Electronic Supplementary Information (ESI)

Nanoporous organic polymer using 1, 3dibromoadamantane as a crosslinker for adsorption/separation of benzene and cyclohexane

Jun Yan,*^{a,b} Jiangli Zhu,^{a,b} SihanTong,^{a,b} and Zefeng Wang*^{c,d}

^aSchool of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China

^bInternational Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China

^cCollege of Ecology, Lishui University, Lishui 323000, China

^dR&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather Sichuan University-Lishui University, Lishui 323000, China

Corresponding Authors:

Dr. Jun Yan; Email: yanjun2018@nun.edu.cn;

Dr. Zefeng Wang; Email:shangk72@163.com;

Expermental Section

Materials

1, 3-dibromoadamantane (DBAd), hexaphenylbenzene (HPB), tetrahydrofuran (THF), dichloromethane (DCM) (99.9%, Superdry), and N, N-dimethyformamide (DMF) were purchased from J&K Chemical Co., Ltd and used as received.

Synthesis of NOP-Ad-1

Under a flow of N₂, a dry 50 ml Schlenk flask was filled with DBAd (0.88 g, 3.0 mmol), HPB (0.53 g, 1.0 mmol), AlCl₃ (0.95 g, 7.2 mmol), and DCM (10.0 ml). The mixture was stirred at 40°C for 12 hours. Once the reaction reached completion, the system was allowed to cool naturally to room temperature. The resulting solid was separated by filtration and sequentially washed with 1 M HCl, deionized water, DMF, DCM, and THF. Finally, the resulting solid was extracted with THF using a Soxhlet apparatus for 3 days and dried in a vacuum oven at 120°C for 48 hours, yielding 98%.

Material characterization

The morphology of the samples was evaluated by field-emission scanning electron microscopy (FE-SEM; SUPRATM 55). The chemical structure of the synthesized polymers was characterized via Fourier transform infrared (FTIR) spectroscopy performed on a Nicolet 20XB FTIR spectrophotometer in the wavenumber range of 400-4000 cm⁻¹. The synthesized polymers were also dispersed in KBr to form disks for capturing solid-state nuclear magnetic resonance (NMR) spectra. ¹H NMR spectra were collected using a 400 MHz Varian INOVA NMR spectrometer using tetramethylsilane (TMS) as an internal standard. Solid-state ¹³C NMR spectra were recorded in conjunction with the cross-polarization (CP) and total suppression of spinning sidebands (TOSS) techniques on a Bruker AVANCE III HD 600 MHz Ascend Wide-Bore NMR spectrometer. Elemental analyses (EA) were conducted on Elementar Vario EL III. Powder Wide-angle X-ray diffractions (WAXD) data from 5°to 60° were collected using a Rigku D/max-2400 X-ray diffractometer (40 kV, 200 mA) with a copper target at a scanning rate of 2°/min. Thermogravimetric analysis (TGA) curves were recorded on a NETZSCH TG 209 thermal analyzer

by heating the samples (~8 mg) from room temperature to 800° C with a heating rate of 10° C/min under an N₂ atmosphere.

The C₆H₆ and C₆H₁₂ adsorption and desorption characteristics of the synthesized polymers were analyzed using an Autosorb iQ2 gas sorption analyzer (Quantachrome Instruments). Prior to testing, the polymers were degassed overnight at 100°C under high vacuum. The specific surface areas (S_{BET}) of the synthesized polymers were calculated based on the Brunauer-Emmett-Teller (BET) model on the basis of N₂ adsorption and desorption isotherms obtained at 77 K. These isotherms were also subjected to analysis based on non-local density function theory (NLDFT) to determine the pore size distributions of the polymer samples. In addition, the micropore surface area (S_{micro}) and micropore volume (V_{micro}) were calculated by the t-plot method, and the total pore volume (V_{total}) was determined from the N₂ adsorption isotherms at a relative pressure of $P/P_0 =$ 0.99.

The adsorption separation performance of mixed gas was tested by a multi-component adsorption penetration curve analyzer. The inner diameter of the sample tube is 5 mm and the length is 20 cm. Degassing treatment before test: The sample was degassed with helium (50 mL/min) purge mode, and the sample was heated to 120°C for 2 hours. The test temperature of the sample was maintained at 298 K during the test. Helium controls the ratio series of benzene and cyclohexane as 20:80, 35:65, 50:50, 65:35, and 80:20, and the total flow rate of mixed gas is approximately 15 mL/min. The gas composition was obtained by GC test.

$$Q_{nad} = Q_{min} - Q_{nout} = q_{in} \times c_{no} \Delta T - \int_{0}^{t} [(q/(1 - \sum_{1}^{N} C_{nt}))]C_{nt} dt \quad \text{(formula 1)}$$

The adsorption capacity of the adsorbent is calculated according to formula 1: Where Q_{nad} represents the adsorption capacity of the adsorbent n, Q_{min} represents the total flow rate of the adsorbent "n" entering the penetration column at ΔT , Q_{nout} represents the total flow rate of the adsorbent n flowing out of the penetration column at ΔT , q_{in} represents the total flow rate of the gas through the entrance of the penetration column, c_{no} represents the total flow rate of the gas through the exit of the penetration column, ΔT represents the total adsorption time. "q" is the flow rate of carrier gas, C_{nt} is the concentration percentage of adsorbent at the entrance of the penetrating

column.

$$s = \left(\frac{x_1}{y_1}\right) \div \left(\frac{x_2}{y_2}\right)$$
 (formula 2)

The selectivity of gas 1 to gas 2 is calculated according to formula 2: X_1/Y_1 represents the adsorption phase molar fraction of component 1 gas phase adsorption phase molar fraction, X_2/Y_2 represents the adsorption phase molar fraction of component 2 gas phase adsorption phase molar fraction.

The Ideal Bz/Cy selectivity S:

$$s = \left(\frac{U_1}{y_1}\right) \div \left(\frac{U_2}{y_2}\right)$$
 (formula 3)

$$y_1 + y_2 = 1 \tag{formula 4}$$

The selectivity of benzene 1 to cyclohexane 2 is calculated using formula 3. In this formula, U_1 represents the benzene uptake at the adsorption phase molar fraction y_1 , while U_2 represents the cyclohexane uptake at the adsorption phase molar fraction y_2 .

Computational details

A first-principles electronic structure investigation of the NOP-Ad-1 fragment was conducted using the density functional theory (DFT) computational approach. Geometry optimization of the structures of NOP-Ad-1 fragment was achieved utilizing the ω B97XD functional along with Gaussian 03 and GaussView computational packages. The geometry optimization employed a basis set of 6-311++(d, p).

Figure S1. FTIR spectra of NOP-Ad-1.

Figure S2. Solid-state ¹³C CP/TOSS NMR spectra of NOP-Ad-1.

Figure S3 High resolution XPS survey spectra of NOP-Ad-1.

Figure S4. EDX patterns of NOP-Ad-1.

Figure S5. X-ray diffraction of NOP-Ad-1.

Figure S6. TGA curve of NOP-Ad-1

Figure S7. FE-SEM (a) and HR-TEM (b) images of NOP-Ad-1.

Figure S8. Specific surface area testing of the NOP-Ad-1: (a) N_2 adsorption and desorption isotherms obtained at 77 K; (b) Pore size distribution curves calculated based on NLDFT derived

from N_2 adsorption isotherm at 77 K; (c) CO_2 adsorption and desorption isotherms obtained at 273 K; (d) Pore size distribution curves calculated based on NLDFT derived from CO_2 adsorption isotherm at 273 K.

Figure S9. Optimized geometries of the complexes of NOP-Ad-1@ C_6H_6 and NOP-Ad-1@ C_6H_{12} using Gaussian software.

Samples	S _{BET}	D ()	Су	Ideal Bz/Cy	
	(m ² /g)	Bz (mg/g)	(mg/g)	Selectivity	Ref
NOP-Ad-1	857	989	441	2.24	This work
PAF-2	891	138	7	19.71	1
Hybrid[3]arene	0.9	80.4	7.5	10.72	2
MALP-1	1179	585	492	1.19	3
MALP-2	1126	545	472	1.15	3
MALP-3	1141	571	488	1.17	3
MALP-4	1093	558	465	1.20	3
PAN-1	925	726	527	1.38	4
PAN-2	1242	692	383	1.81	4
PAN-F	702	544	433	1.26	5
PAN-T	795	570	518	1.10	5
CMP-S-1	873	647.4	378	1.71	6
MP1	1020	765	440	1.74	7
PCN-AD	843	980	574	1.71	8
PBI-Ad-1	1023	980	536	1.83	9
PBI-Ad-2	926	765	463	1.65	9
PCN-TPC	686	176	74	2.38	10
PCN-TPPC	662	778	107	7.27	10
UMC-600	1980	663	527	1.26	11
UMC-700	2212	735	605	1.21	11
UMC-800	2406	868	734	1.18	12
FJU-P6	1066	630.4	313.6	2.01	12
FJU-P7	1425	768.6	640.4	1.20	12
PCN-TA	721	1009	206	4.90	13
PCN-TC	674	867	244	3.55	13
PCN-DC	393	635	129	4.92	13
POP-1	486	1020	658	1.55	15
MPI-1	1454	1198	501	2.39	14
MPI-2	814	766	448	1.71	14
MPI-3	586	549	415	1.32	14
sPI-1	1108	1597	851	1.88	15
sPI-2	900	1760	778	2.26	15
CCTF-1	512	878	441	1.99	16
CCTF-2	538	650	311	2.09	16
CCTF-3	207	136	61	2.23	16

Table S1. Comparison of uptakes of benzene and cyclohexane vapors, ideal Bz/Cy selectivity between NOP-Ad-1 and other porous materials reported in the literature.

Samples	Bz:Cy	Bz		Су		Bz/Cv
		t (s)	uptake (mg/g)	t (s)	uptake (mg/g)	Selectivity
NOP-Ad-1	20:80	2970	45.74	1492	103.61	1.75
	35:65	2193	66.20	1582	72.36	1.71
	50:50	1815	96.63	1727	62.01	1.56
	65:35	1904	116.82	1688	41.54	1.51
	20:80	2517	145.25	2326	28.78	1.24

Table S2. The initial flow time, saturation adsorption uptake and selectivity of Bz and Cy based on the breakthrough curve.

Table S3. The static adsorption uptake and ideal selectivity of Bz and Cy based on the adsorption isotherm at 298 K.

Samples	Relative Pressur e (P/P ₀)	Bz uptake (mg/g)	Cy uptake (mg/g)	Ideal Bz/Cy Selectivity
NOP-Ad-1	0.20	394.2	280.9	3.76
	0.35	482.3	322.3	2.31
	0.50	560.7	358.5	1.56
	0.65	632.5	388.5	1.06
	0.80	716.3	419.6	0.64

Reference

- H. Ren, T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiu and G. Zhu, *Chem. Commun.*, 2010, 46, 291-293.
- 2. J. Zhou, G. Yu, Q. Li, M. Wang and F. Huang, J. Am. Chem. Soc, 2020, 142, 2228-2232.
- M. Rong, L. R. Yang, L. Wang, H. F. Xing, J. M. Yu, H. N. Qu and H. Z. Liu, *Ind. Eng. Chem. Res.*, 2019, 58, 17369-17379.
- 4. G. Y. Li, B. Zhang, J. Yan and Z. G. Wang, *Macromolecules*, 2014, 47, 6664-6670.
- 5. G. Li, B. Zhang, J. Yan and Z. Wang, Chem. Commun., 2016, 52, 1143-1146.
- T. Chen, W. Zhang, B. Li, W. Huang, C. Lin, Y. Wu, S. Chen and H. Ma, ACS Appl. Mater. Interfaces 2020, 12, 56385-56392.
- 7. X. Ma, Y. Wang, K. Yao, Z. Ali, Y. Han and I. Pinnau, ACS Omega, 2018, 3, 15966-15974.
- 8. C. Shen, H. Yu and Z. Wang, Chem. Commun., 2014, 50, 11238-11241.
- 9. B. Zhang, G. Y. Li, J. Yan and Z. G. Wang, J. Phys. Chem. C, 2015, 119, 13080-13087.
- 10. G. Deng and Z. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 41618-41627.
- 11. J. Yan, B. Zhang and Z. Wang, J. Phys. Chem. C 2017, 121, 22753-22761.
- L. Chen, H. Zhang, Y. Ye, Z. Yuan, J. Wang, Y. Yang, S. Lin, F. Xiang, S. Xiang and Z. Zhang, New J. Chem., 2021, 45, 22437-22443.
- 13. C. J. Shen, J. Yan, G. Y. Deng, B. A. Zhang and Z. G. Wang, Polym. Chem., 2017, 8, 1074-1083.
- 14. G. Y. Li and Z. G. Wang, Macromolecules, 2013, 46, 3058-3066.
- 15. J. Yan, B. Zhang and Z. Wang, Polym. Chem., 2016, 7, 7295-7303.
- 16. J. Yan, H. Y. Sun, Q. L. Wang, L. Lu, B. Zhang, Z. G. Wang, S. W. Guo and F. L. Han, New J. Chem., 2022, 46, 7580-7587.