Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

## **Supporting information**

# Unexpectedly stable homopurine parallel triplex of SNA:RNA\*SNA and L*a*TNA:RNA\*L-*a*TNA

Yukiko Kamiya,<sup>\*a,b,c</sup> Siyuan Lao,<sup>a</sup> Jumpei Ariyoshi,<sup>b</sup> Fuminori Sato,<sup>a</sup> Hiroyuki Asanuma<sup>\*a</sup>

a: Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
b: Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558, Japan
c: Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.

\*E-mail: y-kamiya@kobepharma-u.ac.jp, asanuma@chembio.nagoya-u.ac.jp

## **Experimental Section**

#### Materials

All the oligonucleotides were HPLC grade and were purchased from Hokkaido System Science Co. Ltd. All the amidite monomers of SNA and L-aTNA were supplied by NICCA CHEMICAL Co. Ltd. except for the amidite monomer with Dabcyl on the SNA scaffold (compound **3**, see Scheme S1).

<sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra were recorded on a BRUKER Ascend<sup>TM</sup> 500. Chemical shift values are expressed in  $\delta$  values (ppm) relative to residual CHCl<sub>3</sub> (7.26 ppm) for <sup>1</sup>H NMR and to chloroform-*d*1 (77.16 ppm) for <sup>13</sup>C{<sup>1</sup>H} NMR. For <sup>31</sup>P NMR,  $\delta$  values (ppm) were not standardized. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). HRMS of compounds were measured on a JMS-700 MStation.

## Preparation of the solutions of oligonucleotides

All the oligonucleotides were dissolved in TBM buffer (100  $\mu$ L, 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0) to a final concentration of 4  $\mu$ M. Before  $T_m$  measurements, spectroscopic analyses, or PAGE, each strand was heated to 95 °C for 1 min and immediately cooled to 4 °C. Strands were then mixed and kept for 2 h at room temperature before measurement unless otherwise noted.

#### Fluorescence spectra measurements

Fluorescent spectra were measured on a JASCO model FP-8500 equipped with a programmable temperature controller at 4 °C unless otherwise noted. Excitation wavelength for FAM-labelled oligonucleotides was 495 nm with bandwidth 2.5 nm, response time 0.1 s, and medium sensitivity.

## $T_{\rm m}$ measurements

 $T_m$  values of fluorophore-modified oligonucleotides were determined from fluorescence melting curves on a JASCO model FP-8500 or FP-8550 equipped with a programmable temperature controller by exciting FAM at 495 nm and monitoring fluorescence at 523 nm. The temperature ramp was 1.0 °C/min from 4 °C to 90 °C.  $T_m$  profiles were obtained by dividing the original fluorescence intensity of triplex by that of the hairpin at each temperature to compensate for the temperature effect on FAM intensity.  $T_m$  values of duplexes without fluorophores were obtained with a Shimadzu UV-1800 by measuring the change of absorbance at 260 nm versus temperature. The change of absorbance at 295 nm versus temperature of SNA-TFO and L-*a*TNA-TFO were monitored to evaluate the formation of G-quadruplex structure by Shimadzu UV-

## 1900i.

## **CD** measurements

CD spectra were measured on a JASCO model J-820 using 10-mm quartz cells. The sample solutions contained 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0, 5.0  $\mu$ M P-SNA-TFO or P-L-*a*TNA-TFO.

## **Fluorescent titration measurements**

To 500  $\mu$ L of buffer solution containing 2  $\mu$ M S:R-HP, S:D-HP, or LT:R-HP was added 5  $\mu$ L of 20  $\mu$ M TFO at room temperature. After 3 min at room temperature, fluorescent measurement was performed at 4 °C. These measurements were repeated 20 times until final solution volume became 600  $\mu$ L.

## Analysis of triplex formation by native PAGE

S:R-HP, Non-S:R, or S:D-HP was mixed with appropriate TFO to a final concentration of 0.5  $\mu$ M each strand, and 20  $\mu$ L of the solution was added to 4  $\mu$ L of loading buffer containing 60% glycerol and 0.05% bromophenol blue. An aliquot of 6  $\mu$ L was subjected to electrophoresis on a 15% polyacrylamide gel with 10% glycerol (0.5X TB buffer) at 750 CV for 3 h. During the electrophoresis, temperature was kept at 4 °C using a water-bath holder equipped with a circulator. Gels were analyzed with a Typhoon FLA 9500 (GE Healthcare) by excitation of TAMRA and FAM with 532 and 473 nm light, respectively.

## **RNase If experiments**

RNase If (50,000 unit/ml, New England Biolabs Japan) was diluted 400 fold with TBM buffer to 125 units/ml). To 8  $\mu$ L of a solution of S:R-HP or Non-S:R and SNA-TFO (0.5  $\mu$ M each) was added 2  $\mu$ L of diluted RNase If. After incubation at 4 °C for 4 h, 2  $\mu$ L of loading buffer containing 60% glycerol and 0.05% bromophenol blue was added. An aliquot of 6  $\mu$ L of the sample solution was subjected to electrophoresis on a 15% polyacrylamide gel with 10% glycerol (0.5X TB buffer) at 750 CV for 3 h. During the electrophoresis, the temperature was kept at 4 °C using a water-bath holder equipped with a circulator. Gels were analyzed with a Typhoon FLA 9500 (GE Healthcare) by excitation of TAMRA and FAM with 532 and 473 nm light, respectively.

## **Computer modeling**

Maestro Version 12.6 (Schrödinger) was used to obtain optimized geometries and energy minimized structures. The initial triplex structure was prepared from C:G\*G Watson-Crick and Hoogsteen pairs observed in the X-ray crystal structure of an SNA:RNA duplex.<sup>1)</sup> The OPLS 2005 force field was employed for the energy minimization.



Scheme S1. Scheme for synthesis of amidite monomers of Dabcyl on the SNA scaffold.

## Synthesis of compound 2

Dimethoxytritylated serinol (compound 1) was synthesized as previously reported.<sup>2)</sup> 4-Dimethylaminoazobenzene-4'-carboxylic acid (Dabcyl, Tokyo Chemical Industry Co., Ltd. >97.0%, 3.23 g, 12.0 mmol, 1.2 eq) was suspended in DMF (70 ml) and triethylamine (7.0 ml, 51 mmol, 5.0 eq). Then a solution of compound 1 (0.72 M, 13.9 ml, 10.0 mmol) and 4-(4,6dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMT-MM) *n*-hydrate (14.8 mmol, 1.5 eq) in DMF was added. After stirring at room temperature for 2 h, CHCl<sub>3</sub> (270 ml) was added to quench the DMT-MM. The organic phase was washed with sat. aq. NaHCO<sub>3</sub> (300 ml) x 2, sat. aq. NaCl(300 ml) x 2, and then evaporated under reduced pressure. The residue was purified by silica gel column chromatography (*n*-hexane:AcOEt, 1:5 (v/v) with 1% Et<sub>3</sub>N) to afford compound **2** as a red solid (4.64 g, 7.19 mmol, 71.9%).

#### Synthesis of compound 3

2-Cyanoethyl-*N*,*N*-diisopropylphosphoramidochloridite (Fujifilm Wako Pure Chemical Industries, Ltd. >90%, 2.40 ml, 10.25 mmol, 1.5 eq) was added to a solution of compound **2** (4.64 g, 7.19 mmol) and triethylamine (5.0 ml, 36.12 mmol, 5.0 eq) in dry CHCl<sub>3</sub> (30 ml) at 0 °C under a N<sub>2</sub> atmosphere. After stirring at room temperature for 30 min, the mixture was concentrated, and the residue was purified using silica gel column chromatography (*n*-hexane:AcOEt, 1:2 (v/v) including 3% Et<sub>3</sub>N) to afford compound **3** as a red solid (4.64 g, 5.49 mmol, 76.3%). <sup>1</sup>H NMR [CDCl<sub>3</sub>, 500 MHz]  $\delta$  7.83-7.71 (m, 6H), 7.37 (d, 2H), 7.28-7.24 (m, 3H), 7.20 (t, 2H), 7.11 (t, 1H), 6.76-6.68 (m, 4H), 6.65 (d, 2H), 6.48 (dd, 1H), 4.53-4.35 (m, 1H), 4.01-3.79 (m, 2H), 3.77-3.55 (m, 9H), 3.55-3.45 (m, 2H) , 3.45-3.35 (m, 1H), 3.24-3.15 (m, 1H), 2.98 (s, 6H), 2.47-2.37

(m, 2H), 1.08 (t, 6H), 1.04 (dd, 6H) (Fig. S7).  ${}^{13}C{}^{1}H$  NMR [CDCl<sub>3</sub>, 125 MHz]  $\delta$  166.4, 166.3, 158.4, 155.0, 152.7, 144.72, 144.69, 143.5, 135.9, 135.8, 134.44, 134.37, 130.0, 128.1, 127.8, 125.31, 125.29, 122.11, 122.08, 117.5, 113.1, 111.4, 86.0, 62.4, 62.3, 62.1, 61.6, 58.32, 58.30, 55.1, 50.22, 50.17, 50.16, 43.14, 43.10, 43.04, 43.00, 40.2, 24.6, 24.54, 24.49, 20.3 (Fig. S8).  ${}^{31}P$  NMR [DMSO-*d*6, 202 MHz]  $\delta$  147.0, 146.8 (Fig. S9). HRMS (FAB): Calcd for C<sub>48</sub>H<sub>58</sub>N<sub>6</sub>O<sub>6</sub>P [M + H]<sup>+</sup>, 845.4150; found, 845.4179.

## References

- Kamiya, Y. *et al.*, Intrastrand backbone-nucleobase interactions stabilize unwound righthanded helical structures of heteroduplexes of L-*a*TNA/RNA and SNA/RNA. *Commun. Chem.*, 2020, **3**, 156
- Benhida, R. *et al.* Incorporation of serinol derived acyclic nucleoside analogues into oligonucleotides: Influence on duplex and triplex formation. *Tetrahedron Lett.* 1998, **39**, 6167.



Scheme S2. Schematics and sequences of oligonucleotides and chemical structures of dyes used in this study.



**Figure S1**. Canonical Watson-Crick and parallel-type Hoogsteen base pairs between SNA and RNA observed in the X-ray crystallographic structure of an RNA:SNA heteroduplex <sup>1</sup>)



**Figure S2.** Melting profile of SNA:RNA-HP. [S:R-HP] =  $2.0 \mu$ M, 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0.



**Figure S3.** (a)Melting profile of SNA-TFO and L-*a*TNA-TFO obtained with a Shimadzu UV-1900i by measurement of the change in absorbance at 295 nm versus temperature. The temperature ramp was 0.5 °C min<sup>-1</sup>. (b)CD profile of SNA-TFO and L-*a*TNA-TFO recorded with a JASCO J-820 at 4 °C, and (c) 80, 60, 40, 20, and 0 °C. [P-SNA-TFO] = [P-L-*a*TNA-TFO] = 5.0  $\mu$ M, 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0.



**Figure S4.** (a) Fluorescence of FAM-LT:R-HP in the presence of a range of concentrations of Dabcyl-P-L-*a*TNA-TFO. Inset shows fluorescence as a function of the ratio of [P-L-*a*TNA-TFO] to LT:R-HP. Melting profile of (b) LT:R-HP and P-L-*a*TNA-TFO triplex, (c) LT:R-HP and Y-P-L-*a*TNA-TFO or Y-A-L-*a*TNA-TFO triplex. 2.0  $\mu$ M each oligonucleotide solved in 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0 was used. Excitation wavelength was 495 nm, and fluorescence intensity was monitored at 523 nm.



**Figure S5.** Effect of mismatches on  $T_{\rm m}$  of parallel triplex containing L-*a*TNA strands. [P-L*a*TNA-TFO] = [LT:R-HP] = 2.0  $\mu$ M, 90 mM Tris-borate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0.



**Figure S6.** Fluorescence spectra of Fam-S:S-HP in the presence (black line) or absence (green line) of Dabcyl-P-SNA-TFO. [P-SNA-TFO] = [S:S-HP] =  $2.0 \mu$ M, 90 mM Trisborate buffer, 10 mM MgCl<sub>2</sub>, pH 7.0.



Figure S7. <sup>1</sup>H NMR (500 MHz) spectrum of compound 3 in CDCl<sub>3</sub>



Figure S8. <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz) spectrum of compound 3 in  $CDCl_3\Box$ 



Figure S9. <sup>31</sup>P NMR (202 MHz) spectrum of compound 3 in DMSO-*d*6□