-1-(2-Methylphenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3p]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-methylphenyl boronic acid (2k) (91 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.05 mmol (Cu), 0.1 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3p (36 mg, 63% isolated yield) as a pale yellow oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 6.72 min (50%), 7.26 min (50%).

1-(2-Methoxy-2-methyl-phenyl-1-yl)-2-bromo-benzo[*d*]imidazole (3q) (Table 3)

(+)-1-(2-Methoxy-2-methyl-phenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(+)-3q]: Following the General Procedure I, a mixture of 2-bromo-benzimidazole (1b) (41 mg, 0.20 mmol), 2-methoxy-2-methyl-phenyl boronic acid (2l) (66 mg, 0.40 mmol) and MnO₂ (0.17 g, 20 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (+)-3q (63 mg, quant, 70% ee) as a colorless oil. $[\alpha]_D^{20} = +11.9$ (c 1.1, MeOH). IR: 2938 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.92 (3 H, s), 3.61 (3 H, s), 6.85 (1 H, d, *J* = 8.0 Hz), 6.85 (1 H, d, *J* = 8.0 Hz), 6.92 (1 H, d, *J* = 8.0 Hz), 7.13 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.17–7.21 (2 H, m), 7.35 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.70 (1 H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 17.4, 55.8, 109.5, 110.0, 119.2, 122.5, 122.7, 123.4, 130.8, 131.0, 136.4, 138.5, 143.3, 156.1. HRMS ESI, TOF) Calcd for C₁₅H₁₄BrN₂O [M+H]⁺: 317.0290. Found: 317.0278. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/*i*-PrOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 7.31 min (85%), 8.98 min (15%).

(*rac*)-1-(2-Methoxy-2-methyl-phenyl-1-yl)-2-bromo-benzo[*d*]imidazole [(*rac*)-3q]: Following the General Procedure II, a mixture of 2-bromo-benzimidazole (1b) (51 mg, 0.25 mmol), 2methoxy-2-methyl-phenyl boronic acid (2l) (83 mg, 0.5 mmol) and MnO₂ (0.22 g, 25 mmol) in the Stock Solution (B) [2.5 mL, 0.063 mmol (Cu), 0.13 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3q (67 mg, 84% isolated yield) as a colorless oil. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/*i*-PrOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 7.29 min (50%), 8.96 min (50%).

HPLC data of 1-(2-methoxy-2-methyl-phenyl-1-yl)-2-bromo-benzo[d]imidazole (3q)

1-(2-Methoxynaphthalen-1-yl)-2-chloro-[d]imidazole (3r) (Table 3)

(+)-1-(2-Methoxynaphthalen-1-yl)-2-chloro-[*d*]imidazole [(+)-3r]: Following the General Procedure I, a mixture of 2-chloro-imidazole (1f) (21 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (+)-3r (52 mg, quant, 62% ee) as a colorless solid. $[\alpha]_D^{20} = +24.2$ (c 1.0, MeOH). Mp: 72–75 °C. IR: 2940 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 3.92 (3 H, s), 7.03 (1 H, brd, *J* = 1.0 Hz), 7.21–7.24 (2 H, m), 7.38–7.44 (2 H, m), 7.48 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.87 (1 H, d, *J* = 8.0 Hz), 8.01 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 56.3, 113.0, 117.6, 120.8, 123.3, 124.3, 127.9, 128.1, 128.4, 128.5, 131.2, 131.3, 133.8, 152.8. HRMS (ESI, TOF) Calcd for C₁₄H₁₂ClN₂O [M+H]⁺: 259.0638. Found: 259.0625. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 17.59 min (81%), 20.34 min (19%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)- 2-chloro-[*d*]imidazole [(*rac*)-3r]: Following the General Procedure II, a mixture of 2-chloro-imidazole (1f) (0.21 g, 2.0 mmol), 2-methoxynaphthalene boronic acid (2a) (0.81 g, 4.0 mmol) and MnO₂ (1.74 g, 20 mmol) in the Stock Solution (B) [20 mL, 0.50 mmol (Cu), 1.0 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (*rac*)-3r (0.20 g, 38% isolated yield) as a colorless solid. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.5, 1.0 mL/min, 30 °C, 254 nm): 16.31 min (50%), 18.22 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-chloro-[d]imidazole (3r)

1-(2-Methoxynaphthalen-1-yl)-2-bromo-[d]imidazole (3s) (Table 3)

(+)-1-(2-Methoxynaphthalen-1-yl)-2-bromo-[*d*]imidazole [(+)-3s]: Following the General Procedure I, a mixture of 2-bromo-imidazole (1g) (30 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (+)-3s (59 mg, 97% isolated yield, 76% ee) as a pale yellow solid. $[\alpha]_D^{20} = +15.6$ (c 1.0, MeOH). Mp: 104–105 °C. IR: 2941 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 3.91 (3 H, s), 7.08 (1 H, brs), 7.18 (1 H, dd, *J* = 8.5 Hz), 7.26 (1 H, brs), 7.37–7.43 (2 H, m), 7.47 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.86 (1 H, d, *J* = 8.0 Hz), 8.01 (1 H, d, *J* = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 56.5, 113.1, 118.6, 121.1, 121.8, 124.4, 124.5, 128.0, 128.2, 128.5, 130.3, 131.4, 152.9. HRMS (ESI, TOF) Calcd for C₁₄H₁₂BrN₂O [M+H]⁺: 303.0133. Found: 303.0121. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 9.65 min (88%), 10.6 min (12%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-bromo-[*d*]imidazole [(*rac*)-3s]: Following the General Procedure II, a mixture of 2-bromo-imidazole (1g) (30 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (*rac*)-3s (38 mg, 63% isolated yield) as a pale yellow solid. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 9.71 min (50%), 10.6 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-bromo-[d]imidazole (3s)

1-(2-Methoxynaphthalen-1-yl)-2-iodo-[d]imidazole (3t) (Table 3)

(+)-1-(2-Methoxynaphthalen-1-yl)-2-iodo-[d]imidazole [(+)-3t]: Following the General Procedure I, a mixture of 2-iodo-imidazole (1h) (40 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (0.17 g, 20 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (+)-**3t** (64 mg, 91% isolated yield, 62% ee) as a pale vellow solid. $[\alpha]_D^{20} = +12.2$ (c 1.0, MeOH). Mp: 124–127 °C. IR: 2936 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ: 3.92 (3 H, s), 7.12 (1 H, d, J = 8.0 Hz), 7.15 (1 H, brs), 7.32 (1 H, brs), 7.38–7.41 (2 H, m), 7.47 (1 H, dd, J = 7.5, 7.5 Hz), 7.87 (1 H, d, J = 8.0 Hz), 8.03 (1 H, d, J = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 56.5, 93.0, 113.1, 119.9, 121.3, 124.5, 125.5, 128.0, 128.2, 128.5, 131.4, 131.6, 132.7, 153.0. HRMS (ESI, TOF) Calcd for C₁₄H₁₂IN₂O [M+H]⁺: 350.9994. Found: 350.9982. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 12 min (81%), 13.69 min (19%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-iodo-[*d*]imidazole [(*rac*)-3t]: Following the General Procedure II, a mixture of 2-iodo-imidazole (1h) (40 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (B) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (*rac*)-3t (11 mg, 16% isolated yield) as a pale yellow solid. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] AD-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 12.04 min (50%), 13.66 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-iodo-[d]imidazole (3t)

1-(2-Methoxynaphthalen-1-yl)-2-trifluoro-[d]imidazole (3u)

(+)-1-(2-Methoxynaphthalen-1-yl)-2-trifluoro-[*d*]imidazole [(+)-3u]: Following the General Procedure I, a mixture of 2-trifluoro-imidazole (1i) (28 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4j)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (+)-3u (64 mg, 91% isolated yield, 64% ee) as a pale yellow solid. $[\alpha]_D^{20} = +13.0$ (c 1.0, MeOH). Mp: 78–79 °C. IR: 2944 cm^{-1. 1}H NMR (400 MHz, CDCl₃) δ : 3.91 (3 H, s), 7.08 (1 H, brd, J = 1.5 Hz), 7.11 (1 H, d, J = 8.0 Hz), 7.37–7.44 (3 H, m), 7.48 (1 H, dd, J = 7.5, 7.5 Hz), 7.87 (1 H, d, J = 8.0 Hz), 8.02 (1 H, d, J = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 56.3, 112.7, 117.7, 118.6 (q, J = 270.0 Hz), 120.7, 124.5, 1225.5, 127.9, 128.3, 129.1, 131.4, 131.7, 137.4 (q, J = 39.5 Hz), 152.8. ¹⁹F NMR (471 MHz, CDCl₃) δ : –62.7. HRMS (ESI, TOF) Calcd for C₁₅H₁₂F₃N₂O [M+H]⁺: 293.0902. Found: 293.0892. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/EtOH/DEA = 98/2/0.1, 1.0 mL/min, 30 °C, 254 nm): 11.1 min (82%), 12.0 min (18%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-2-iodo-[*d*]imidazole [(*rac*)-3u]: Following the General Procedure II, a mixture of 2-iodo-imidazole (1h) (68 mg, 0.50 mmol), 2-trifluoro-imidazole (1i) (0.20 g, 1.0 mmol) and MnO₂ (0.44 g, 5.0 mmol) in the Stock Solution (B) [5.0 mL, 0.13 mmol (Cu), 0.25 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford the titled compound (*rac*)-3u (150 mg, 85% isolated yield) as a pale yellow solid. ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/EtOH/DEA = 98/2/0.1, 1.0 mL/min, 30 °C, 254 nm): 10.99 min (50%), 11.88 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)- 2-trifluoro-[d]imidazole (3u)

1-(2-Methoxynaphthalen-1-yl)-benzo[d]imidazole (3w)

(S)-1-(2-Methoxynaphthalen-1-yl)-benzo[d]imidazole [(*S*)-3w]: Following the General Procedure I, a mixture of benzimidazole (1) (24 mg, 0.20 mmol), 2-methoxynaphthalene boronic acid (2a) (81 mg, 0.40 mmol) and MnO₂ (174 mg, 2.0 mmol) in the Stock Solution (A) [2.0 mL, 0.050 mmol (Cu), 0.10 mmol (4i)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (S)-3w (53 mg, quant, 6% ee) as a colorless solid. $[\alpha]_D^{20} = +16.7$ (c 1.0, MeOH). Mp: 155–156 °C. IR: 2931 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ: 3.84 (3 H, s), 6.96 (1 H, d, *J* = 8.0 Hz), 7.19–7.24 (2 H, m), 7.34 (1 H, dd, J = 7.5, 7.5 Hz), 7.37–7.42 (2 H, m), 7.45 (1 H, d, J = 9.0 Hz), 7.91 (1 H, d, J = 8.0 Hz), 7.95 (1 H, d, J = 8.0 Hz), 8.03–8.06 (2 H, m). ¹³C NMR (100 MHz, CDCl₃) δ : 56.5, 110.8, 113.3, 117.3, 120.2, 121.6, 122.3, 123.2, 124.5, 128.0, 128.1, 128.8, 131.0, 131.5, 135.2, 143.3, 144.7, 153.2. HRMS (ESI, TOF) Calcd for C₁₈H₁₅N₂O [M+H]⁺: 275.1184. Found: 275.1182. Rt: (DAICEL-CHIRALPAK[®] IB-N, hexane/*i*-PrOH = 5/1, 1.0 mL/min, 30 °C, 254 nm): 8.9 min (53%), 15.8 min (47%).

(*rac*)-1-(2-Methoxynaphthalen-1-yl)-benzo[*d*]imidazole [(*rac*)-3w]: Following the General Procedure II, a mixture of benzimidazole (1) (0.48 g, 4.0 mmol), 2-methoxynaphthalen boronic acid (2a) (1.6 g, 8.0 mmol) and MnO₂ (3.5 g, 40 mmol) in the Stock Solution (B) [4.0 mL, 0.10 mmol (Cu), 0.20 mmol (TMEDA)] was stirred for 22 h at 25 °C. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the titled compound (*rac*)-3w as a colorless solid (1.1 g, 99% isolated yield). ¹H NMR spectra was identical with chiral one shown above. Rt: (DAICEL CHIRALPAK[®] IB-N, hexane/*i*-PrOH = 5/1, 1.0 mL/min, 30 °C, 254 nm): 9.0 min (5%), 16.4 min (47%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-benzo[d]imidazole (3w)

4. Transformation of 1-(2-methoxynaphthalen-1-yl)-2-bromo-benzo[*d*]imidazole (3b) prepared by the asymmetric Chan-Lam coupling

4-1. Recrystallization of 1-(2-methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole (3b):

3b, 85% ee (0.77 g, 2.2 mmol) and hexane (20 mL) were charged in a 50 mL recovery flask. The suspension was heated at 70 °C and EtOAc (10 mL) was added dropwise into the flask at 70 °C until the suspension became a clear solution. The mixture was gradually cooled to room temperature and left overnight. The mixture was filtered to afford **3b**, >99% ee (0.42 mg, 55%) as a colorless solid.

HPLC data of (S)-1-(2-methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole, [(S)-3b] after the recrystallization

[PDA chromatograms]

(*rac*)-**3b**

(S)-**3b**

4-2. Suzuki coupling

(S)-1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[d]imidazole [(S)-3h]:

(*S*)-**3b**, >99% ee (35 mg, 0.10 mmol), phenyl boronic acid (24 mg, 0.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 %), *n*-Bu(*t*-Bu)₂P·HBF₄ (3.6 mg, 12.5 %) and *t*-BuONa (13 mg, 0.15 mmol) were added to an oven-dried Schlenk flask. The flask was equipped with a rubber septum and evacuated and back-filled with nitrogen (this process was repeated three times). After anhydrous toluene (1.0 mL) was added via a syringe, the septum was replaced with a Teflon screw cap under a flow of nitrogen and the cap was tightly closed. The reaction mixture was stirred for 3 h at 130 °C and passed through Celite with EtOAc. The filtrate was concentrated in vacuo. The purification of the crude product with a silica gel (hexane/EtOAc = 1:1) to afford the titled compound (*S*)-**3h** (43 mg, quant, 98% ee) as colorless solid. [α]_D²⁰ = +68.7 (c 1.0, MeOH). Mp: 78–79 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.57 (3 H, s), 6.81 (1 H, d, *J* = 8.0 Hz), 7.14–7.18 (3 H, m), 7.22–7.26 (1 H, m), 7.29–7.35 (3 H, m), 7.39–7.43 (2 H, m), 7.53 (2 H, d, *J* = 7.5 Hz), 7.89–7.92 (1 H, m), 7.95 (1 H, d, *J* = 8.0 Hz), 8.00 (1 H, d, *J* = 9.0 Hz). Rt: (DAICEL CHIRALPAK[®] IK-3, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 21.5 min (0.9%), 25.9 min (99.1%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-phenyl-benzo[*d*]imidazole (3h) prepared by the Suzuki coupling

1	21.54	40655573	49.55	1	21.55	612369	0.85
2	25.963	41391469	50.45	2	25.907	67792268	99.15
total		82047042	100	total		68404637	100

4-3. Sonogashira coupling

(S)-1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[d]imidazole [(S)-3v]:

(S)-3b, >99% ee (71 mg, 0.20 mmol), CuI (11 mg, 0.060 mmol) and Pd(PPh₃)₄ (23 mg, 0.020 mmol) were charged in an oven-dried Schlenk flask. The flask was equipped with a rubber septum and evacuated and back-filled with nitrogen (this process was repeated three times). After ethynyl benzene (66 µL, 0.60 mmol), triethylamine (83 µL, 0.60 mmol) and anhydrous CH₃CN (1.0 mL) was added to the flask, the septum was replaced with a Teflon screw cap under a flow of nitrogen and the cap was tightly closed. The reaction mixture was stirred for 10 h at 70 °C and passed through Celite with EtOAc. The filtrate was concentrated in vacuo. The purification of the crude product with a silica gel (hexane/EtOAc = 4:1) to afford the titled compound (S)-3v (46 mg, 61%) isolated yield, >99% ee) as colorless solid. $[\alpha]_D^{20} = -56.3$ (c 0.84, MeOH). Mp: 95–97 °C. IR: 2218, 2924 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ: 3.85 (3 H, s), 6.92 (1 H, d, *J* = 8.0 Hz), 7.06–7.08 (2 H, m), 7.17–7.20 (2 H, m), 7.22–7.27 (3 H, m), 7.34–7.43 (3 H, m), 7.48 (1 H, d, J = 9.0 Hz), 7.92– 7.94 (2 H, m), 8.09 (1 H, d, J = 9.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 56.5, 79.5, 93.6, 110.7, 113.4, 117.0, 120.1, 121.2, 121.8, 123.0, 124.1, 124.4, 127.9, 128.1, 128.2, 128.8, 129.2, 131.3, 131.5, 131.7, 135.8, 138.7, 143.1, 153.6. HRMS (ESI, TOF) Calcd for C₂₆H₁₉N₂O [M+H]⁺: 375.1497. Found: 375.1497. Rt: (DAICEL CHIRALCEL® OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 8.5 min (<0.5%), 10.2 min (>99.5%).

(rac)-1-(2-Methoxynaphthalen-1-yl)-2-phenyl-benzo[d]imidazole [(rac)-3v]:

(*rac*)-**3b** (71 mg, 0.20 mmol), CuI (11 mg, 0.060 mmol) and Pd(PPh₃)₄ (23 mg, 0.020 mmol) were added to an oven-dried Schlenk flask. The flask was equipped with a rubber septum and evacuated

and back-filled with nitrogen (this process was repeated three times). After ethynyl benzene (66 μ L, 0.60 mmol), triethylamine (83 μ L, 0.60 mmol) and anhydrous CH₃CN (1.0 mL) was added to the flask, the septum was replaced with a Teflon screw cap under a flow of nitrogen and the cap was tightly closed. The reaction mixture was stirred for 10 h at 70 °C and passed through Celite with EtOAc. The filtrate was concentrated in vacuo. The purification of the crude product with a silica gel (hexane/EtOAc = 4:1) to afford the titled compound (*rac*)-**3v** (46 mg, 61% isolated yield) as colorless solid. Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 30 °C, 254 nm): 8.5 min (50%), 10.2 min (50%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-phenyl-benzo[*d*]imidazole (3v) prepared by the Sonogashira coupling

Peak#	Ret. '	Time Are	a Are	ea%	Peak#	Ret.	Time	Area	Area%
	1	9.573	26810	49.86	1		8.465	3466	0.47
	2 1	1.768	26963	50.14	2	2	10.18	731848	99.53
tot	al		53773	100	tota	l		3877710	100

4-4. Reductive dehalogenation

(S)-1-(2-Methoxynaphthalen-1-yl)-benzo[d]imidazole [(S)-3w]:

To a test tube were added (*S*)-**3b**, >99% ee (35 mg, 0.10 mmol), 10% Pd/C (7.1 mg, 10wt%, 0.060 mmol), triethylamine (84 μ L, 0.60 mmol). After MeOH (2.0 mL) was added to the test tube, the mixture was evacuated and backfilled with H₂ (This operation was repeated three times). The reaction mixture was stirred under H₂ atmosphere (balloon) at 25 °C for 1 h and passed through Celite with EtOAc. To the obtained mixture was poured water (ca. 10 mL) and EtOAc (*ca.* 40 mL), and then the aqueous phase was washed three times with EtOAc. The EtOAc solution was washed with brain, dried over anhydrous magnesium sulfate, and evaporated to afford the titled compound (*S*)-**3w** (64 mg, quant, 96% ee) as a colorless solid. $[\alpha]_D^{20} = +95.5$ (c 1.0, MeOH). Mp: 158–160 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.84 (3 H, s), 6.96 (1 H, d, *J* = 8.0 Hz), 7.19–7.24 (2 H, m), 7.34 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.37–7.43 (2 H, m), 7.45 (1 H, d, *J* = 9.0 Hz), 7.91 (1 H, d, *J* = 8.0 Hz), 7.95 (1 H, d, *J* = 8.0 Hz), 8.03–8.05 (2 H, m). Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/*i*-PrOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 14.9 min (98%), 23.9 min (2%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-benzo[*d*]imidazole (3w) prepared by the reductive debromination using Pd/C

[PDA chromatograms]

63

4-5. Metallative methylation

(S)-1-(2-Methoxynaphthalen-1-yl)-2-methyl-benzo[d]imidazole [(S)-3c]:

(*S*)-**3b**, >99% ee (26 mg, 0.075 mmol) and anhydrous THF (1.0 mL) were charged in a 20 mL flask. After stirring for 15 min at -78 °C, *n*-butyllithium (ca. 2.6 mol/L in hexane) (34 µL, 0.090 mol) was added dropwise into the flask and stirred for 1 h at -78 °C. Iodomethane (11 µL, 0.11 mmol) was added dropwisely to the mixture at -78 °C and stirred overnight at room temperature. To the reaction mixture was added water (0.50 mL) and ethylenediamine (0.50 mL), and the reaction mixture was stirred at room temperature for 15 min. To the obtained mixture was poured EtOAc (10 mL), and then the aqueous phase was washed three times with EtOAc. The combined organic phases was washed with brain and evaporated. The purification of the crude product with a silica gel (hexane/EtOAc = 2:1) to afford the titled compound. The mixture was evaporated to afford the titled compound (*S*)-**3c** (14 mg, 67 % isolated yield, 99% ee) as a colorless solid. [α]_D²⁰ = +115.2 (c 0.60, MeOH). Mp: 29–30 °C. ¹H NMR (400 MHz, CDCl₃) &: 2.36 (3 H, s), 3.85 (3 H, s), 6.78 (1 H, d, *J* = 8.0 Hz), 7.08 (1 H, d, *J* = 8.5 Hz), 7.13 (1 H, dd, *J* = 7.5, 7.5 Hz), 7.28 (1 H, dd, *J* = 8.0, 8.0 Hz), 7.37–7.44 (2 H, m), 7.47 (1 H, d, *J* = 9.0 Hz), 7.83 (1 H, d, *J* = 8.0 Hz), 7.93 (1 H, d, *J* = 8.5 Hz). Rt: (DAICEL CHIRALCEL[®] OJ-H, hexane/EtOH/DEA = 90/10/0.1, 1.0 mL/min, 30 °C, 254 nm): 8.2 min (>99%), 10.14 min (<0.5%).

HPLC data of 1-(2-methoxynaphthalen-1-yl)-2-methyl-benzo[*d*]imidazole (3c) prepared by the metallative methylation

[PDA chromatograms]

65

5. X-ray data of (S)-1-(2-methoxynaphthalen-1-yl)-2-bromo-benzo[d]imidazole, (S)-3b:

X-ray diffraction data of (*S*)-**3b** was collected on a Rigaku XtaLAB P100 diffractometer diffratometer employing graphite-monochromated Mo K α radiation and. The structures was solved by direct method with SIR-92 program^[15] and refined with SHELXL program^{.[16]} The structural models were drawn with ORTEP-3 program^{.[17]} Further information on the crystal structure determinations have been deposited with the Cambridge Crystallographic Data Center [(*S*)-**3b**: CCDC 2296508]. Figure S1 shows the ORTEP drawing of (*S*)-**3b**.

(S)-**3b**

Fig. S1 X-ray structure of compound (*S*)-**3b** (thermal ellipsoid plot at the 50% probability level)

Compound	(S) -3b
Empirical	C II D-NO
formula	$C_{18}H_{13}Brin_{2}O$
Formula weight	353.22
Temperature (K)	100
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a (Å)	7.0262 (11)
<i>b</i> (Å)	9.2338 (14)
<i>c</i> (Å)	24.100 (4)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	1563.5 (4)
Ζ	4
D_{calcd} (g/cm ³)	1.500
R_1	0.0277
wR_2	0.0543
Goodness-of-fit	0.922

 Table S3. Crystallographic data and structural refinement for compound (S)-3b

6. Rotational barrier of (S)-3w

Equation 1. $\Delta G = -RT \ln(kh/k_BT)$

Equation 2. $t_1/2 = \ln(2)/k$

Equation 3. $k = k_{rac} / 2$

Fig. S2 Formula of rotational barrier

Fig. S3 Decay of ee (%) in (*S*)-**3**w

Rotational barrier: 27.6 kcal/mol

7. Experimental references:

[1] E. Díez-Barra, A. de la Hoz, A. Moreno, P. Sánchez-Verdú, J. Chem. Soc., Perkin Trans. 1, 1991, 2589.

[2] L. W. Bieber, M. C. F. de Araujo, *Molecules*, 2002, 7, 902.

[3] T. Sawada, M. Nakada, *Tetrahedron*, 2012, 23, 350.

[4] For the method of the preparation of bisoxazoline ligands; the alkylation of bisoxazoline ligands possessing no substituents at the bisoxazoline linkage, see: M. I. Burguete, J. M. Fraile, J. I. Garcia, E. Garcia-Verdugo, S. V. Luis, J. A. Mayoral, *Org. Lett.*, 2000, 2, 3905–3908.

[5] For the method of the preparation of bisoxazoline ligands; the cyclization of malonitrile with 2

equiv of amino alcohol, see: M. P. Sibi, L. Venkatraman, M. Liu, C. P. A. Jasperse, J. Am. Chem. Soc., 2001, **123**, 8444.

[6] For NMR spectra of 4e, see: J. Choi, G. C. Fu, J. Am. Chem. Soc., 2012, 134, 9102.

[7] For the NMR spectra of 4f, see: M. Li, A. Hawkins, D. M. Barber, P. Bultinck, W. Herrebout, D. J. Dixon, *Chem.Commun.*, 2013, 49, 5265.

[8] For the NMR spectra of 4g, see: Y. Miura, T. Mochida, S. Motodate, K. Kato, *Polyhedron*, 2016, 113, 1.

[9] For the NMR spectra of 4h, see: Q. J. Liu, W. G. Yan, L. Wang, X. P. Zhang, Y. Tang, Org. Lett., 2015, 17, 4014.

[10] For the NMR spectra of **4i**, see: S. K. Ginotraa, V. K. Singh, *Org. Biomol. Chem.*, 2007, **5**, 3932.

[11] For the synthesis of 2-methoxy-1-napthyl boronic acid, see: T. B. Hamby, M. J. LaLama, C. S. Sevov, *Science*, 2022, **376**, 410.

[12] S. Manabe, Y. Nakahara, Y. Ito, Synlett, 1997, 11, 1241.

[13] J. Zheng, S. B. Wang, C. Zheng, S. L. You, J. Am. Chem. Soc., 2015, 137, 4880.

[14] C. He, M. How, Z. Zhu, Z. Gu, ACS Catal., 2017, 7, 5316.

[15] NMR spectra of 4j; S. Nicolai, J. Waser, Angew. Chem. Int. Ed., 2022, 61, e202209006.

[15] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst., 1993, 26, 343.

[16] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

[17] L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565.