Supporting Information

Electrochemical Decarboxylative Alkylation of β-Keto Acids with

Phenol Derivatives

Shan Wang, Zhaotian Wu, Junqiang Li, Yujun Zhu, Shaojun Zheng, Chunhui Jiang* and Hongfei Lu*

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.

Email: chemjiang@just.edu.cn, zjluhf1979@just.edu.cn

Table of Contents

1. General information	S1
2. Optimization of The Reaction Conditions	S2
3. General procedure	S6
4. Synthetic utility and comparison	S7
5. Characterization data of products	S8
6. Cyclic voltammetry studies and control experiments	S16
7. References	S20
8. ¹ H and ¹³ C-NMR spectra	S21

1. General information

¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were recorded with solvent CDCl₃ on Bruker avance DPX 400 spectrometer (400 MHz for ¹H, 101 MHz for ¹³C). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.16). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), td (doublet of triplet).

Exact ESI mass spectra were recorded on a Bruker Daltonics MicroTOF-Q. ESI-MS were obtained on a Thermo-ITQ. Mass spectral data (MS) was recorded using an Agilent-6110 mass spectrometer. For thin layer chromatography (TLC), pre-coated Qingdao Haiyang TLC plates (GF254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatographic separations were performed on 200-300 mesh silica gel (from Qingdao Haiyang Chem. Company, Ltd.). Unless otherwise noted, all reagents were purchased from commercial sources (Adamas, Energy, Aldrich) and used as received without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". The final cross-coupling reaction was carried out in an open vial under ambient condition.

2. Optimization of The Reaction Conditions

Table S1: Evaluation of electrolyte^[a]

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Cs_2CO_3 (0.5 equiv.), electrolyte (0.1 M), acetone/H₂O (5/1, 6 mL), CCE = 3.0 mA, 5 h, RT, under air. ^bYield is that of the isolated product. CCE = constant current electrolysis.

Table S2: Evaluation of f electric current^[a]

1	0	N.R
2	1.0	38
3	3.0	53
4	5.0	39
7	7.0	41

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Cs_2CO_3 (0.5 equiv.), acetone/H₂O (5/1, 6 mL), CCE, 5 h, RT, under air. ^b Yield is that of the isolated product. CCE = constant current electrolysis.

Table S3: Evaluation of base^[a]

Entry	Base	Yield(%) ^[b]
1	Cs ₂ CO ₃ as base	55
2	K ₂ CO ₃ as base	46
3	Na ₂ CO ₃ as base	64
4	NaOAc as base	35
5	NaHCO ₃ as base	57
6	NaH ₂ PO ₄ as base	33
7	DABCO as base	33
8	DBU as base	28
9	without base	45

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Base (0.5 equiv.), acetone/H₂O (5/1, 6 mL), CCE = 3.0 mA, 5 h, RT, under air. ^bYield is that of the isolated product. CCE = constant current electrolysis.

Table S4: Evaluation of solvents^[a]

+ OH	ООН	CC Pt Na ₂ CO ₃ (50 mol%) solvent, CCE at 3.0 mA, RT, 5 h	ОН
1a	2a		Заа
Entry		Solvent (mL)	Yield(%) ^[b]
1		acetone / $H_2O(5/1)$	65
2		acetone / $H_2O(4/2)$	60
3		acetone (6)	35
4		HFIP/H ₂ O (5/1)	45
5		THF/H ₂ O (5/1)	46
6		1,4-Dioxane/H ₂ O(5/1)	50
7		MeCN/H ₂ O (5/1)	65
8		MeCN/H ₂ O (4/1)	60
10		MeCN/H ₂ O (3/1)	78
12		MeCN/H ₂ O (2/1)	60
13		MeCN/H ₂ O (1/1)	60
14		MeCN (4)	42
15		H ₂ O (4)	N.R

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Na₂CO₃ (0.5 equiv.), Solvent (xx mL), CCE = 3.0 mA, 5 h, RT, under air. ^bYield is that of the isolated product. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, CCE = constant current electrolysis.

Table S5: Evaluation of electrode^[a]

^aReaction conditions: undivided cell, xx anode, xx cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Na₂CO₃ (0.5 equiv.), MeCN/H₂O (3/1, 4 mL), CCE = 3.0 mA, 5 h, RT, under air. ^bYield is that of the isolated product. CCE = constant current electrolysis.

Entry	Variation of mixture	Description	Conductivity ^[b]
1	MeCN/H ₂ O	solvents	13.87 µS/cm
2	$MeCN/H_2O + n-Bu_4NPF_6$	with electrolyte	6250 µS/cm
3	$MeCN/H_2O + Na_2CO_3$	with Na ₂ CO ₃	516 µS/cm
4	$MeCN/H_2O + n-Bu_4NPF_6 + Na_2CO_3$	with electrolyte and Na ₂ CO ₃	9300 µS/cm
5	MeCN/H2O + 1a + 2a	without Na ₂ CO ₃	225 µS/cm
6	$MeCN/H_2O + 1a + 2a + Na_2CO_3$	without electrolyte	1855 µS/cm
7	$\frac{\text{MeCN}/\text{H}_2\text{O} + 1a + 2a + n-\text{Bu}_4\text{NPF}_6 + Na_2\text{CO}_3}{\text{NeCN}}$	with electrolyte and Na ₂ CO ₃	10110 μS/cm

Table S6: Evaluation of the conductivity of different kind of solutions^[a]

[a] Measure conditions: **1a** (0.8 mmol), **2a** (1.6 mmol), Na₂CO₃ (0.5 equiv.), MeCN /H₂O (3/1, 4 mL) \cdot *n*-Bu₄NPF₆ (0.1 M). Conductivity was measured by DDSJ-308F Conductivity meter. [b] The data of each entry was measured three times and averaged.

3. General procedure

3.1 Graphical guide for the set-up

As experimental set-up, a graphite electrode (10 mm×15 mm×3 mm), a platinum plate electrode (10 mm×15 mm×0.1 mm), rubber plugs, an undivided three-necked bottle and Hansheng Puyuan Programmable DC Power Supplies (HPYS-120-01) were used.

Figure S1. Setup for milligram scale photoelectrocatalytic reactions. a) Electrodes; b) Assembled reactor; c) Reaction in progress.

Figure S2. Setup for the gram scale synthesis of 3. a) Assembled reaction setup. b) Reaction in progress.

3.2 Substrate preparation

All the β -ketoacids derivatives ^[1-2] and phenol derivatives ^[3-4] are known compounds and prepared according to the reported procedure.

Electrochemical Decarboxylative Alkylation

General procedure A:

Electrocatalysis was carried out in an undissociated cell with a Graphite (15 mm \times 15 mm \times 3 mm) as an anode and a platinum sheet (10 mm \times 15 mm \times 0.1 mm) as a cathode. 2,4,6-Trimethylphenol **1a** (54.48 mg, 0.4 mmol), 3-oxo-3-phenylpropionic acid **2a** (131.33 mg, 0.8 mmol), and anhydrous sodium carbonate (21.2 mg,0.2 mmol) were placed in a 10 mL three-necked flask and dissolved in acetonitrile/H₂O (3 mL/1 mL). Electrolysis was carried out continuously at a constant current of 3.0 mA for 5 h at room temperature. The electrodes were then cleaned with DCM, and then the combined solvents were dried with anhydrous sodium sulfate, and the solvents were removed by distillation under reduced pressure, followed by column chromatographic separation and purification (petroleum ether: ethyl acetate = 10:1) to obtain the desired product

4. Synthetic utility and comparison

A. Gram-Scale Synthesis

B. Electrooxidation comparison with chemical methods

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Na₂CO₃ (0.5 equiv.), MeCN/H₂O (3/1, 4 mL), CCE = 3.0 mA, 5 h, RT, under air. ^bYield is that of the isolated product. CCE = constant current electrolysis. TBHP = tert-butyl hydroperoxide, DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

5. Characterization data of products

3-(4-hydroxy-3,5-dimethylphenyl)-1-phenylpropan-1-one(3aa)

Following the general procedure A. A yellow oily liquid. Isolated yield (PE/EA = 10:1), 79.3 mg, 78%. ¹H NMR (400 MHz, Chloroform-d) δ 7.97 (dd, J = 8.4, 1.3 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.87 (s, 2H), 4.62 (s, 1H), 3.30 – 3.22 (m, 2H), 2.98 – 2.90 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 199.72, 150.64, 137.03, 133.16, 132.96, 128.72, 128.64, 128.20, 123.19, 41.08, 29.43, 16.05. **HR-MS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₈NaO₂ 277.1204, found 277.1216.

3-(4-hydroxy-3,5-dimethoxyphenyl)-1-phenylpropan-1-one (3ba)

3ba

Following the general procedure A. A yellow solid. Isolated yield (PE/EA = 10:1), 63 mg, 55%. ¹H NMR (400 MHz, Chloroform-d) δ 7.95 (dd, J = 8.5, 1.4 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 6.46 (s, 2H), 5.43 (s, 1H), 3.86 (s, 6H), 3.31 – 3.24 (m, 2H), 3.00 (d, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 199.56, 147.08, 136.97, 133.21, 133.08, 132.50, 128.72, 128.13, 105.10, 56.35, 40.95, 30.54. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₄ 287.1283, found 287.1281.

3-(3-(tert-butyl)-4-hydroxy-5-methylphenyl)-1-phenylpropan-1-one (3ca)

Following the general procedure A. A brownish yellow oily liquid. Isolated yield (PE/EA = 10:1), 81.7 mg, 69%. ¹H NMR (400 MHz, Chloroform-d) δ 7.98 (dd, J = 8.4, 1.4 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.47 (tt, J = 6.7, 1.4 Hz, 2H), 7.02 (d, J = 2.3 Hz, 1H), 6.91 (d, J = 2.1 Hz, 1H), 4.79 (s, 1H),

3.31 - 3.26 (m, 2H), 3.01 - 2.96 (m, 2H), 2.25 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 199.93, 151.13, 137.03, 135.85, 133.13, 132.42, 128.69, 128.57 - 128.31 (m), 128.20, 125.41 - 124.93 (m), 123.26, 41.16, 34.62, 29.90, 29.87, 16.15. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₅O₂ 297.1855, found 297.1856.

3-(3,5-dibromo-4-hydroxyphenyl)-1-phenylpropan-1-one (3da)

Following the general procedure A. A light yellow solid. Isolated yield (PE/EA = 10:1), 62.6 mg, 41%. ¹H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.91 (m, 2H), 7.59 – 7.54 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.34 (s, 2H), 5.84 (s, 1H), 3.26 (t, J = 7.5 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 198.60, 147.82, 136.72, 136.11, 133.43, 132.10, 128.82, 128.15, 109.81, 40.16, 28.60. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₅H₁₃Br₂O₄ 382.9282, found 382.9279.

3-(3-bromo-4-hydroxy-5-methylphenyl)-1-phenylpropan-1-one (3ea)

Following the general procedure A. A yellow oily liquid. Isolated yield (PE/EA = 10:1), 67.4 mg, 53%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (dd, J = 8.4, 1.4 Hz, 1H), 7.61 – 7.52 (m, 1H), 7.50 – 7.39 (m, 2H), 7.19 (d, J = 1.3 Hz, 1H), 6.95 (d, J = 2.2 Hz, 1H), 5.46 (s, 1H), 3.29 – 3.19 (m, 2H), 2.99 – 2.90 (m, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.20, 148.83, 136.86, 134.37, 133.29, 130.72, 129.05, 128.76, 128.16, 125.87, 110.04, 40.61, 29.01, 16.82. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₄ 287.1283, found 287.1281.

3-(6-hydroxy-5-methyl-[1,1'-biphenyl]-3-yl)-1-phenylpropan-1-one (3fa)

Following the general procedure A. A white solid. Isolated yield (PE/EA = 10:1 to 5:1), 68.7 mg, 54%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.52 – 7.39 (m, 7H), 7.06 (d, *J* = 2.3 Hz, 1H), 6.98 (d, *J* = 3.0 Hz, 1H), 5.23 (s, 1H), 3.36 – 3.27 (m, 2H),

3.06 - 2.98 (m, 2H), 2.32 (s, 3H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 199.57, 149.03, 137.49, 136.93, 133.16, 132.93, 130.62, 129.42, 129.21, 128.69, 128.17, 127.93, 127.74, 127.64, 124.83, 40.91, 29.43, 16.37. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁O₂ 317.1542, found 317.1544.

3-(6-hydroxy-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl)-1-phenylpropan-1-one (3ga)

Following the general procedure A. A brownish yellow oily liquid. Isolated yield (PE/EA = 10:1), 76.2 mg, 55%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, J = 8.4, 1.4 Hz, 2H), 7.60 – 7.51 (m, 1H), 7.50 – 7.41 (m, 2H), 7.41 – 7.31 (m, 2H), 7.05 – 6.97 (m, 3H), 6.95 – 6.90 (m, 1H), 5.15 (s, 1H), 3.86 (s, 4H), 3.34 – 3.25 (m, 2H), 3.03 – 2.95 (m, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.65, 159.38, 149.13, 136.95, 133.16, 132.84, 130.40, 130.28, 129.53, 128.70, 128.17, 127.66, 127.43, 124.67, 114.83, 55.47, 40.95, 29.45, 16.35. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₃O₃ 347.1647, found 347.1645.

3-(6-hydroxy-3'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl)-1-phenylpropan-1-one (3ha)

Following the general procedure A. A light yellow oily liquid. Isolated yield (PE/EA = 10:1), 69.2 mg, 50%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.95 (m, 2H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.05 – 7.01 (m, 2H), 6.97 – 6.92 (m, 3H), 5.28 (s, 1H), 3.84 (s, 3H), 3.34 – 3.26 (m, 2H), 3.04 – 2.96 (m, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.60, 160.46, 149.03, 138.86, 136.97, 133.20, 132.90, 130.73, 130.60, 128.74, 128.20, 127.56, 127.44, 124.89, 121.28, 114.55, 113.80, 55.47, 40.94, 29.84, 16.39. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₃O₃ 347.1647, found 347.1651.

3-(6-hydroxy-2'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl)-1-phenylpropan-1-one (3ia)

Following the general procedure A. A yellow oily liquid. Isolated yield (PE/EA = 10:1), 90 mg, 65%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.94 (m, 2H), 7.57 – 7.52 (m, 1H), 7.48 – 7.42 (m, 2H), 7.38 (ddd, J = 8.3, 7.4, 1.8 Hz, 1H), 7.31 (dd, J = 7.6, 1.8 Hz, 1H), 7.09 (td, J = 7.5, 1.1 Hz, 1H), 7.05 (td, J = 8.3, 7.9, 1.1 Hz, 2H), 6.99 – 6.94 (m, 1H), 6.11 (s, 1H), 3.90 (s, 3H), 3.34 – 3.26 (m, 2H), 3.03 – 2.98 (m, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.70, 155.58, 150.31, 137.01, 133.16, 132.70, 130.75, 129.37, 128.86, 128.73, 128.20, 127.34, 126.38, 125.89, 122.19, 111.40, 56.17, 40.99, 29.54, 16.70. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₃O₃ 347.1647, found 347.1645.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(o-tolyl)propan-1-one (3ab)

Following the general procedure A. A brown oily liquid. Isolated yield (PE/EA = 10:1), 54.7 mg, 51%. ¹**H NMR** (400 MHz, Chloroform-d) δ 7.61 (dd, J = 8.0, 1.4 Hz, 1H), 7.36 (td, J = 7.5, 1.4 Hz, 1H), 7.24 (d, J = 5.0 Hz, 2H), 6.83 (s, 2H), 4.55 (s, 1H), 3.23 – 3.13 (t, 2H), 2.94 – 2.86 (t, 2H), 2.47 (s, 3H), 2.22 (s, 6H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 203.98, 150.61, 138.18, 138.09, 132.81, 132.06, 131.33, 128.62, 128.53, 125.77, 123.16, 43.87, 29.64, 21.37, 16.04. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₁O₂ 269.1542, found 269.1535.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(m-tolyl)propan-1-one (3ac)

Following the general procedure A. A brown solid. Isolated yield (PE/EA = 10:1), 72.9 mg, 68%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.75 (m, 2H), 7.43 – 7.31 (m, 2H), 6.89 (s, 2H), 4.89 (s, 1H), 3.31 – 3.22 (m, 2H), 2.99 – 2.91 (m, 2H), 2.42 (s,31H), 2.26 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 200.14, 150.73, 138.49, 137.01, 133.95, 132.92, 128.77, 128.62, 128.59, 125.44, 123.35, 41.17, 29.50, 21.48, 16.12. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₁O₂ 269.1542, found 269.1541.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(3-methoxyphenyl)propan-1-one (3ad)

Following the general procedure A. A brown oily liquid. Isolated yield (PE/EA = 10:1), 68.2 mg, 60%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.52 (m, 1H), 7.48 (dd, *J* = 2.6, 1.6 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.11 – 7.06 (m, 1H), 6.85 (s, 2H), 4.63 (s, 1H), 3.84 (s, 3H), 3.27 – 3.19 (m, 2H), 2.96 – 2.88 (m, 2H), 2.22 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.62, 159.91, 150.67, 138.35, 132.85, 129.69, 128.61, 123.24, 120.84, 119.69, 112.33 (d, *J* = 4.7 Hz), 55.55 (t, *J* = 4.1 Hz), 41.18, 29.47, 16.07. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₄ 285.1491, found 285.1493.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(p-tolyl)propan-1-one (3ae)

Following the general procedure A. A white solid. Isolated yield (PE/EA = 10:1), 80.4 mg, 75%. ¹H NMR (400 MHz, Chloroform-d) δ 7.88 (d, J = 8.3 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 6.87 (s, 2H), 4.75 (s, 1H), 3.28 – 3.19 (m, 2H), 2.97 – 2.89 (m, 2H), 2.42 (s, 3H), 2.24 (s, 6H).¹³C NMR (101 MHz, Chloroform-d) δ 199.47, 150.63, 143.92, 134.50, 132.99, 129.38, 128.60, 128.31, 123.22, 40.96, 29.51, 21.74, 16.06. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₁O₂ 269.1542, found 269.1542.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(4-methoxyphenyl)propan-1-one (3af)

3af

Following the general procedure A. A yellow oily liquid. Isolated yield (PE/EA = 10:1), 87.51 mg, 77%. ¹H NMR (400 MHz, Chloroform-d) δ 7.95 (d, J = 9.0 Hz, H), 6.93 (d, J = 8.9 Hz, 2H), 6.86 (s, 2H), 4.62 (s, 1H), 3.87 (s, 3H), 3.24 – 3.16 (m, 2H), 2.96 – 2.88 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 198.33, 163.54, 150.61, 133.12, 130.47, 130.13, 128.63, 123.18, 113.83, 55.60, 40.76, 29.64, 16.06. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₂₁O₃ 285.1491, found 285.1491.

1-(4-fluorophenyl)-3-(4-hydroxy-3,5-dimethylphenyl)propan-1-one (3ag)

Following the general procedure A. A light yellow oily liquid. Isolated yield (PE/EA = 10:1), 59.9 mg, 55%. ¹H NMR (400 MHz, Chloroform-d) δ 7.99 (dd, J = 8.9, 5.4 Hz, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.86 (s, 2H), 4.63 (s, 1H), 3.25 – 3.20 (m, 2H), 2.96 – 2.90 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 197.98, 165.65 (d, J = 254.5 Hz) 150.52, 133.25 (d, J = 3.0 Hz), 132.58, 130.64 (d, J = 9.3 Hz), 128.44, 123.08, 115.63 (d, J = 21.8 Hz), 40.82, 29.22, 15.90. ¹⁹F-NMR (376 MHz, Chloroform-d) δ -105.25 (t, J = 6.6 Hz). HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈FO₂ 273.1291, found 273.1283.

1-(4-chlorophenyl)-3-(4-hydroxy-3,5-dimethylphenyl)propan-1-one (3ah)

Following the general procedure A. A light yellow solid. Isolated yield (PE/EA = 10:1), 66.8 mg, 58%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.86 (m, 2H), 7.46 – 7.38 (m, 2H), 6.85 (s, 2H), 4.65 (s, 1H), 3.25 – 3.19 (m, 2H), 2.95 – 2.89 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.50, 150.69, 139.56, 135.27, 132.65, 129.59, 129.00, 128.59, 123.24, 41.02, 29.31, 16.05. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈ClO₂ 289.0995, found 289.1004.

1-(4-bromophenyl)-3-(4-hydroxy-3,5-dimethylphenyl)propan-1-one (3ai)

Following the general procedure A. A brown solid. Isolated yield 69.1 mg, 52%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.78 (m, 2H), 7.63 – 7.56 (m, 2H), 6.85 (s, 2H), 4.58 (s, 1H), 3.25 – 3.17 (m, 2H), 2.96 – 2.88 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.65, 150.70, 135.72, 132.68, 132.03, 129.73, 128.61, 128.31, 123.23, 41.03, 29.32, 16.06. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈BrO₂ 333.0491, found 333.0496.

1-(2,4-dimethylphenyl)-3-(4-hydroxy-3,5-dimethylphenyl)propan-1-one (3aj)

Following the general procedure A. A brown solid. Isolated yield 79.0 mg, 70%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 10/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.84 (s, 2H), 4.67 (s, 1H), 3.23 – 3.13 (m, 2H), 2.96 – 2.86 (m, 2H), 2.49 (s, 3H), 2.36 (s, 3H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.21, 150.59, 141.96, 138.78, 134.95, 132.98, 132.92, 129.16, 128.60, 126.39, 123.16, 43.56, 29.80 (d, *J* = 5.7 Hz), 21.64, 21.46, 16.03. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₄ 283.1698, found 283.1701.

1-(3,4-dimethoxyphenyl)-3-(4-hydroxy-3,5-dimethylphenyl)propan-1-one (3ak)

Following the general procedure A. A white solid. Isolated yield 81.7 mg, 65%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 6.87 (s, 1H), 6.86 (s, 2H), 4.57 (s, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.23 – 3.16 (m, 2H), 2.95 – 2.87 (m, 2H), 2.22 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 198.36, 153.29, 150.63, 149.09, 133.08, 130.26, 128.63, 123.18, 122.79, 110.22 (d, J = 5.6 Hz), 110.08, 56.14, 40.66, 29.75, 16.06. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₃O₄ 315.1696, found 315.1600.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(naphthalen-2-yl)propan-1-one (3al)

Following the general procedure A. A yellow brown oily liquid. Isolated yield 86.4 mg, 71%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1). ¹H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H), 8.05 (dd, J = 8.6, 1.8 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.64 – 7.51 (m, 2H), 6.91 (s, 2H), 4.75 (s, 1H), 3.44 – 3.35 (m, 2H), 3.05 – 2.96 (m, 2H), 2.25 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 199.70, 150.69, 135.66, 134.29, 132.94, 132.62, 129.86, 129.65, 128.64, 128.54, 127.88, 126.86, 123.98, 123.27, 41.18, 29.56, 16.08. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₁O₂ 305.1542, found 305.1546. **3-(4-hydroxy-3,5-dimethylphenyl)-1-(naphthalen-2-yl)propan-1-one (3am)**

Following the general procedure A. A light brown oily liquid. Isolated yield 76.6 mg, 63%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (d, J = 8.6 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 6.3 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.55 – 7.51 (m, 1H), 7.47 (t, J = 7.7 Hz, 1H), 6.85 (s, 2H), 4.65 (s, 1H), 3.33 (t, J = 7.7 Hz, 2H), 3.00 (t, J = 7.7 Hz, 2H), 2.21 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 204.25, 150.64, 136.16, 134.04, 132.97 – 132.26 (m), 130.20, 128.80 (d, J = 11.6 Hz), 128.69 – 128.23 (m), 128.23 – 127.70 (m), 127.73 – 127.15 (m), 126.52, 126.02, 125.77, 124.82 – 123.99 (m), 123.19, 44.46, 29.96, 16.02 (d, J = 6.1 Hz). HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₁O₂ 305.1542, found 305.1548.

3-(4-hydroxy-3,5-dimethylphenyl)-1-(thiophen-2-yl)propan-1-one (3an)

Following the general procedure A. A yellow oily liquid. Isolated yield 81.1 mg, 78%.Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dt, *J* = 3.8, 1.0 Hz, 1H), 7.63 (dt, *J* = 5.0, 1.0 Hz, 1H), 7.12 (ddd, *J* = 4.8, 3.8, 0.8 Hz, 1H), 6.86 (s, 2H), 4.73 (s, 1H), 3.22 – 3.15 (m, 2H), 2.97 – 2.91 (m, 2H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.73, 150.72, 144.31, 133.69, 132.58, 132.01, 128.61, 128.22, 123.27, 41.77, 29.72, 16.07. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₄ 261.0949, found 261.0948.

4-(4-hydroxy-3,5-dimethylphenyl)butan-2-one (3ao)

Following the general procedure A. A light-yellow oily liquid. Isolated yield 23 mg, 31%. Purification by column chromatography on silica gel (petroleum ether/EtOAc: 15/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (s, 2H), 4.86 (s, 1H), 2.81 – 2.67 (m, 4H), 2.22 (s, 6H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.89, 150.66, 132.48, 128.44, 123.26, 45.75, 30.18, 29.00, 16.05. HR-MS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₆O₂Na 215.1048, found 215.1056.

6. Cyclic voltammetry studies and control experiments

6.1 Cyclic voltammetry studies

Unless otherwise noted, the cyclic voltammograms were recorded on a CHI 760E instrument using a graphite sheet as the working electrode (10*15*3 mm), a platinum sheet auxiliary electrode (10*15*0.1 mm) and a SCE as reference electrode,.Scan rate is 100 mV/s.

Figure S3. Cyclic voltammogram of *n*-Bu₄NPF₆ (0.1 M) in MeCN/H₂O (3/1).

Figure S4. Cyclic voltammogram of **1a** (0.8 mmol) in an electrolyte of n-Bu₄NPF₆ (0.1 M) and Na₂CO₃ (0.4 mmol) in MeCN/H₂O (3/1). E_{oxi} = 1.18 V vs. SCE

Figure S5. Cyclic voltammogram of **2a** (0.8 mmol) in an electrolyte of *n*-Bu₄NPF₆ (0.1 M) and Na₂CO₃ (0.4 mmol) in MeCN/H₂O (3/1). $E_{oxi} = 1.76$ V vs. SCE

Figure S6. Cyclic voltammograms of *n*-Bu₄NPF₆ (0.1 M) in MeCN/H₂O (3/1) in (blank, black line), substrate $1\mathbf{a}$ + Na₂CO₃ (red line), $2\mathbf{a}$ + Na₂CO₃ (purple line),. Reference electrode: SCE, Scan rate = 100 mV/s.

Cyclic voltammetry experiments showed that in the presence of sodium carbonate, trimethylphenol **1a** exhibited a significant irreversible oxidation potential at 1.18 V (*vs.* SCE), whereas the oxidation potential of β -ketoacids **2a** was observed at a higher potential (E_{oxi} = 1.76 V *vs.* SCE). This result indicated that trimethylphenol **1a** was initially oxidized in a mixed solution of acetonitrile and H₂O. The mechanism of the reaction is also being further explored.

6.2 Control experiments

^aReaction conditions: undivided cell, Graphite anode, Pt cathode, **1a** (0.3 mmol), **2a** (0.6 mmol), Na₂CO₃ (0.5 equiv.), MeCN/H₂O (3/1, 4 mL), CCE = 3.0 mA, 5 h, RT, under air. CCE = constant current electrolysis.

In free radical validation experiments, only trace amount of the desired product were obtained when 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) was added, whereas when BHT (2,6-ditert-butyl-4-methylphenol) was added as in radical trapping agent, the reaction did not take place. When we replaced β -phenylketo acid by acetophenone, target product could not be observed too, which indicates that acetophenone is not an intermediate product of β -phenylketo acid.

7. References

[1] Xu X, Chen H, He J, et al. Copper-Catalysed Decarboxylative Trifluoromethylation of β -Ketoacids[J]. Chinese Journal of Chemistry, 2017, 35(11): 1665-1668

[2] Jiang C, Chen Y, Huang G, et al. Scandium (III)-Catalysed Decarboxylative Addition of β -Ketoacids to para-Quinone Methides: Evidence for 1, 6-Addition and Base-Assisted Decarboxylation Tandem Process[J]. Asian Journal of Organic Chemistry, 2019, 8(2): 257-260.

[3] Egami H, Ide T, Kawato Y, et al. Benzylic C–H trifluoromethylation of phenol derivatives[J]. Chemical Communications, 2015, 51(93): 16675-16678.

[4] Luo S, Luo F X, Zhang X S, et al. Synthesis of Dibenzopyranones through Palladium-Catalyzed Directed C–H Activation/Carbonylation of 2-Arylphenols[J]. Angewandte Chemie International Edition, 2013, 52(40): 10598-10601.

8. ¹H and ¹³C-NMR spectra

¹H NMR spectrum of **3aa** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3aa** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ba** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ba** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ca** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ca** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3da** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3da** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ea** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ea** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3fa** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3fa** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ga** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ga** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ha** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ha** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ia** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ia** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ab** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ab** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ac** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ac** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ad** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ad** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ae** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ae** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3af** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3af** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ag** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ag** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **3ag** (CDCl₃, 376 MHz)

¹H NMR spectrum of **3ah** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ah** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ai** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ai** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3aj** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3aj** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ak** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ak** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3al** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3al** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3am** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3am** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3an** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3an** (CDCl₃, 101 MHz)

¹H NMR spectrum of **3ao** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **3ao** (CDCl₃, 101 MHz)