Table of Contents

1. General information: 2
1.1 Analytical methods 2
1.2 Material and methods 2
2. Synthetic procedures4
2.1 Overview4
2.2 BINOL-based systems 8
2.3 Prolinol-based systems 25
3. Catalysis experiments 41
3.1 Synthesis of the racemates 41
3.2 Procedure for the stereoselective catalytic reactions 44
3.3 Conversion curves 46
3.4 Chiral HPLC profiles 48
4. References: 63
5. General information:

1.1 Analytical methods

All IR spectra were measured on a Jasco FT-IR 4600 spectrometer. The NMR spectra were recorded with a Bruker Avance NEO 400 spectrometer (${ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 101 \mathrm{MHz},{ }^{19} \mathrm{~F}: 376 \mathrm{MHz}$, ${ }^{31} \mathrm{P}: 162 \mathrm{MHz}$), DMX 500 spectrometer (${ }^{1} \mathrm{H}: 500 \mathrm{MHz}$) and DRX 600 spectrometer (${ }^{1} \mathrm{H}: 600 \mathrm{MHz}$, ${ }^{13} \mathrm{C}: 151 \mathrm{MHz},{ }^{31} \mathrm{P}: 243 \mathrm{MHz}$). All measurements were performed at room temperature, using [D]chloroform $\left(\mathrm{CDCl}_{3}\right)$ or $\left[\mathrm{D}_{6}\right]$-dimethylsulfoxide $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ as solvents. The chemical shifts are referenced relative to the residual proton signals of the solvents in the ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \delta=7.26\right.$ ppm , DMSO-d $\mathrm{d}_{6}: \delta=2.50 \mathrm{ppm}$) or relative to the solvent signal in the ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \delta=77.16\right.$ $\left.\mathrm{ppm}, \mathrm{DMSO}-\mathrm{d}_{6}: \delta=39.51 \mathrm{ppm}\right)$. The apparent coupling constants are given in Hertz. The description of the fine structure means: $\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{tt}=$ triplet of triplets, quint. = quintuplet, hept. $=$ heptet, $m=$ multiplet. High resolution ESI mass spectra were recorded on a Bruker Maxis 4G spectrometer or a Thermo Scientific Orbitrap LTQ-XL mass spectrometer. Chiral normal phase analytical high-performance liquid chromatography (HPLC) was used for determination of the enantiomeric purity (Erma Degasser ERC-3512, Merck Hitachi Intelligent Pump L-6200A, Knauer Smartline UV Detector 2600 (wavelength: 220 or 254 nm)). The chromatograms were recorded using a DAICEL Chiralpak AD-H column ($0.46 \times 25 \mathrm{~cm}$) using an eluent of hexane : 2-propanol ($80: 20$) at a flow of $0.5 \mathrm{~mL} / \mathrm{min}$.

The chromatograms for the rotaxanes $(S, S)-\mathbf{2},(S, R, S)-3$ and $(R, R, S)-3$ were recorded on a reversed phase analytical high-performance liquid chromatography (HPLC) with the following setup: Dionex HPLC system: P680 pump, ASI-100 automated sample injector, UVD-340U UV detector (detection wavelength: 254 nm). The chromatograms were recorded using a YMC-Pack RP-18 column ($3.0 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}, 12 \mathrm{~nm}$) using an eluent of water : MeOH ($30: 70$ to 0:100 + 0.05% TFA) .

1.2 Material and methods

Materials

For thin layer chromatography (TLC) analysis throughout this work, Polygram® SIL G/UV254 TLC plates (silica gel $0.2 \mathrm{~mm}, 40 \times 80 \mathrm{~mm}$) were used. Visualization of the spots was carried under a 254 nm UV light source and, if necessary, stained by permanganate, vaniline or ninhydrin solution and heated with a heat gun. The products were purified by flash column chromatography on silica
gel 60M (40-63 $\mu \mathrm{m}$) which was purchased from MACHEREY-NAGEL GmbH \& Co. KG. Some purifications were performed with the use of a Teledyne Isco CombiFlash NextGen 300+ using $\mathrm{SiOH} 40-63 \mu \mathrm{~m}$ cartridges from MACHEREY-NAGEL GmbH \& Co. KG. 3-(Ethylenediamino)propyl functionalized silica was purchased from Sigma Aldrich.

Solvents

Tetrahydrofuran was freshly distilled from sodium-benzophenone. Dichloromethane was distilled from CaH_{2} and stored over molecular sieves under argon. Dimethoxyethane (DME) and aqueous sodium carbonate solution (2 M) were degassed by bubbling with argon for 15 minutes. Solvents for synthetic procedures were used in analytical grade, solvents for aqueous extraction processes or flash column chromatography were of technical grade. Technical grade ethyl acetate and cyclohexane were always distilled before being used for work-ups or columns.

Chemicals

All reactions that needed exclusion of residual air or humidity were performed under an argon inert gas atmosphere using common Schlenk-techniques. Unless otherwise stated, all commercially purchased chemicals were not purified before use.

4-Hydroxyphenylboronic acid, trifluoroacteic acid and ammonium hexafluorophosphate were purchased from Fluorochem. Cesium carbonate was purchased from Carbolution. Propargyl bromide (80% in toluene) was purchased from Alfa Aesar. Hydrogen chloride ($1 \mathrm{~mol} / \mathrm{L}$ in diethylether), sodium hydride, tetrakis(acetonitrile)copper(I)hexafluorophosphate and (rac)-Binaphthyldiyl hydrogen phosphate were purchased from TCI. Lithium hydroxide and transcinnamaldehyde were purchased from Acros. Dibenzylamine was purchased from ABCR. Tetrakis(triphenylphospine)palladium(0) and diethyl malonate were purchased from SigmaAldrich.Compounds $(S)-\mathbf{4}^{[2]}$, $(S)-8^{[3]},(R)-8^{[3]}$ and $9^{[1,3 \mathrm{bb]}}$ were prepared according to literature procedures.
2. Synthetic procedures

2.1 Overview

Synthesis of BINOL based amine and thread

Figure S1: Synthesis of (S)-16. Reagents and conditions: i) 4-hydroxyphenylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2 \mathrm{M} \mathrm{Na} 2 \mathrm{NO}_{3}$ (aq), DME , $90^{\circ} \mathrm{C}, 2 \mathrm{~h}, 81 \%$; ii) propargyl bromide, cesium carbonate, DMF, $80^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 68 \%$; iii) trifluoroacetic acid, DCM , r.t., 2 h , then NaOH , r.t., $5 \mathrm{~min}, 96 \%$ iv) $\mathrm{DCM},\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}$, r.t., $4 \mathrm{~h}, 62 \%$.

Figure S2: Synthesis of $(S, S)-2$. Reagents and conditions: $\mathrm{DCM}, 30 \mathrm{~min},\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF} 6,4 \mathrm{~h}$, r.t., 20%.

Figure S3: Synthesis of (R, S)-19. Reagents and conditions: i) propargyl bromide, sodium hydride, THF, r.t., 16 h , 76%; ii) trifluoroacetic acid, DCM, r.t., 2 h, then NaOH , r.t., $5 \mathrm{~min}, 98 \%$; iii) $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF} 6, \mathrm{DCM}, 4 \mathrm{~h}$, r.t., 49%.

Synthesis of PROLINOL based [2] rotaxanes:

Figure S4: Synthesis of $(S, R, S)-3$. Reagents and conditions: $\mathrm{DCM}, 30 \mathrm{~min},\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}, 4 \mathrm{~h}, \mathrm{r} . \mathrm{t} ., 37 \%$.

Figure S5: Synthesis of $(R, R, S)-3$. Reagents and conditions: $\mathrm{DCM}, 30 \mathrm{~min},\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF} 6,4 \mathrm{~h}$, r.t., 19%.

Compound (S)-13

The diiodide (S)-4 (0.321 g, $0.496 \mathrm{mmol}, 1 \mathrm{eq}$.$) , 4-hydroxyphenylboronic acid$ ($0.547 \mathrm{~g}, 3.97 \mathrm{mmol}, 8$ eq.) and tetrakis(triphenylphosphine)palladium(0) catalyst ($0.143 \mathrm{~g}, 0.124 \mathrm{mmol}, 0.25 \mathrm{eq}$.) were weighed in a Schlenk flask. The flask was evacuated and back filled with argon 3 times. Then degassed dimethoxyethane (12 mL) and degassed sodium carbonate solution (2 M, 1.2 mL) were added. The reaction mixture was refluxed at $90^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the organic phase was washed with water ($2 \times 10 \mathrm{~mL}$) and concentrated in vacuo. After purification by column chromatography (cyclohexane/ethylacetate $6 / 1+1 \%$ triethylamine), the product was obtained as a light yellow foam ($0.234 \mathrm{~g}, 0.404 \mathrm{mmol}, 81 \%$).

Chemical formula: $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{NO}_{4}$
Molecular weight: $579.70 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 9.59 (s, 2H, OH), 8.07 (d, J=8.7 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-6), 8.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-16)$, 7.28 (d, J = 8.4, 2H, H-16, H-8), 7.22 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9$), 7.21 (d, 2H, H-16', H-9) 6.91 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-17$), 6.82 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H} H-17$ '), 5.28 ($\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.98 (d, $J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}$), 3.45 ($\mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}$), 3.17 ($\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime \prime \prime}$). 1.20 ($\mathrm{s}, 9 \mathrm{H}$, H-14)
${ }^{13} \mathrm{C}$ - NMR ($151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 157.0 (C-18), 156.8 (C-18), 152.1 (C-12), 139.3 (C-3), 135.9 (C-1'), 135.5 (C-1), 132.4 (C-5), 131.2 (C-2), 131.0 (C-15), 130.9 (C-15'), 130.7 (C-16), 130.5 (C-9), 129.8 (C-4), 129.5 (C-10), 128.4 (C-6), 126.8 (C-16'), 126.3 (C7), 126.0 (C-8), 115.2 (C-17), 78.8 (C-13), 43.1 (C-11), 27.6 (C-14).
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298K) $\boldsymbol{\delta}$ [in ppm]: 8.07/7.53 (H-6/H-7), 7.53/8.07, 7.31 (H-7/H-6, H-8), 7.31, 7.28/ 8.07, 7.53, 7.22, 6.91 (H-8, H-16/ H-6, H-7, H-9, H-16',H-17), 7.22/8.07, 7.53, 7.31, 6.82 (H9, H-16'/H-6, H-7, H-8, H-16, H-17'), 6.91/7.28, $6.82(\mathrm{H}-17 / \mathrm{H}-16$, H-17'), 6.82/7.22, 6.91/7.31, $6.82\left(\mathrm{H}-17 / \mathrm{H}-16, \mathrm{H}^{\prime}-17{ }^{\prime}\right), 6.82 / 7.21,6.91$ (H-17'/H-16',H-17), 5.28/4.98, 3.45, 3.17 (H-11/H-11', H-11", H-11'"), 4.98/5.28, 3.45, 3.17 (H-11'/H-11, H-11', H-11'"), $3.45 / 5.28,3.45,3.17(\mathrm{H}-11$ '/H-11, H-11', H-11'"), 3.17/5.28, 4.98, 3.45 (H-11'"/H-11, H-11', H11").
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}\left(600 \mathrm{MHz} / 151 \mathrm{MHz}\right.$, [D D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.07/128.4 (H-6/C6), $8.00 / 129.8$ (H-4/C-4), 7.53/126.3 (H-7/C-7), 7.31/ 130.7, 126.0 (H-8 und H-16/C-8 und C-16), 7.22/ 130.5, 126.8 (H-9 und H-16/C-9 und C16), 6.91/115.2 (H-17/C-17), 6.82/115.2 (H-17'/C-17),
5.28/43.1 (H-11/C-11), 4.98/43.1 (H-11'/C-11), 3.45/43.1 (H-11"/C-11), 3.17/43.1 (H-11'"/C-11), 1.20/ 27.6 (H-14/C-14)
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ ($600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.07/132.4, 129.5, 129.8, 126.0 (H-6/C-5, C-10, C-4, C-8), 8.00/131.2, 130.7, 129.8, 128.4 (H-4/ C-2, C-16, C-4, C6), $7.53 / 132.4$ (H-7/C-5), 7.28/157.0, 139.3, 130.7, 129.8, 128.4 (H-8,H-16/C-18, C-3, C-16, C-4, C-6), 7.21/156.8, 135.9, 135.5, 132.4, 126.3 (H-9, H-16'/ C-18', C-1', C-1, C-5, C-7), 6.91/ 131.0, 115.2 (H-17/C-15, C-17), 6.82/130.9, 115.2 (H-17'/C-15', C-17), 5.28/135.5, 131.2, 43.1 (H-11/ C1, C-2, C-11), 4.98/135.5, 130.9, 43.1 (H-11'/C- 1, C-15', C-11), 1.20/78.8 (H-14/C-13).

MS (ESI-pos, MeOH): $m / z=602.2293\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. 602.2302 for $\left.\left[\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{NNaO}_{4}\right]^{+}\right)$.
IR (ATR-FT): $\tilde{\mathbf{v}}$ (cm${ }^{-1}$): 3255 (w), 2922 (w), 2848 (w), 1648 (w), 1610 (s), 1518 (s), 1418 (m), 1365 (m), 1237 (s), 1143 (m), 893 (w), 832 (w), 748 (w), 691 (w), 646 (m), 612 (w), 566 (m), 516 (s), 497 (w), 421 (m).

Figure S6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(R, S)-13$ ($\left[\mathrm{D}_{6}\right]$-dimethylsulfoxid, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S7: ${ }^{13} \mathrm{C}$-NMR spectrum of $(R, S)-13$ ([D6]-dimethylsulfoxid, $298 \mathrm{~K}, 151 \mathrm{MHz}$).

The bisphenol (S)-13 ($230 \mathrm{mg}, 0.397 \mathrm{mmol}, 1 \mathrm{eq}$.$) and cesium carbonate$ $(1.03 \mathrm{~g}, 3.17 \mathrm{mmol}, 8 \mathrm{eq})$ were weighed in a Schlenk flask. The flask was evacuated and back filled with argon 3 times. Then 15 mL of degassed DMF was added. The mixture was stirred for 30 minutes at room temperature. Then propargyl bromide ($106 \mathrm{mg}, 0.893 \mathrm{mmol}, 2.25 \mathrm{eq}$) was added and the mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 1.5 hours. After the reaction mixture was brought to room temperature, water (30 mL) was added. The phases were separated. The aqueous phase was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$. It was dried over sodium sulphate anhydrous and then filtered. The solvent was removed in vacuo and after column chromatography (cyclohexane/ethylacetate $1: 0$ to $3: 1$) the product was obtained as a yellow foam ($178 \mathrm{mg}, 0.271 \mathrm{mmol}, 68 \%$).

Chemical formula: $\mathrm{C}_{45} \mathrm{H}_{37} \mathrm{NO}_{4}$
Molecular weight: $655.79 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 8.08 (d, J=8.2 Hz, 2H, H-6), 8.05 (s, 2H, H-4), 7.55 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$), $7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16), 7.33-7.37$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 16$ ', H8), 7.25 (d, $J=8.5 \mathrm{~Hz}, \mathrm{H}-9$), 7.15 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-17$), 7.05 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-17$ '), 5.26 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.97 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}$), 4.87 ($\mathrm{d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-19$), 3.61 (s, 2H, H-21), 3.49 (d, J=12.4 Hz, 1H, H-11'), 3.20 (d, J=12.4 Hz, 1H, H-11'"), 1.16 (s, $9 \mathrm{H}, \mathrm{H}-$ 14).
${ }^{13} \mathbf{C}$ - NMR (151 MHz, [D ${ }_{6}$]-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 156.7 (C-18), 152.2 (C-12), 138.8 (C-3), 135.9 (C-1), 135.6 (C-1'), 133.5 (C-15), 133.2 (C-2), 132.4 (C-5), 130.8 (C-16), 130.5 (C16'), 129.9 (C-4), 129.8 (C-10), 128.5 (C-6), 126.8 (C-9), 126.4 (C-7), 126.3 (C-8), 114.8 (C-17), 114.6 (C-17'), 79.2 (C-20), 78.9 (C-13), 78.4 (C-21), 55.5 (C-19), 43.1 (C-11), 27.7 (C-14).
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298K) [in ppm]: 8.08/7.55 (H-6/H-7), $7.55 / 8.08,7.34 \quad(\mathrm{H}-7 /, \mathrm{H}-6, \quad \mathrm{H}-8), \quad 7.45 / 7.15 \quad(\mathrm{H}-16 / \mathrm{H}-17), \quad 7.36 / 7.05 \quad(\mathrm{H}-16$ '/H-17'), $7.33-$ $7.37 / 7.25,7.55\left(\mathrm{H}-8, \mathrm{H}-16^{\prime} / \mathrm{H}-9, \mathrm{H}-7\right), 7.25 / 7.34(\mathrm{H}-9 / \mathrm{H}-8), 7.15 / 7.45(\mathrm{H}-17 / \mathrm{H}-16), 7.05 / 7.36(\mathrm{H}-$ 17'/H-16'), 5.26/3.49(H-11/H-11"), 4.97/3.20(H-11'/H-1'"), 4.87/3.61(H-19/H-21), 3.61/4.87 (H-21/H-19), 3.49/5.26 (H-11"/H-11), 3.20/4.97(H-11'"/H-11').
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}\left(600 \mathrm{MHz} / 151 \mathrm{MHz}\right.$, [D D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.08/128.5(H-6/C6),8.05/129.9 (H-4/C-4), 7.55/126.4 (H-7/C-7), 7.45/130.8 (H-16/C-16), 7.33-7.37 /130.5, 126.3 (H-8, H-16'/ C-8, C-16'), 7.25/126.3(H-9/C-9), 7.15/114.8 (H-17/C-17), 7.05/114.6 (H-17'/C-17'), 5.26/43.1 (H-11/C-11), 4.97/43.1 (H-11'/C-11), 3.61/78.4 (H-21/C-21), 3.49/43.1 (H-11"/C-11), 3.20/43.1 (H-11'"/C-11), 1.16/27.7 (H-14/C-14).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}\left(600 \mathrm{MHz} / 151 \mathrm{MHz}\right.$, [D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.08/132.4, 129.9,126.3 (H-6/C-5, C-4, C-8), 8.05/133.5, 133.2, 130.8, 128.5 (H-4/C-15, C-2, C-16, C-6), 7.55/132.5, 126.8 (H-7/C-5, C-9), 7.45/156.7, 130.8 (H-16/C-18, C-16), 7.33-7.37 /156.7, 130.8, 129.8, 128.5, 126.4 (H-8,16'/C-18, C-16, C-10, C-6, C-7), 7.25/135.9, 135.6, 132.4, 129.9, 126.4 (H-9/C-1, C-1', C-5, C-4, C-7), 7.15/133.5 (H-17/C-15), 7.05/133.5 (H-17'/C-15), 4.87/ 156.7, 79.2, 78.4 (H-19/C-18, C-20, C-21).

MS (ESI-pos, MeOH): $m / z=678.2606\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. 678.2615 for $\left.\left[\mathrm{C}_{45} \mathrm{H}_{37} \mathrm{NNaO}_{4}\right]^{+}\right)$.
IR (ATR-FT): $\tilde{\mathbf{v}}$ ($\mathbf{c m}^{-1}$): 3298 (w), 3287 (m), 2922 (w), 1682 (s$), 1646$ (w$), 1607$ (m), 1509 (s$), 1403$ (s), 1364 (m), 1286 (w), 1215 (s), 1175 (s), 1143 (s), 1106 (m), 1024 (s), 894 (w), 830 (s), 751 (s), 647 (m).

Figure S8: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(R, S)-\mathbf{1 4}$ ($\left[\mathrm{D}_{6}\right]$-dimethylsulfoxid, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S9: ${ }^{13} \mathrm{C}$-NMR spectrum of (R, S) - $\mathbf{1 4}$ ([D $\left.\mathrm{D}_{6}\right]$-dimethylsulfoxid, $298 \mathrm{~K}, 151 \mathrm{MHz}$).

Boc-protected amine $(S)-14(110 \mathrm{mg}, 0.190 \mathrm{mmol}, 1 \mathrm{eq})$ was weighed into a flask and dissolved in dichloromethane (15 mL). Trifluoroacetic acid ($146 \mu \mathrm{~L}$, $1.89 \mathrm{mmol}, 10 \mathrm{eq}$) was added slowly and the mixture was stirred for 2 hours at room temperature. Sodium hydroxide solution ($2 \mathrm{M}, 15 \mathrm{~mL}$) was carefully added. The phases were separated. The aqueous phase was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(30 \mathrm{~mL})$. The solution was dried over sodium sulfate, filtered and the solvent was removed. A yellow oil (101 $\mathrm{mg}, 0.182 \mathrm{mmol}, 96 \%)$ was obtained.

Chemical formula: $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{NO}_{2}$
Molecular weight: $555,68 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 8.05 (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6\right), 8.01$ (s, 2H, H-4), $7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-16), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 7.29(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-8$), 7.20 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9$), 7.12 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-17$), 4.88 (d, $J=2.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-19$), 3.89 ($\mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11$), $3.62\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{H}-21\right.$), $3.15\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}\right)$.
${ }^{13} \mathbf{C}$ - NMR (151 MHz [D_{6}]-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 156.6 (C-18), 138.8 (C-3), 135.2 (C-1), 133.7 (C-15), 133.1 (C-2), 132.1 (C-5), 130.8 (C-16), 129.9 (C-10), 129.4 (C-4), 128.5 (C6), 126.7 (C-9), 125.8 (C-7), 125.7 (C-8), 114.6 (C-17), 79.4 (C-20), 78.4 (C-21), 55.5 (C-19), 44.3 (C-11).
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ ($\mathbf{6 0 0} \mathbf{~ M H z}$, [D D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.05/7.49 (H-6/H-7), 7.64/7.12 (H-16/H-17), 7.49/8.05, 7.29 (H-7/H-6, H-8), 7.29/7.49 (H-8/H-7), 7.12/7.64 (H-17/H-16), 4.88/ $3.62(\mathrm{H}-19 / \mathrm{H}-21), 3.89 / 3.15(\mathrm{H}-11 / \mathrm{H} 11$ '), 3.62/4.88 (H-21/H19), 3.15/3.89 (H11'/H-11).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}\left(600 \mathrm{MHz} / 151 \mathrm{MHz}\right.$, [D D_{6}]-dimethylsulfoxid, 298K) [in ppm]: 8.05/128.5 (H-6/C6), $8.01 / 129.4$ (H-4/C-4), 7.64/130.8 (H-16/C-16), 7.49/125.8 (H-7/C-7), 7.29/125.7 (H-8, C-8), 7.20/126.7 (H-9/C-9), 7.12/114.6 (H-17/C-17), 4.88/55.5 (H-19/C-19), 3.89/44.3 (H-11/C-11), 3.15/44.3 (H-11'/C-11).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}\left(\mathbf{6 0 0} \mathrm{MHz} / 151 \mathrm{MHz}\right.$, [D $\left.\mathrm{D}_{6}\right]$-dimethylsulfoxid, 298K) [in ppm]: 8.05/129.9, 129.4, 125.7 (H-6/C-10, C-4, C-8), 8.01/133.7, 133.2, 129.9, 128.5 (H-4/C-15, C-2, C-10, C-6,), 7.64/156.6, 138.8, 130.8 (H-16/C-18, C-3, C-16), 7.49/132.1, 126.7 (H-7/C-5, C-9), 7.29/129.9, 128.5 (H-8/ C-10, C-6), 7.20/135.2, 132.1, 125.8 (H-9/C-1, C-5, C-7), 7.12/156.6, 133.7, 114.6 (H-17/C-18, C-15, C-17), 4.88/ 125.6, 79.4, 78.4 (H-19/C-18, C-20, C-21).

MS (ESI-pos, MeOH): $m / z=556.2266\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. 556.2271 for $\left.\left[\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{NO}_{2}\right]^{+}\right)$.
IR (ATR-FT): $\tilde{\mathbf{v}}\left(\mathbf{c m}^{-1}\right)$: 3278 (m), 3031 (s$), 2918$ (s$), 2849$ (s$), 1683$ (m), 1605 (m), 1507 (s), 1436 (w), 1213 (s), 1175 (s), 1024 (s), 986 (w), 924 (w), 831 (s), 781 (w), 749 (s), 632 (s).

Figure S10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (S) - 15 ($\left[\mathrm{D}_{6}\right]$-dimethylsulfoxid, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S11: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (S) - 15 ([D6]-dimethylsulfoxid, $298 \mathrm{~K}, 151 \mathrm{MHz}$)

Amine (S)-15 (100 mg, $0.179 \mathrm{mmol}, 1 \mathrm{eq}$) was weighed in a flask and dissolved in diethyl ether (8 mL). Hydrogen chloride in diethyl ether ($1 \mathrm{M}, 1.97$ $\mathrm{mL}, 1.97 \mathrm{mmol}, 11 \mathrm{eq})$ was slowly added and the mixture was stirred for 30 minutes at room temperature. The solvent was removed in vacuo and the residue was redissolved in dichloromethane (8 mL). Ammonium hexafluorophosphate ($146 \mathrm{mg}, 0.899 \mathrm{mmol}, 5 \mathrm{eq}$) was added and the mixture was stirred overnight. The suspension was filtered and the filter residue was washed with dichloromethane (8 mL). The solvent was removed to give the product as a white solid ($110 \mathrm{mg}, 0.157 \mathrm{mmol}, 88 \%$).

Chemical formula: $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{P}$
Molecular weight: $701,65 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-dimethylsulfoxid, 298 K) $\boldsymbol{\delta}$ [in ppm]: 8.10 (m, 4H, H-6,H-4), 7.58 (m, $6 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-7$), 7.35 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8$), $7.20-7.12$ (m, 6H, H-9, H-17), 4.89 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{H}-19), 4.14$ (br. s, 2H, H-11) 3.63 (t, J=2.2 Hz, 2H, H-21), 3.41 (br. s, 2H, H-11', merged with water signal)
${ }^{31}$ P NMR (162 MHz, [D$\left.{ }_{6}\right]$-dimethylsulfoxid, 298 K) δ [in ppm]: -144.2 (sept., $J=710 \mathrm{~Hz}$)
IR (ATR-FT): $\tilde{\mathbf{v}}$ ($\mathbf{c m}^{-1}$): 3282 (w), 2962 (m), 1605 (m), 1508 (m), 1446 (w), 1372 (w), 1258 (w), 1216 (m), 1176 (w), 1087 (m), 1015 (s), 795 (s), 752 (w), 660 (w), 554 (w).

Figure S12: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (S)-5 ([D $\left.\mathrm{D}_{6}\right]$-dimethylsulfoxid, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S13: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ of (S)-5 ([D6]-dimethylsulfoxid, $298 \mathrm{~K}, 243 \mathrm{MHz}$)

Compound (S)-16

The bisalkyne $(S)-15(8.00 \mathrm{mg}, 0.0114 \mathrm{mmol}, 1 \mathrm{eq})$ and stopper 9 ($16.2 \mathrm{mg}, 0.0251 \mathrm{mmol}, 2.2 \mathrm{eq}$) were weighed in a Schlenk flask and dried in vacuo for 3 hours. Dry and degassed dichloromethane (1 ml) was added. The mixture was stirred for 30 minutes. Then tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyst ($2.97 \mathrm{mg}, 0.00798 \mathrm{mmol}, 0.7$ eq.) was added and the mixture was stirred for 4 hours. 3-(Ethylenediamino)propyl functionalized silica ($1.4 \mathrm{mmol} / \mathrm{g}, 20 \mathrm{mg}$) was added and the mixture was stirred for another 2 hours. The mixture was filtered and the solvent was removed. After column chromatography (dichloromethane/ethyl acetate $1 / 0$ to $1 / 1$) the product was obtained as a light yellow foam ($13.2 \mathrm{mg}, 0.00714 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 7.92-7.87 (m, 4H, H-6, H-4), 7.67 (s, 2H, $\mathrm{H}-23$), 7.59 ($\mathrm{d}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}-37$), 7.51 ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}-34$), $7.50-7.44(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-16$ und H-7), $7.40(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 14 \mathrm{H}, \mathrm{H}-38, \mathrm{H}-9), 7.36-7.32(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-33), 7.32-7.28$ (m, 6H, H-39), 7.26-7.20 (m, 6H, H-29 und H-8), 7.07 (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-17$), 6.81 (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-28$), 5.27 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-19$), $4.61(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-24), 3.99(\mathrm{t}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-26$ und H-11), $3.29(\mathrm{~d}$, $J=6.5 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{H}-11^{\prime}$), 2.46-2.37 (m, 4H, H-25).
${ }^{13} \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz},[\mathrm{D}]-\mathrm{chloroform}, 298 \mathrm{~K}) \boldsymbol{\delta}$ [in ppm]: 157.7 (C-18), 156.6 (C-30), 146.1 (C32), 140.7 (C-36), 139.6 (C-27), 138.7 (C-35), 134.5 (C-15), 132.4 (C-29), 131.6 (C-33), 130.9 (C16), 129.7 (C-4), 128.9 (C-38), 128.4 (C-6), 127.7 (C-9), 127.4 (C-39), 127.1 (C-37), 126.3 (C-34), 125.9 (C-7), 125.8 (C-8), 123.4 (C-23), 114.7 (C-17), 113.5 (C-28), 64.8 (C-26), 63.8 (C-31), 62.3 (C-19), 47.5 (C-24), 44.6 (C-11), 30.1 (C-25).
$\mathrm{C}-1, \mathrm{C}-2$ and $\mathrm{C}-3$ could not be observed.
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}(600 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.92-7.87/7.50-7.44 (H-6, H-4/H-7,H16), 7.59/7.51, 7.40, 7.36-7.32 (H-37/H-34, H-38, H-33), 7.51/ 7.59, 7.40, 7.36-7.32 (H-34/H-37, H-38, H-33), 7.50-7.44/7.92-7.87, 7.07 (H-16, H-7/H-6, H-17), 7.40/7.59, 7.51, 7.36-7.32, 7.267.20 (H-38/H-37, H-34), 7.36-7.32/7.59, 7.51, 7.40, 7.26-7.20 (H-33/H-37, H-34, H-38, H-29), 7.26-7.20/7.36-7.32, 6.81 (H-29/ H-33, H-28), 7.07/7.50-7.44 (H17/H-16), 6.81/7.26-7.20 (H-28/H29), 4.61/2.46-2.37 (H-24/H-25), 3.99/3.29, 2.46-2.37 (H-26, H-11/H-11', H-25), 3.29/3.99 (H-11'/H-11), 2.46-2.37/4.61, 3.99 (H-25/ H-24, H-26).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.92-7.87/129.7, $128.4(\mathrm{H}-$ 6, H-4/C-4, C-6), 7.59/127.1(H-37/C-37), 7.51/126.3 (H-34/C-34), 7.50-7.44/130.9, 125.9 (H-16, H-7/C-16, C-7), 7.40/128.9, 127.7 (H-38, H-9/C-38, C-9), 7.36-7.32/131.6 (H-33/C-33), 7.327.28/127.4 (H-39/C-39), 7.26-7.20/125.8, 132.4 (H-29, H-8/C-8, C-29), 7.07/114.7 (H-17/C-17), 6.81/113.5 (H-28/C-28), 5.27/62.3 (H-19/C-19), 4.61/47.5 (H-24/C-24), 3.99/ 64.8, 44.6 (H-26, H11/ C-26, C-11), 3.29/44.6 (H11'/C-11), 2.46-2.37/30.1 (H-25/C-25).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}(\mathbf{6 0 0} \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.92-7.87/130.9, 128.4, 125.8 (H-6, H-4/ C-16, C-6, C-8), 7.59/138.7, 127.4 (H-37/C-35, C-39), 7.51/146.1, 140.7, 126.3 (H-34/C-32, C-36, C-34), 7.40/140.7,128.9 (H-38/C-36, C-38), 7.36-7.32/138.7, 131.6, $63.8(\mathrm{H}-$ 33/C-35, C-33, C-31), 7.32-7.28/128.9, 127.1 (H-39/C-38, C-37), 7.26-7.20/156.6, 132.4, 63.8 (H-29/C-30, C-29, C-31), 7.07/134.5 (H-17/C-15), 6.81/139.6, 113.5 (H-28/C-27, C-28), 4.61/64.8, 30.1 (H-24/C-26, C-25), 3.99/47.5 (H-26/C-24), 2.46-2.37/64.1 (H-25/C-26).

MS (ESI-pos, MeOH): $m / z=1851.8138^{*}\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. 1851.8144 for $\left.\left[\mathrm{C}_{132} \mathrm{H}_{104} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+}\right)$.
*Due to the very low intensity of the mass spectrum, the signal with highest intensity (not the lowest monoisotopic signal) was used for evaluation.

IR (ATR-FT): $\boldsymbol{\tilde { v }}$ (cm ${ }^{-1}$): 3053 (w), 3027 (m), 2956 (m), 2927 (m), 2868 (w), 1654 (m), 1604 (m), 1508 (s), 1483 (s), 1393 (w), 1363 (w), 1241 (s), 1180 (s), 1042 (m), 1006 (m), 827 (s), 764 (s), 747 (s), 734 (s), 697 (s), 613 (w), 560 (w), 539 (w), 503 (w).

Figure S14: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the compound (S)-16 ([D]-chloroform, $298 \mathrm{~K}, 400 \mathrm{MHz}$)

Figure S15: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of the compound (S)-16 ([D]-chloroform, $298 \mathrm{~K}, 151 \mathrm{MHz}$)

The amine $(S)-5$ (18.8 mg, $0.0268 \mathrm{mmol}, 1 \mathrm{eq}$), the stopper $9(38.2 \mathrm{mg}, 0.0589 \mathrm{mmol}, 2.2$ eq) and the macrocycle (S) -8 $(33.7 \mathrm{mg}, 0.0268 \mathrm{mmol}, 1 \mathrm{eq})$ were weighed in a Schlenk flask and dried in vacuo for 3 hours. Dry and degassed
dichloromethane (2.5 mL) was added and the mixture was stirred for 2 hours. Tetrakis (acetonitrile) copper(I) hexafluorophosphate catalyst ($6.99 \mathrm{mg}, 0.0188 \mathrm{mmol}, 0.7 \mathrm{eq}$) was added and the mixture was stirred overnight. 3-(Ethylenediamino)-propyl functionalized silica gel ($1.4 \mathrm{mmol} / \mathrm{g}$, 40 mg) was added and the mixture was stirred for 2 hours. The mixture was filtered and the solvent was removed in vacuo. After purification by column chromatography (dichloromethane/methanol 100/0 to 100/1 performed with NextGen), the product was obtained as a white foam (15.4 mg , 0.00537 mmol, 20\%).

Chemical formula: $\mathrm{C}_{192} \mathrm{H}_{176} \mathrm{~N}_{7} \mathrm{O}_{16} \mathrm{P}$
Molecular weight: $2868.53 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 9.77 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 9.50 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 8.21 (s, 1H, H-23), 8.07-8.02 (m, 2H, Ar-H), 7.96 (s, 2H, H-I), 7.94-7.89 (m, 4H, Ar-H), 7.61-7.58 (m, 14H, H-37, Ar-H), 7.54-7.49 (m, 17H, H-34, BINOL-Backbone), 7.46 (s, 2H, H-I), 7.44-7.37 (m, 17H, H-38, Ar-H), 7.35-7.29 (m, 21H, H-33, H-39, Ar-H), 7.25-7.18 (m, 8H, H-29, Ar-H), 7.05-7.02 (m, 2H; Ar-H), $6.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.77-6.73(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.42-5.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{v}), 5.29-5.26(\mathrm{~m}$, 2H, Thread), 5.21-5.07 (m, 2H, H-11), 4.50-4.42 (m, 4H, Thread), 4.31-4.17 (m, 2H, H-11'), 3.94$3.88(\mathrm{~m}, 4 \mathrm{H}$, Ethylene glycol-Chain), 3.78-3.56 (m, 12H, Ethylene glycolEthylene glycol-Chain), 3.55-3.48 (m, 12H,Ethylene glycol-Chain), 3.46-3.40 (m, 6H, Thread), 3.25-3.18 (m, 2H, H-w), 3.15-3.09 (m, 2H, H-w'), 2.30-2.24 (m, 4H, H-25) 1.27-1.17 (m, 6H, H-x), 1.16-0.94 (m, 18H, Hx^{\prime}). Ar-H contains the signals for the BINOL-backbones, the second signal for $\mathrm{H}-23$ and the signals for $\mathrm{H}-28$.
${ }^{13} \mathrm{C}$ - NMR (151 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 157.9, 157.5, 156.3, 152.9, 152.4, 146.2, 146.0, 145.9, 145.3, 143.8, 142.9, 141.1, 140.7, 139.8, 139.7, 139.4, 138.7, 136.7, 136.5, 134.8, 134.6, 133.6, 132.4, 132.2, 131.6 (C-33), 131.2, 130.9, 130.8, 130.6 (C-v), 130.5, 130.46, 129.4 (C-v'), 128.9 (C-38), 128.6, 127.47, 127.4 (C-39), 127.1 (C-37), 126.6 (C-34), 126.3, 125.7, 123.4, $123.0,115.0,113.5,113.48,73.3,73.0,71.3,71.1,71.0,70.8,70.6,70.0,69.7,64.4,64.2,63.8$, $62.0,60.5,53.6,48.5,47.5,42.7,42.2,32.1,30.1,30.0,29.8,29.66,29.5$ (C-25), 29.3, 26.6 (Cw), 26.5 (C-w'), 24.3, 24.0, 23.96, 22.8, 20.4, 14.4.
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ (600 MHz , [D]-chloroform, 298K) [in ppm]: 7.54-7.49/ 7.44-7.37; 7.61-7.58/7.447.37; 7.54-7.49/7.94-7.89, 7.35-7.29; 7.44-7.37/7.94-7.89, 7.61-7.58, 7.35-7.29, 7.25-7.18; 7.357.29/ 7.54-7.49, 7.44-7.37; 7.25-7.18/7.44-7.37, 6.77-6.73; 6.77-6.73/7.25-7.18; 5.42-5.38/3.783.56, 3.46-3.40; 5.29-5.26/5.16, 3.78- 3.56; 5.21-5.07/5.29-5.26; 4.50-4.42/2.30-2.24; 4.31$4.17 / 3.78-3.56 ; 4.50-4.42 / 2.41 ; 3.98 / 2.30-2.24 ; 3.94-3.88 / 2.30-2.24 ; 3.78-3.56 / 5.42-5.38,4.50-$ 4.42; 3.78-3.56/4.31-4.17, 5.29-5.26; 3.46-3.40/5.42-5.38, 1.27-1.17; 3.25-3.18, 1.16-0.94; 3.15$3.09 / 1.16-0.94 ; 2.30-2.24 / 4.62 ; 2.27 / 4.50-4.42,3.94-3.88 ; 1.27-1.17 / 3.25-3.18 ; 3.15-3.09 / 1.16-$ 0.94; 1.16-0.94/3.15-3.09.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 8.21/127.1; 8.07-8.02/126.3, 130.5; 7.94-7.89/128.6, 130.8, 131.2, 131.6; 7.61-7.58/ 127.1, 128.9; 7.54-7.49/131.6, 127.4; 7.46 /126.3; 7.44-7.37/125.7, 127.1, 128.9; 7.35-7.29/ 131.6, 128.9, 127.4, 126.3; 7.25-7.18/ 132.4, 27.5, 126.6, 126.3; 7.05-7.02/127.1, 115.0; 6.77-6.73/ 113.5; 5.42-5.38/ 129.4, 130.6; 5.29-5.26/ 62.0, 60.5; 5.21-5.07/ 62.0, 60.5; 4.50-4.42/47.5, 48.5; 4.31-4.17/ 42.2; 3.94-3.88/ 64.4; 3.78$3.56 / 71.3,70.8,70.0,69.7 ; 3.55-3.48 / 70.6 ; 3.46-3.40 / 26.5 ; 3.25-3.18 / 26.5 ; 3.15-3.09 / 26.5 ;$ 2.30-2.24/ 30.2, 29.8; 1.27-1.17/29.4; 24.0; 1.16-0.94/ 24.0, 23.9.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.94-7.89/ 130.9, 126.6; $7.61-7.58 / 138.5,129.4,127.4,127.1,126.3 ; 7.54-7.49 / 146.2,140.7,131.6,128.9,126.3 ;$ 7.46/131.6; 7.44-7.37/ 140.7, 128.9, 126.6; 7.35-7.29/ 138.7, 131.6, 127.1, 126.3, 63.8; 6.77-6.73/ 139.4; 1.27-1.17/ 141.0, 26.5, 23.9, 24.3.

MS (ESI-pos, MeOH): $m / z=2867.2963\left([M+H]^{+}\right.$, calc. 2867.2984 for $\left.\left[\mathrm{C}_{192} \mathrm{H}_{177} \mathrm{~N}_{7} \mathrm{O}_{16} \mathrm{P}\right]^{+}\right)$, $2889.2963\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calc. 2889.2803 for $\left.\left[\mathrm{C}_{192} \mathrm{H}_{176} \mathrm{~N}_{7} \mathrm{NaO}_{16} \mathrm{P}\right]^{+}\right)$.

IR (ATR-FT): $\boldsymbol{\tilde { v }}$ ($\mathbf{c m}^{-1}$): 3406 (w), 3054 (m), 3027 (m), 2957 (m), 2924 (m), 2868 (m), 1605 (s$)$, 1579 (w), 1559 (w), 1507 (s), 1484 (s), 1447 (w), 1398 (w), 1245 (s), 1182 (m), 1091 (s), 1042 (m), 1006 (m), 995 (w), 960 (w), 925 (w), 827 (s), 764 (s), 747 (s), 697 (s), 653 (w), 615 (w), 562 (w).

Figure S16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the compound (S,S)-2 ([D]-chloroform, $298 \mathrm{~K}, 600 \mathrm{MHz}$)

Figure S17: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of the compound (S,S)-2 ([D]-chloroform, $298 \mathrm{~K}, 151 \mathrm{MHz}$)

Figure S18: Reversed phase HPLC of the rotaxane (S, S)-2.

Compound (R, S)-17

N-Boc-trans-hydroxy-L-prolinol (R, S)-6 ($500 \mathrm{mg}, 2.31 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in anhydrous tetrahydrofuran (50 ml) and cooled to $0^{\circ} \mathrm{C}$. Sodium hydride ($276 \mathrm{mg}, 6.90 \mathrm{mmol}, 3 \mathrm{eq}$) was added. After stirring for 10 minutes, propargyl bromide ($0.77 \mathrm{ml}, 6.90 \mathrm{mmol}, 3 \mathrm{eq}$) was added, the solution was warmed to room temperature and stirred overnight. Saturated ammonium chloride solution (50 ml) was added. The phases were separated and the aqueous phase was extracted with ethyl acetate $(3 \times 30 \mathrm{ml})$. The combined organic phases were washed with brine (30 ml), dried with magnesium sulfate, filtered and the solvent removed in vacuo. The residue was purified by silica flash column chromatography (cyclohexane/ethyl acetate 3/1) to give the product as a yellow oil ($515 \mathrm{mg}, 1.76$ mmol, 76\%).

Chemical formula: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$
Molecular weight: $293.36 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 4.30-4.26 (m, 1H, H-2), 4.20 - $4.08(\mathrm{~m}$, 4H, H-6 and H-9), 4.04 (br. s, 1H, H-4), $3.77-3.51$ (m, 2H, H-5), $3.51-3.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 2.42$ (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ or $\mathrm{H}-11$), $2.41(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ or $\mathrm{H}-11), 2.21-2.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$, 1.46 (s, 9H, H-14).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ [D] - c h l o r o f o r m , ~} 298 \mathrm{~K}$) $\boldsymbol{\delta}$ [in ppm]: 154.6 (C-11), 79.9, 79.8 (C-7 and C-10 and C-12), 76.4 (broad, C-2), 74.6, 74.5 (C-11 and C-8), 71.0 (broad, C-5), 58.7, 56.5 (C-6 and C9), 55.6 (C-4), 51.6 (broad, C-1), 28.6 (C-14).

COSY (400 MHz / 400 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]:4.29 / 3.51 - 3.40, 2.21 - 2.04 (H-2/H-1, H-3), 4.20 - 4.08 / 2.42, 2.41 (H-9,H-6 /H-11,H-8), $4.04 / 3.77-3.51(\mathrm{H}-4 / \mathrm{H}-5), 3.77-$ 3.51 / 4.04 (H-5/H-4), $3.51-3.40 / 4.29(\mathrm{H}-1 / \mathrm{H}-2), 2.42 / 4.20-4.08(\mathrm{H}-8, \mathrm{H}-11 / \mathrm{H} 6, \mathrm{H} 9), 2.41 / 4.20-$ 4.08 (H-8, H-11 / H-6,H-9), $2.21-2.04$ / 4.04, $3.51-3.40(\mathrm{H}-3 / \mathrm{H}-2, \mathrm{H}-1)$.

HSQC (400 MHz / 101 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]:4.29 / 76.4 (H-2/C-2), 4.20 4.08 / 58.7, 56.5 (H-6/ C-6 and H-9/C-9), 4.04 / 55.6 (H-4/ C-4), $3.77-3.51 / 71.0$ (H-5/ C-5), 3.51 - $3.40 / 51.6$ (H-1/C-1), $1.46 / 28.6$ (H-31/ C-31).

HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]:4.20-4.08 / 79.9, 79.8, 76.4, 74.6, 74.5, 71.0 (H-6/ C-5, C-7, C-8 and H-9/C-10, C-11, C-2), 2.21 - 2.04 / 71.0, 55.6 (H-3/C-5, C-4), 1.46 / 154.6, 79.9, 28.6 (H-31/C-11, C-12, C-31').

MS (ESI-pos, MeOH): m/z = $316.1520\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. 316.1519 for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{4}\right]^{+}$)

IR (ATR-FT): $\tilde{\mathbf{v}}$ ($\mathbf{c m}^{-1}$): 3282 (m), 2975 (m), 2931 (m), 1681 (s), 1478 (w), 1403 (s), 1367 (s$)$, 1253 (w), 1161 (s), 1131 (m), 1087 (m), 925 (w), 858 (w), 773 (w), 671 (w), 551 (w).

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

Figure S19: ${ }^{1} \mathrm{H}$-NMR spectrum of (R,S)-17 ([D]-chloroform, $298 \mathrm{~K}, 400 \mathrm{MHz}$).

Figure S20: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (R, S) - $\mathbf{1 7}$ ([D]-chloroform, $298 \mathrm{~K}, 101 \mathrm{MHz}$).

Compound (R, S)-18

The Boc-protected amine (R, S)-17 ($340 \mathrm{mg}, 1.16 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dichloromethane (25 mL). Trifluoroacetic acid ($2.20 \mathrm{~mL}, 28.9 \mathrm{mmol}, 25 \mathrm{eq}$) was added and the reaction mixture was stirred overnight at room temperature. Sodium hydroxide ($2 \mathrm{M}, 20 \mathrm{~mL}$) was added carefully. The phases were separated and the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine ($1 \times 20 \mathrm{~mL}$). The solvent was removed in vacuo to give the product as a light orange oil ($220 \mathrm{mg}, 1.14 \mathrm{mmol}, 98 \%$).

Chemical formula: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
Molecular weight: $193.25 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 4.23 (ddd, J=7.2, 4.8, 2.2 Hz, 1H, H-2), 4.17 (t, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 4.11(\mathrm{~d}, \mathrm{~J}=2.4,2 \mathrm{H}, \mathrm{H}-9), 3.57-3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5), 3.43$ (dd, $\left.J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.08(\mathrm{dd}, J=12.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.05-2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, $2.40-2.43$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 8$ and H11), 1.95 - 2.02 (m, 1H, H-3), 1.68 - 1.58 (m, 1H, H-3') .
${ }^{13} \mathrm{C}$ NMR (101 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 80.0 (C-11), 79.8 (C-7), 79.7 (C-2), 74.6 (C-8), 74.3 (C-10), 72.8 (C-5), 58.6 (C-6), 56.6 (C-4), 56.3 (C-9), 52.1 (C-1), 34.8 (C-3).
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ (400 MHz / 400 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 4.23 / 3.08, 3.05 - 2.98, 1.68 - 1.58 (H-2/H-1, H-1', H-3), 4.17 / 2.41 (H-6/H-8), $4.11 / 2.41$ (H-9/H-11), $3.57-3.49 / 3.43$, 3.08, 1.99, 1.68 - 1.58 (H-4,H-5/H-5‘, H-1, H-3, H-3'), 3.43 / $3.57-3.49$ (H-5'/H-5), $3.08 / 4.23$, 3.05 - $2.98\left(\mathrm{H}-1 / \mathrm{H}-2, \mathrm{H}^{\prime} 1^{\prime}\right), 3.05-2.98 / 4.23,3.08\left(\mathrm{H}-1^{\prime} / \mathrm{H}-2, \mathrm{H}-1\right), 2.40-2.43 / 4.17,4.11(\mathrm{H}-8$, H-11/H-6, H-9), 1.99 / $3.57-3.49,1.68-1.58$ (H-3/ H-4, H-5, H-3'), 1.68 - 1.58 / 4.29, $3.57-$ 3.49, 1.99 (H-3'/H-2, H-4, H-3).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ ($400 \mathrm{MHz} / 101 \mathrm{MHz}$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: $4.23 / 79.7$ (H-2/C-2), 4.17 / 58.6 (H-6/C-6), 4.11 / 56.3 (H-9/C-9), $3.57-3.49$ / 72.8, 56.6 (H-5/C-5 and H-4/C-4), 3.43 / 72.8 (H-5'/C-5), 3.08 / 52.1 (H-1/C1), $3.05-2.98 / 52.1$ (H1'/C-1), 2.40-2.43 / 80.0, 74.6 (H-8/C-8 and H-11/C-11), 1.99 / 34.8 (H-3/C-3), $1.68-1.58 / 34.8$ (H-3'/C-3).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ ($400 \mathrm{MHz} / 101 \mathrm{MHz}$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]:4.17 / 79.8, 74.6, 72.8 (H-6/C-7, C-8, C-5), 4.11 / 80.0, 74.3 (H-9/C-11, C-10), $3.57-3.49 / 58.6,56.6,34.8$ (H-5 and H-4/C-6, C-4, C-3), 3.43 / 58.6, 56.6, 34.8 (H-5'/C-6, C-4, C-3), 3.08 / 56.6, 34.8 (H-1/C-4, C-3), 3.05 - 2.98 / 79.7, 56.6, 34.8 (H-1'/ C-2, C-4, C-3), 2.40-2.43 / 58.6, 56.3 (H-11 and H-8/C-10, C-9), 1.99 / 79.7, 72.8, 52.1 (H-3/C-2, C-5, C-1), 1.68 - 1.58 / 72.8, 56.6 (H-3'/C-5, C-4).

MS (ESI-pos, MeOH): $\mathrm{m} / \mathrm{z}=216.1001\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. 216.0995 for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{2}\right]^{+}$).
IR (ATR-FT): $\boldsymbol{\tilde { \mathbf { v } }} \mathbf{(c m}^{-1}$): 3278 (m), 2923 (m), 2854 (m), 1604 (s$), 1439$ (m), 1359 (w), 1336 (w), 1233 (w), 1199 (w), 1079 (s), 918 (w), 901 (w), 664 (w).

Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (R, S) - $\mathbf{1 8}$ ([D]-chloroform, $298 \mathrm{~K}, 400 \mathrm{MHz}$).

Figure S22: ${ }^{13} \mathrm{C}$-NMR spectrum of (R, S)-18 ([D]-chloroform, $298 \mathrm{~K}, 101 \mathrm{MHz}$).

Compound (R, S)-7

Amine (R, S)-18 ($120 \mathrm{mg}, 0.621 \mathrm{mmol}, 1 \mathrm{eq}$) was weighed in a flask and dissolved in diethyl ether (10 mL). Hydrogen chloride in diethyl ether ($1 \mathrm{M}, 6.83$ $\mathrm{mL}, 6.83 \mathrm{mmol}, 11 \mathrm{eq})$ was slowly added and the mixture was stirred for 30 minutes at room temperature. The solvent was removed in vacuo and the residue was redissolved in dichloromethane (10 mL). Ammonium hexafluorophosphate ($521 \mathrm{mg}, 3.11 \mathrm{mmol}, 5 \mathrm{eq}$) was added and the mixture was stirred overnight. The suspension was filtered and the filter residue was washed with DCM $(10 \mathrm{~mL})$. The filtrate was dried to give the product as a white solid (170 $\mathrm{mg}, 0.503 \mathrm{mmol}, 81 \%)$.

Chemical formula: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{P}$

Molecular weight: $338.21 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, [D]-chloroform, 298 K), $\boldsymbol{\delta}$ [in ppm]: 8.76 (br s, 2H, NH2), 4.49-4.55 (m, 1H, $\mathrm{H}-2), 4.27(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 4.24(\mathrm{~d}, J=2.3,1 \mathrm{H}, \mathrm{H}-9$) $, 4.20(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 4.09-$ 4.17 (m, 1H, H-4), 3.88 (dd, $J=10.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.78 (dd, $J=10.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.543.57 (m, 2H, H-1), 2.49 (2t, J = 2.5 Hz, 2H, H-8, H-11), 2.28 (dd, J = 14.4, 6.9 Hz, 1H, H-3), 2.09 (ddd, $J=15.3,10.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$).
${ }^{31}$ P NMR (162 MHz, [D]-chloroform, 298 K), δ [in ppm]: -142.04 (sept, J= 714 Hz).

Figure S23: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(R, S)-7$ ([D]-chloroform, $298 \mathrm{~K}, 400 \mathrm{MHz}$).

Figure S24: ${ }^{31} \mathrm{P}$-NMR spectrum of $(R, S)-7$ ([D]-chloroform, $298 \mathrm{~K}, 162 \mathrm{MHz}$).

The bisalkyne $(R, S)-18 \quad(15.0 \mathrm{mg}$, $0.0776 \mathrm{mmol}, 1$ eq.) and the stopper 9 ($105 \mathrm{mg}, 0.163 \mathrm{mmol}, 2.1 \mathrm{eq}$.) were weighed in a Schlenk flask and dried for 3 hours in vacuo. Dry and degassed dichloromethane (1.7 mL) was added and the mixture was stirred for 30 minutes. Tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyst ($14.5 \mathrm{mg}, 0.0388 \mathrm{mmol}, 0.5$ eq.) was added and the mixture was stirred for 4 hours at room temperature. 3-(Ethylenediamino)-propyl functionalized silica gel ($1.4 \mathrm{mmol} / \mathrm{g}, 30 \mathrm{mg}$) was added and the mixture as stirred for 1 hour. The mixture was then filtered and the filtrate was concentrated in vacuo. After purification by column chromatography (cyclohexane/ethyl acetate $/$ methanol $=4 / 4 / 1$), the product was obtained as a beige foam $(56.8 \mathrm{mg}, 0.0381 \mathrm{mmol}$, 49\%).

Chemical formula: $\mathrm{C}_{103} \mathrm{H}_{89} \mathrm{~N}_{7} \mathrm{O}_{4}$
Molecular weight: $1488.89 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 7.69 (s, 2H, H-12), 7.64 - 7.56 (m, 12H, $\mathrm{H}-26$), $7.55-7.46$ (m, 12H, H-23), $7.46-7.38$ (m, 12H, H-27), $7.37-7.27(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}-22$ and $\mathrm{H}-$ 28), $7.25-7.16$ (m, 4H, H-18), $6.85-6.72$ (m, 4H, H-17), 4.66 (s, 2H, H-6), $4.61-4.47$ (m, 6H, H-9 and H-13), $4.28-4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.01-3.91$ (m 4H, H-15), $3.90-3.81$ (m, 1H, H-4), 3.75 $-3.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.37-3.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 2.44-2.30(\mathrm{~m} 4 \mathrm{H}, \mathrm{H}-14), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.89 - 1.77 (m, 1H, H-3').
${ }^{13} \mathrm{C}$ NMR (101 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 156.6 (C-16), 146.1 (C-21), 144.6 (C-10) 140.7 (C-25), 139.49 and 139.45 (C-19), 138.7 (C-24), 132.4 (C-18), 131.6 (C-22), 128.9 (C-27), 127.4 (C-28), 127.1 (C-26), 126.3 (C-23), 123.5 (C-12), 113.5 (C-17), 77.4 (C-2), 70.2 (C-5, broad) 64.2 (C-6), 63.8 (C-15 and C-20), 62.5 (C-9) 57.7 (C-4), 50.9 (C-1, broad), 47.4 (C-13), 34.1 (C3), 30.1 (C-14).

COSY (400 MHz / 400 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 7.64 - 7.56 / 7.46 - 7.38 (H-26/H-27), $7.55-7.46 / 7.37-7.27$ (H-23/H-22), $7.46-7.38 / 7.64-7.56,7.37-7.27$ (H-27/H26, H-28), $7.37-7.27$ / $7.55-7.46,7.46-7.38$ (H-22, H-28/H-23, H-27), 7.25-7.16 / 6.85-6.72 (H-18/H-17), $6.85-6.72 / 7.25-7.16(H-17 / \mathrm{H}-18), 4.61-4.47 / 2.44-2.30(\mathrm{H}-13 / \mathrm{H}-14), 4.28-$ 4.20 / $3.37-3.23,1.89-1.77\left(\mathrm{H}-2 / \mathrm{H}-1, \mathrm{H}^{\prime}\right), 4.01-3.91 / 2.44-2.30(\mathrm{H}-15 / \mathrm{H}-14), 3.90-3.81 /$ $2.13-2.02,1.89-1.77(\mathrm{H}-4 / \mathrm{H}-3, \mathrm{H}-3$ '), $3.37-3.23 / 4.28-4.20(\mathrm{H}-1 / \mathrm{H}-2), 2.44-2.30 / 4.61-$
4.47, 4.01 - $3.91(\mathrm{H}-14 / \mathrm{H}-13, \mathrm{H}-15), 2.13-2.02 / 3.90-3.81,1.89-1.77(\mathrm{H}-3 / \mathrm{H}-4, \mathrm{H}-3$ '), $1.89-$ 1.77 / 4.20, 2.13 - 2.02 (H-3'/H-2, H-3).

HSQC (400 MHz / 101 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 7.69 / 123.5 (H-12/C-12), 7.64 - 7.56 / 127.1 (H-26/C-26), $7.55-7.46$ / 126.3 (H-23/C-23), $7.46-7.38 / 128.9$ (H-27/C-27), 7.37 - 7.27 / 131.6, 127.4 (H-22, H-28/C-22 andC-28), 7.25 - 7.16 / 132.4 (H-18/C-18), $6.85-6.72$ / 113.5 (H-17/C-17), 4.66 / 64.2 (H-6/C-6), 4.61 - 4.47 / 62.5, 47.4 (H-9, H-13/C-9, C-13), 4.28 4.20 / 77.4 (H-2/C-2), $4.01-3.91 / 63.8$ (H-15/C-15), $3.90-3.81 / 57.7(H-4 / \mathrm{C}-4), 3.75-3.63 /$ 70.2 (H-5/C-5) $3.37-3.23$ / 50.9 (H-1/C-1), $2.44-2.30 / 30.1$ (H-14/C-14), 2.13-2.02 / $34.1(\mathrm{H}-$ 3/C-3), 1.89 - 1.77 / 34.1 (H-3'/C-3).

HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 7.64 - 7.56 / 138.7, 128.9, 127.4, (H- 26/C-24, C-27, C-28), $7.55-7.46$ / 146.1, 140.7, 131.6, 126.3 (H-23/C-21, C-25, C-22, C-23'), 7.46 - 7.38 / 140.7, 128.9, 127.1 (H-27/C-25, C-27', C-26), 7.37 - 7.27 / 138.7, 131.6, 128.9, 126.3, 63.8 (H-22 and H-28 /C-24, C-22, C-27,C-23, C-20), $7.25-7.16$ / 156.6, 132.4, 63.8 (H-18/C-16, C-18', C-20), $6.85-6.72$ / 156.6, 139.5, 113.5 (H-17/ C-16, C-19, C-17'), 4.66 / 144.6, 123.5, 70.2 (H-6/C-10', C-12', C- 5), 4.61 - 4.47 / 144.6, 123.5, 63.8, 30.1 (H-9 and H-13/C-10, C12, C-15, C-14), 44.01 - 3.91 / 47.4 (H-15/C-13).

MS (ESI-pos, MeOH): $\mathrm{m} / \mathrm{z}=1488.7084\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. 1488.7048 for $\left.\left[\mathrm{C}_{103} \mathrm{H}_{90} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+}\right)$.
IR (ATR-FT): $\tilde{\mathbf{v}}\left(\mathbf{c m}^{-1}\right):=3030(\mathrm{w}), 2442(\mathrm{w}), 2160(\mathrm{~s}), 2031(\mathrm{~m}), 1977(\mathrm{~s}), 1601$ (w), $1582(\mathrm{w})$, 1506 (w), 1483 (m), 1447 (w), 1294 (w), 1244 (m) 1182 (m), 1094 (w), 1042 (w), 1007 (m), 826 (s), 764 (m), 746 (s), 694 (s), 665 (w), 652 (w), 613 (w) cm ${ }^{-1}$.

Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(R, S)-19$ ([D]-chloroform, $298 \mathrm{~K}, 400 \mathrm{MHz}$).

Figure S26: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of (R, S)-19 ([D]-chloroform, $298 \mathrm{~K}, 101 \mathrm{MHz}$).

Compound (S, R, S)-3

The amine $(R, S)-7 \quad(31.0 \mathrm{mg}$, $0.0914 \mathrm{mmol}, 2.3 \mathrm{eq})$, the stopper 9 $(119 \mathrm{mg}, 0.183 \mathrm{mmol}, 4.6 \mathrm{eq})$ and the macrocycle (S)-8 (50.0 mg, $0.0397 \mathrm{mmol}, 1 \mathrm{eq})$ were weighed in a Schlenk flask and dried for 3 hours in vacuo. Dry and degassed dichloromethane (4 mL) was added and the mixture was stirred for 2 hours.
Tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyst ($10.4 \mathrm{mg}, 0.0278 \mathrm{mmol}, 0.7 \mathrm{eq}$) was then added and the mixture was stirred overnight at room temperature. 3-(Ethylenediamino)propyl functionalized silica gel ($1.4 \mathrm{mmol} / \mathrm{g}, 60 \mathrm{mg}$) was added and the mixture was stirred for 2 hours. The mixture was then filtered and the filtrate was concentrated in vacuo. After purification by column chromatography $\left(1^{\text {st }}\right.$ column: chloroform/methanol $100 / 1$, $2^{\text {nd }}$ column: dichloromethane/ethylacetate $1 / 1+1-10 \%$ methanol performed with NextGen), the product was obtained as a white foam ($37.2 \mathrm{mg}, 0.0148 \mathrm{mmol}, 37 \%$).

Chemical formula: $\mathrm{C}_{163} \mathrm{H}_{162} \mathrm{~N}_{7} \mathrm{O}_{16} \mathrm{P}$

Molecular weight: $2506.10 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},[\mathrm{D}]-\mathrm{chloroform}\right.$,298 K) $\boldsymbol{\delta}$ [in ppm]: 9.78 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 8.46 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), 8.04 (s, 1H, H-12), 7.98 (s, 2H, H-I), 7.89-7.84 (m, 2H, BINOL-Backbone), 7.75 (s, 1H, H-12'), 7.61 (d, J=6.80 Hz, 12H, H-26), 7.55 (s, 2H, H-l'), 7.54-7.48 (m, 14H, H-23, BINOL-Backbone), 7.477.39 (m, 13H, H-27, BINOL-Backbone), 7.38-7.30 (m, 21H, H-22, H-28, BINOL-Backbone), 7.227.10 (m, 6H, H-18, H-18', BINOL-Backbone), 6.72 (d, $J=9.58 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-17$), 6.68-6.60 (m, 2H, H17'), 5.63 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{v}$), 4.54-4.45 (m, 3H, Prolinol-Thread), 4.42-4.31 (m, 3H, Prolinol-Thread), 4.24-4.19 (m, 2H, Prolinol Thread), 4.14-4.03 (m, 3H, Prolinol-Thread), 3.97-3.91 (m, 2H, ProlinolThread), 3.88-3.82 (m, 7H, Ethylene glycol-Chain, Prolinol-Thread), 3.82-3.74 (m, 6H, Ethylene glycol-Chain), 3.74-3.56 (m, 12H, Ethylene glycol-Chain), 3.56-3.45 (m, 8H, Ethylene glycolChain), 3.40-3.29 (m, 4H, H-w), 3.23-3.15 (m, 1H, Prolinol-Thread), 2.89-2.66 (m, 1H, ProlinolThread, water), 2.28-2.19 (m, 2H, Prolinol-Thread), 1.96-1.90 (m, 1H, Prolinol-Thread), 1.71-1.62 ($\mathrm{m}, 1 \mathrm{H}$, Prolinol-Thread), 1.25-1.11 (m, 24H, H-x).
${ }^{13} \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz}$, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 156.58, 146.18, 146.12, 140.86, 140.71, $140.67,138.74,138.70,138.66,132.42,132.29,132.18,131.56$ (C-22, C-28), 130.29, 130.13 (CI), 129.47, 129.25 (C-v), 129.18, 128.89 (C-27), 128.35, 127.36 (C-22, C-28), 127.09 (C-26), 126.47, 126.28 (C-23), 113.48 (C-17), 73.70, 73.64, 71.26, 71.18, 71.14, 70.96, 70.92, 70.78,
$70.72,70.68,70.54,70.39,70.31,70.23,69.99,69.73,64.16,63.78,62.45,58.11,50.04,32.86$, 30.09, 29.53, 26.68 (C-w), 24.50 (C-x), 24.34 (C-x'), 24.19 (C-x"), 23.97 (C-x"').
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ (600 MHz, [D]-chloroform, 298K) [in ppm]: 7.98/ 130.13; 7.89-7.84/ 128.35; 7.75/ 123.7; 7.61/127.06; 7.55/126.28; 7.54-7.48/128.89; 7.47-7.39/131.56, 127.36, 125.3; 7.22-7.10/ 132.3, 125.9; 6.72/113.5; 6.68-6.60/113.49; 5.63/129.41; 4.54-4.45/ 62.39; 4.42-4.31/ 62.39, 47.13; 4.14-4.03/73.7; 3.97-3.91/73.7; 3.88-3.82/71.2, 64.2, 50.8; 3.74-3.56/70.8, 63.8; 3.56$3.45 / 70.4 ; 3.40-3.29 / 26.67 ; 3.23-3.15 / 50.0 ; 2.89-2.66 / 50.0 ; 2.28-2.19 / 30.0 ; 1.96-1.90 / 32.8$; 1.60/32.8; 1.25-1.11/ 24.51,24.29,24.25,23.98.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ ($600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.89-7.84/7.38-7.30; 7.61/7.54-7.48, 7.47-7.39, 7.38-7.30; 7.54-7.48/7.75, 7.47-7.39, 7.22-7.10; 7.47-7.39/7.75, 7.547.48, 7.38-7.30; 7.38-7.30/7.89-7.84, 7.75, 7.47-7.39, 7.54-7.48, 7.22-7.10; 7.22-7.10/7.47-7.39, 6.72, 6.68-6.60; 6.72/7.22-7.10; 6.68-6.60/7.22-7.10; 5.63 / 3.82-3.74; 4.42-4.31/2.17; 3.82-3.74 /5.63, 2.28-2.19; 3.40-3.29/ 1.25-1.11; 2.89-2.66/ 3.23-3.15; 2.28-2.19/4.42-4.31, 3.82-3.74; 1.96-1.90/1.71-1.62; 1.71-1.62/4.24-4.19, 3.74-3.56, 1.96-1.90; 1.25-1.11/3.40-3.29.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.98/146.18, 132.31; 7.897.84/ 132.3; 7.75/144.44, 127.36; 7.61/138.68, 128.89, 127.06; 7.54-7.48/152.52, 146.15, 140.71, 134.94, 131.56, 126.28,26.67; 7.47-7.39/140.71, 128.89, 127.06; 7.38-7.30/ 138.68,131.56, 128.89; 6.72/139.34; $5.63 / 71.3 ; 3.82-3.74 / 129.41$; 1.25-1.11/140.71, 26.67, 23.38.

MS (ESI-pos, MeOH): $m / z=1253.0875\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right.$, calcd. 1253.0981 for $\left[\mathrm{C}_{163} \mathrm{H}_{164} \mathrm{~N}_{7} \mathrm{O}_{16} \mathrm{P}\right]^{2+}$)
IR (ATR-FT): \mathbf{v} ($\mathbf{c m}^{-1}$): 3029 (m), 2866 (m), 1484 (s), 1248 (m), 1095 (s), $830(\mathrm{~m}), 763(\mathrm{~m}), 747$ (m), 697 (m), 626 (w), 570 (w), 537 (w), 507 (w), 492 (w).

Figure S27: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(S, R, S)-\mathbf{3}$ ([D]-chloroform, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S28: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $(S, R, S)-\mathbf{3}$ ([D]-chloroform, $298 \mathrm{~K}, 151 \mathrm{MHz}$).

No.	Ret. Time	Height	Area	Percent
1	44.645	2.533	1.8797	1.23
2	48.424	189.644	150.6349	98.77

Figure S29: Reversed phase HPLC of the rotaxane (S, R, S)-3.

Compound (R, R, S)-3

The amine $(R, S)-7(31.0 \mathrm{mg}, 0.0914$ $\mathrm{mmol}, 2.3 \mathrm{eq}$), the stopper $9(119 \mathrm{mg}$, $0.183 \mathrm{mmol}, 4.6 \mathrm{eq}$) and the macrocycle $(R)-8 \quad(50.0 \mathrm{mg}, \quad 0.0397$ $\mathrm{mmol}, 1 \mathrm{eq}$) were weighed in a Schlenk flask and dried for 3 hours in vacuo. Dry and degassed dichloromethane (4 mL) was added and the mixture was stirred for 2 hours. Tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyst ($10.4 \mathrm{mg}, 0.0278 \mathrm{mmol}, 0.7$ eq) was added and the mixture was stirred overnight at room temperature. 3-(Ethylenediamino)propyl functionalized silica gel ($1.4 \mathrm{mmol} / \mathrm{g}, 60 \mathrm{mg}$) was added and the mixture was stirred for 2 hours. The mixture was then filtered and the filtrate was concentrated in vacuo. After purification by column chromatography ($1^{\text {st }}$ column: chloroform/methanol 100/1, $2^{\text {nd }}$ column: dichlormethane/ethylacetate $1 / 1+1-10 \%$ methanol performed with NextGen), the product was obtained as a white foam ($18.9 \mathrm{mg}, 0.00754 \mathrm{mmol}, 19 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 9.79 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}$), $8.50\left(\mathrm{br} \mathrm{s,1H}, \mathrm{NH}_{2}\right)$, 8.01 (s, 1H, H-12), 7.97 (s, 2H, H-I), 7.88-7.82 (m, 2H, BINOL-Backbone), 7.75 (s, 1H, H-12'), 7.61 (d, J=6.7 Hz, 12H, H-26), 7.56 (s, 2H, H-l'), 7.54-7.49 (m, 14H, H-23, BINOL-Backbone), 7.457.39 (m, 13H, H-27, BINOL-Backbone), 7.36-7.30 (m, 21H, H-22, H-28, BINOL-Backbone), 7.207.15 (m, 6H, H-18, H-18', BINOL-Backbone), 7.15-7.07 (m, 2H, H-17), 6.74-6.69 (m, 2H, H-17) , 5.65-5.61 (m, 2H, H-v), 4.53-4.45 (m, 3H, Prolinol-Thread), 4.41-4.31 (m, 3H, Prolinol-Thread), 4.24-4.20 (m, 2H, Prolinol Thread), 4.12-4.05 (m, 3H, Prolinol-Thread), 3.97-3.92 (m, 2H, ProlinolThread), 3.88-3.82 (m, 7H, Ethylene glycol-Chain, Prolinol-Thread), 3.80-3.74 (m, 6H, Ethylene glycol-Chain), 3.67-3.57 (m, 12H, Ethylene glycol-Chain), 3.56-3.44 (m, 8H, Ethylene glycolChain), 3.38-3.30 (m, 4H, H-w), 3.21-3.15 (m, 1H, Prolinol-Thread), 2.84-2.77 (m, 1H, ProlinolThread, water), 2.27-2.16 (m, 2H, Prolinol-Thread), 1.96-1.88 (m, 1H, Prolinol-Thread), 1.72-1.63 ($\mathrm{m}, 1 \mathrm{H}$, Prolinol-Thread), 1.24-1.13 (m, 24H, H-x).
${ }^{13}$ C- NMR (151 MHz, [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 156.6, , 146.2, 146.1, 140.7, 140.6 , 139.3, 138.7, 138.6, 132.4, 132.3 (C-e), 132.2 (C-18), 131.6 (C-22, C-28), 131.2, 130.0 (C-I), 129.5, 129.3 (C-v), 128.9, 128.3, 127.4 (C-28), 127.1 (C-26), 126.4, 126.3 (C-23), 113.5 (C-17), $73.7,71.3,71.2,71.1,70.9,70.8,70.7,70.5,70.3,70.0(\mathrm{C}-\mathrm{u}), 64.1,63.8,63.7,62.2,47.4,41.1$, 30.1, 29.7, 29.5, 26.7, 26.6 (C-w), 24.5 (C-x), 24.4 (C-x'), 24.3 (C-x"), 24.0 (C-x'").
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ (600 MHz , [D]-chloroform, 298K) [in ppm]: 7.88-7.82/7.36-7.30; 7.61/7.54-7.49, 7.45-7.39, 7.36-7.30; 7.56/7.61, 7.45-7.39, 7.36-7.30; 7.54-7.49/ 7.61, 7.45-7.39, 7.36-7.30; 7.457.39/7.61, 7.54-7.49, 7.36-7.30; 7.36-7.30/ 7.88-7.82, 7.61, 7.54-7.49, 7.45-7.39; 7.20-7.15/ 6.746.69; 6.74-6.69 /7.20-7.15; 4.41-4.31/ 2.27-2.16; 3.97-3.92/3.80-3.74; 3.88-3.82/3.80-3.74, 2.272.16; 3.80-3.74/3.97-3.92, 3.67-3.57; 3.67-3.57/3.56-3.44; 3.56-3.44/3.67-3.57; 3.38-3.30/1.241.13; 3.21-3.15/2.84-2.77; 2.84-2.77/3.21-3.15; 2.27-2.16/ 4.41-4.31, 3.88-3.82; 1.24-1.13/3.383.30.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.97/ 130.0; 7.887.82/128.3; 7.61/ 127.1; 7.56/ 126.4; 7.54-7.49/126.3; 7.45-7.39/129.3; 7.36-7.30/131.6, 127.4; 7.20-7.15/132.3; 7.15-7.07/132.2; 6.74-6.69 /113.5; 5.65-5.61/129.3; 4.53-4.45/62.2; 4.414.31/62.2; 4.24-4.20/47.4; 3.97-3.92/73.7; 3.88-3.82/71.3; 3.80-3.74/70.3; 3.67-3.57/71.3-70.7; 3.56-3.44/70.0; 3.38-3.30/26.7; 2.27-2.16/30.1; 1.24-1.13/24.5-24.0.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ ($600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 7.97/132.4; 7.75/144.7; 7.61/126.4, 238.7, 128.5; 7.56/ 152.7, 124.9, 126.3, 26.6; 7.54-7.49/152.7, 126.2, 140.9, 134.9, 131.6, 126.42, 26.56; 7.45-7.39/140.64, 129.25, 127.36; 7.36-7.30/138.66, 131.57, 126.42, 63.79; 7.20-7.15/156.6, 128.90; 7.15-7.07/132.16; 5.65-5.61/71.08; 3.88-3.82/129.25; 3.67-3.57/70.54; 3.38-3.30/156.6, 140.86, 126.42, 24.26; 1.24-1.13/140.8, 26.66, 24.26.

MS (ESI-pos, MeOH): $m / z=1253.0979\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right.$, calcd. 1253.0981 for $\left.\left[\mathrm{C}_{163} \mathrm{H}_{164} \mathrm{~N}_{7} \mathrm{O}_{16} \mathrm{P}\right]^{2+}\right)$. IR (ATR-FT): $\boldsymbol{\tilde { \mathbf { v } }}$ (cm${ }^{-1}$): 3026 (w), 2957 (m), 2931 (m), 1478 (w), 1403 (m), 1367 (m), 1253 (s), 1161 (w), 1131 (s), 1087 (w), 925 (w), 858 (s), 773 (m), 671 (s), 551 (w), 491 (w).

Figure S30: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(R, R, S)-\mathbf{3}$ ([D]-chloroform, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S31: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $(R, R, S)-\mathbf{3}$ ([D]-chloroform, $298 \mathrm{~K}, 151 \mathrm{MHz}$)

Figure S32: Reversed phase HPLC of the rotaxane (R, R, S)-3.

3. Catalysis experiments

3.1 Synthesis of the racemates

Michael product (rac)-12a

The aldehyde 10a ($126 \mu \mathrm{~L}, 0.953 \mu \mathrm{~mol}$, 1eq.) and diethyl malonate ($152 \mu \mathrm{~L}$, $1.00 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$) were weighed into a Schlenk flask and dissolved in tetrahydrofuran under argon atmosphere. Pyrrolidine ($7.88 \mu \mathrm{~L}, 0.0953 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$) was added and the mixture was stirred for 3 days at room temperature. The solvent was removed and the crude product was purified by column chromatography (cyclohexane/ethyl acetate $=4 / 1$). The product was obtained as a colorless film (no yield was determined).

Chemical formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$
Molecular weight: $292.33 \mathrm{~g} / \mathrm{mol}$
The NMR data corresponds to the literature. ${ }^{[3 b]}$

Michael product (rac)-12b
(rac)-Binaphthyldiyl hydrogen phosphate ($5.7 \mathrm{mg}, 0.0164 \mathrm{mmol}, 0.1 \mathrm{eq}$) and
 dibenzylamine ($1.76 \mathrm{mg}, \quad 0.0164 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were dissolved in tetrahydrofuran/ethanol $(4 / 1,600 \mu \mathrm{~L})$ and a freshly prepared aqueous solution of lithium hydroxide ($1 \mathrm{M}, 16.4 \mu \mathrm{~L}, 0.0164 \mathrm{mmol}, 0.1 \mathrm{eq}$.) was added. The solution was placed in a sonicator bath for 30 seconds and then left standing for 30 minutes. α, β-unsaturated aldehyde 10 b ($29.9 \mathrm{mg}, 0.164 \mathrm{mmol}, 1 \mathrm{eq}$.) and diethyl malonate ($27.5 \mu \mathrm{~L}$, $0.180 \mathrm{mmol}, 1.1$ eq.) were added. The reaction mixture was stirred for 3 days at room temperature. The solvent was removed and the crude product was purified by column chromatography (cyclohexane/ethyl acetate $=4 / 1$). The product was obtained as a light yellow oil (no yield was determined).

Chemical formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
Molecular weight: $342.39 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz},[\mathrm{D}]-\mathrm{chloroform}, 298 \mathrm{~K}) \boldsymbol{\delta}$ [in ppm]: $9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-13), 8.26$ (d, J=8.2 Hz, $1 \mathrm{H}, \mathrm{H}-6), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, $7.50(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9$ and H-10), 4.96 (br. s, $1 \mathrm{H}, \mathrm{H}-11$), 4.19 (q, $J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16$), 3.96 (br. s, $1 \mathrm{H}, \mathrm{H}-14$), 3.86 ($\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16$ '), 3.14-3.07 (m, 2H, H-12), $\left.1.24(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-17), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-17)^{\prime}\right)$.
${ }^{13} \mathrm{C}-$ NMR (151 MHz , [D]-chloroform, 298 K) $\boldsymbol{\delta}$ [in ppm]: 200.3 (C-13), 168.3 (C-15), 167.7 (C15'), 136.4 (C-1), 134.2 (C-2), 131.4 (C-7), 129.2 (C-3), 128.2 (C-8), 126.7 (C-5), 126.0 (C-4), 125.4 (C-10 or C-9), 124.5 (C-10 or C-9), 123.1 (C-6), 61.9 (C-16), 61.7 (C-16'), 57.1 (C-14), 47.5 (C-12), 14.2 (C-17), 13.7 (C-17'). The signal for $\mathrm{C}-11$ was not found.
${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ ($\mathbf{6 0 0} \mathbf{~ M H z , ~ [D] - c h l o r o f o r m , ~ 2 9 8 K) ~ [i n ~ p p m] : ~ 9 . 6 0 / 3 . 1 4 - 3 . 0 7 ~ (H - 1 3 / H - 1 2) , ~ 8 . 2 6 / 7 . 5 9 ~}$ (H-6/H-5), 7.75/7.44-7.38 (H-8/H-10 or H-9), 7.59/8.26, 7.50 (H-5/H-6, H-4), 7.50/7.84, 7.59 (H-4/H-3, H-5), 7.44-7.38/7.75 (H-10 or H-9/H-8), 4.96/3.96, 3.14-3.07 (H-11/H-14, H-12), 4.19/1.24 (H-16/H-17), 3.96/4.96 (H-14/H-11), 3.86/0.86 (H-16'/H-17'), 3.14-3.07/9.60, 4.96 (H-12/H-13, H11), 1.24/4.19 (H-17/H-16), 0.86/3.86 (H-17'/H-16').
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}(600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 9.60/200.3 (H-13/C-13), 8.26/123.1 (H-6/C-6), 7.84/129.2 (H-3/C-3), 7.75/128.24 (H-8/C-8), 7.59/126.70 (H-5,C-5), 7.50/125.98 (H-4/C-4), 7.44-7.38/125.38, 124.53 (H-10,H-9/C-10/C-9), 4.19/61.91 (H-16/C-16), 3.96/57.14 (H-14/C-14), 3.86/61.66 (H-16'/C-16'), 3.14-3.07/47.49 (H-12/C-12), 1.24/14.16 (H-17/C-17), 0.86/13.72 (H-17'/C-17').
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ ($600 \mathrm{MHz} / 151 \mathrm{MHz}$, [D]-chloroform, 298K) [in ppm]: 9.60/47.5 (H-13/C-12), 7.84/134.2, 131.4, 128.2, 126.7 (H-3/C-2, C-7, C-8, C-5), 7.75/134.2, 131.4, 129.2, 124.5 (H-8/C2, C-7, C-3, C-10 and C-9), 7.59/131.4, 129.2 (H-5/ C-7, C-3), 7.50/ 134.2, 123.1 (H-4/C-2, C-6), 7.44-7.38/136.4, 134.2, 131.4, 128.2 (H-10 and H-9/C-1, C-2, C-7, C-8), 4.19/168.3, $14.16(\mathrm{H}-$ 16/C-15, C-17), 3.86/167.7, 13.7 (H-16'/C-15', C-17'), 3.14-3.07/200.3, 136.4, 57.1 (H-12/C-13, C-1, C-14), 1.24/61.9 (H-17/C-16), 0.86/61.7 (H-17'/C-16').

MS (ESI-pos, MeOH): $m / z=365.1387\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. 365.1359 for $\left.\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{5}\right]^{+}\right)$.
IR (ATR-FT): $\tilde{\mathbf{v}}$ (cm^{-1}): 2983 (w), 1725 (s$), 1368$ (w), 1301 (w), 1251 (m), 1228 (m), 1176 (m), 1155 (m), 1030 (m), 799 (w), 780 (m).

Figure S33: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 2 b}$ ([D]-chloroform, $298 \mathrm{~K}, 600 \mathrm{MHz}$).

Figure S34: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{1 2 b}$ ([D]-chloroform, $298 \mathrm{~K}, 151 \mathrm{MHz}$)

Each catalyst was preliminarily prepared by the following procedure: In a test tube, catalyst ($1.2 \mu \mathrm{~mol}$, 1 eq.) was dissolved in THF ($500 \mu \mathrm{~L}$) and a freshly prepared aqueous solution of lithium hydroxide ($1 \mathrm{M}, 1.32 \mu \mathrm{~L}, 1.32 \mu \mathrm{~mol}, 1.1$ eq.) was added. The solution was placed in a sonicator bath for 30 seconds and then left standing for 30 minutes. Then the solvent was removed by a flow of argon and the remaining catalyst dried overnight under high vacuum before use.

Catalyst ($1.20 \mu \mathrm{~mol}, 0.02$ eq.) was dissolved in deuterated tetrahydrofuran (200 mL) and successively α, β-unsaturated aldehyde ($90.0 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$) and diethyl malonate ($60.0 \mu \mathrm{~mol}$, 1 eq.) were added. The solution was transferred to a 3 mm diameter NMR tube previously flushed with argon. The reaction was performed at room temperature and conversion controlled by NMR spectroscopy on a BRUKER 400 MHz NMR spectrometer, based on appearance of the aldehyde proton of Michael product (9.51 ppm) and central methylene proton of diethyl malonate (3.32 ppm). After 7 days, the solvent was removed and the crude was purified by silica gel column chromatography ($1 \mathrm{~cm} \times 35 \mathrm{~cm}$, cyclohexane/ethylacetate 8/1) to isolate the Michael-addition product.

Comment: The deuterated tetrahydrofuran was used as obtained and not dried prior to the reaction.

Table S1: Michael addition of diethyl malonate to trans-cinnamaldehyde 10a by different rotaxanes in comparison to non-interlocked catalysts.

Entry	Catalyst ${ }^{(\mathrm{a})}$	Conversion ${ }^{(b)}$ (\%)	Enantiomeric excess ${ }^{(c)}$ (\%)
1	Rotaxane (S)-1 $\mathbf{1}^{\text {(d) }}$	88	53
2	Thread + (S)-macrocycle ${ }^{(\mathrm{d})}$	76	9
3	(R, S)-prolinol-thread	12	17
4	(S)-macrocycle + (R,S)-thread	30	37
5	Rotaxane (S, R, S)-3	84	-8
6	(R)-macrocycle $+(R, S)$-thread	7	21
7	Rotaxane (R, R, S)-3	82	30
8	Rotaxane (R, R, S)-3 ${ }^{(\mathrm{e})}$	$62^{(\mathrm{e})}$	40

Reaction and reagents: Malonate (1 eq), aldehyde (1.5 eq), 0.3 M , r.t., 7 days; (a) 2 mol\% catalyst loading; (b) Determined by ${ }^{1} \mathrm{H}$-NMR; (c) determined after purification on a DAICEL Chiralpak AD-H column, 20/80 isopropanol $/ n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; (d) data taken from reference 3b. (e) After addition of LiOH ($2.2 \mathrm{~mol} \%$) and storage of the deprotonated catalyst in thf-d8 solution for 8 days, followed by addition of starting materials, conversion determined after 6 days.

Table S2: Michael addition of diethyl malonate to naphthyl-derivate 10b by different rotaxanes in comparison to non-interlocked catalysts.

Entry	Catalyst $^{(\mathbf{a})}$	Conversion $^{(\mathbf{b})}(\%)$	Enantiomeric excess ${ }^{(\mathbf{c})}$ (\%)
1	Rotaxane $(S)-\mathbf{1}$	54	32
2	Thread $+(S)$-macrocycle	11	5
3	$(R, S)-$ prolinol-thread	34	10
4	(S)-macrocycle $+(R, S)$-thread	18	16
5	Rotaxane $(S, R, S)-3$	71	-30
6	(R)-macrocycle $+(R, S)$-thread	30	17
7	Rotaxane $(R, R, S)-3$	82	0

Reaction and reagents: Malonate (1 eq), aldehyde (1.5 eq), 0.3 M , r.t., 7 days; (a) 2 mol\% catalyst loading; (b) Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; (c) determined after purification on a DAICEL Chiralpak AD-H column, 20/80 isopropanol $/ n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$;

3.3 Conversion curves

Figure S35: Conversion curves from reaction using 10a (entry 3 to 7, Table 1)

Figure S36: Test for catalyst stability: Conversion curve from reaction using 10a with rotaxane (R, R, S)-3 (2 mol\%) after addition of $\mathrm{LiOH}(2.2 \mathrm{~mol} \%)$ and storage of the deprotonated catalyst in thf-d8 solution for 8 days, followed by addition of starting materials $(t=0)$.

Figure S37: Conversion curves from reaction using 10b (entry 3 to 7, Table 2)

Figure S38: Conversion curves from reaction using 10b (entry 1 and 2, Table 2)
3.4 Chiral HPLC profiles

No.	Ret. Time	Height	Area	Percent
1	17.04167	51.5724	1340587.49	50.823
2	21.6667	35.6218	1297170	49.177

Figure S39: Chiral HPLC of Michael product (rac)-12a.

No.	Ret. Time	Height	Area	Percent
1	18.925	883.9421	$2.182782 \mathrm{E}+07$	49.311
2	31.04167	574.601	$2.243791 \mathrm{E}+07$	50.689

Figure S40: Chiral HPLC of Michael product (rac)-12b.

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.742	7.325572	213583	55.670	
2	25.483	4.522574	150677.9	39.273	
					17%

Figure S41: Chiral HPLC of Michael product 12a using (R, S)-prolinol-thread as catalyst (Entry 3, Table 1). Due to the low conversion, product isolation was difficult and the mixture contained starting material (peak at 11 min.).

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.042	6.56	189829.9	68.604	
2	24.517	2.62	86872.9	31.396	
					37%

Figure S42: Chiral HPLC of Michael product 12a using (R, S)-prolinol-thread and (S)-macrocycle as catalyst (Entry 4, Table 1). Due to the low conversion, product isolation was difficult and the mixture contained starting material (peak at 11 min).

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	15.692	65.59	1406220.00	46.032	
2	19.325	61.75	1648632.00	53.968	
					-8%

Figure S43: Chiral HPLC of Michael product 12a using rotaxane (S, R, S) - $\mathbf{3}$ as catalyst (Entry 5, Table 1)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	16.033	102.33	2254103.0	52.855	
2	19.767	59.91	1737519.0	40.742	
					21%

Figure S44: Chiral HPLC of Michael product 12a using (R, S)-prolinol-thread and (R)-macrocycle as catalyst (Entry 6, Table 1). The product contained some product of aldehyde oxidation (peaks at 17.5 and 19.5 mins).

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	17.417	265.88	6945118.00	64.109	
2	21.800	119.44	3750080	34.616	
					30%

Figure S45: Chiral HPLC of Michael product 12a using rotaxane (R, R, S)-3 as catalyst (Entry 7, Table 1)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	18.458	185.79	4183762	69.99	
2	23.441	62.42	1793738	30.01	
					40%

Figure S46: Chiral HPLC of Michael product 12a using rotaxane (R, R, S) - $\mathbf{3}$ as catalyst (Entry $\mathbf{8}$, Table 1)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	17.042	125.56	2880939	65.78	
2	26.067	42.92	1498570	34.22	
					32%

Figure S47: Chiral HPLC of Michael product $\mathbf{1 2 b}$ using rotaxane $(S) \mathbf{- 1}$ as catalyst (Entry 1, Table 2)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	17.958	230.85	5349968	50.56	
2	28.992	135.11	4853529	45.87	
					5%

Figure S48: Chiral HPLC of Michael product 12b using achiral thread and (S)-macrocycle as catalyst (Entry 2, Table 2)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.058	445.06	$1.190147 \mathrm{E}+07$	53.32	
2	31.508	229.77	9724914	43.57	
					10%

Figure S49: Chiral HPLC of Michael product from naphthyl-derivative 10b using prolinol based thread (Entry 3, Table 2)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.1	635.35	$1.688363 \mathrm{E}+07$	56.17	
2	31.608	283.43	$1.224387 \mathrm{E}+07$	40.74	
					16%

Figure S50: Chiral HPLC of Michael product 12b using (R, S)-prolinol-thread and (S)-macrocycle as catalyst (Entry 4, Table 2)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.358	476.92	$1.293613 \mathrm{E}+07$	34.93	
2	33.808	389.93	$2.40997 \mathrm{E}+07$	65.07	
					-30%

Figure S51: Chiral HPLC of Michael product 12b using rotaxane (S, R, S) - $\mathbf{3}$ as catalyst (Entry 5, Table 2)

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.083	865.91	$2.283589 \mathrm{E}+07$	58.51	
2	31.325	384.56	$1.619163 \mathrm{E}+07$	41.49	
					17%

Figure S52: Chiral HPLC of Michael product 12b using (R, S)-prolinol-thread and (R)-macrocycle as catalyst (Entry 6, Table 2).

Result Table

No.	Ret. Time	Height	Area	Percent	ee
1	19.317	1662	$6.436755 \mathrm{E}+07$	50.43	
2	31.825	1310.82	$6.326414 \mathrm{E}+07$	49.57	
					1%

Figure S53: Chiral HPLC of Michael product 12b using rotaxane (R, R, S)-3 as catalyst (Entry 7, Table 2)

4. References:

[1] C. Wang, H. Yamamoto, J. Am. Chem. Soc. 2014, 136, 1222-1225.
[2] a) A. Manaprasertsak, S. Tharamak, C. Schedl, A.Roller, M. Widhalm, Molecules, 2019, 24, 3844.
b) S. B. J. Kan, H. Maruyama, M. Akaura, T. Kano, K. Maruoka, Angew. Chem. Int. Ed., 2017, 56, 9487-9491.
c) M. Thiele, F. Octa-Smolin, S. Thölke, C. Wölper, J. Linders, C. Mayer, G. Haberhauer, J. Niemeyer, Chem. Commun. 2021, 57, 9842-9845.
[3] a) R. Mitra, M. Thiele, F. Octa-Smolin, M. C. Letzel, J. Niemeyer, Chem. Commun. 2016, 5977-5980.
b) N. Pairault, H. Zhu, D. Jansen, A. Huber, C. G. Daniliuc, S. Grimme, J. Niemeyer, Angew. Chem. Int. Ed. 2020, 59, 5102-5107.

