Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

[Xe(OTeF5)(pyF)]+: A Strong Oxidizing Xenonium(II) Teflate Cation with N-Donor Bases

Ahmet N. Toraman, Lukas Fischer, Alberto Pérez-Bitrián, Anja, Wiesner, Kurt F. Hoffmann and Sebastian Riedel

Table of Contents

1. Experimental Section	2
2. NMR Spectra	5
3. Raman Spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2)	9
4. IR Spectra	10
5. EPR Spectrum	11
6. Crystal Data	12
7. Quantum Chemical Calculations	13
8. References	20

1. Experimental Section

1.1 General Procedures and Materials

All preparative work was performed using standard Schlenk techniques, ensuring the absence of moisture and oxygen. Reactions were carried out in greaseless Schlenk tubes with PTFE valves. Solids were handled in a MBRAUN UNIIab plus glovebox with an argon atmosphere ($O_2 < 0.5$ ppm, $H_2O < 0.5$ ppm). Al($OTeF_5$)₃, Sb($OTeF_5$)₃ and $Xe(OTeF_5)_2$ were prepared as described elsewhere.^{1,2,3,4} SO₂ClF was freshly dried with CaH₂ before use. Pentafluoropyridine and 2,6-difluoropyridine were dried with CaH₂ and distilled over 3 Å molecular sieves before degassing. The NMR spectra were recorded on a Bruker Avance III 300 spectrometer. All reported chemical shifts (δ in ppm) are referenced to the Ξ values as recommended by IUPAC.⁵ Multiplicity is indicated as follows: s = singlet, d = doublet, dd = doublet of doublets, m = multiplet. Chemical shifts and coupling constants of strongly coupled spin systems in the ¹⁹F NMR spectra are reported as simulated by gNMR 5.0.6 Raman spectra were recorded at -196 °C on a Bruker MultiRAM II equipped with a low temperature Ge detector (1064 nm, 50–100 mW, resolution 4 cm⁻¹). IR spectra at -50 °C were recorded with a *Thermo Scientific Nicolet iS50 FTIR* (32 scans, resolution of 4 cm⁻¹) by using a previously published setup.⁷ EPR spectrum was recorded with a Magnettech MS 5000 spectrometer. Single crystal X-ray diffraction measurements were performed on a Bruker D8 Venture diffractometer using MoKα radiation with a CMOS area detector. Single crystals were picked under nitrogen atmosphere at -40 °C and mounted on a 0.15 mm MiTeGen MicroMount using perfluoroether oil. The crystal structure was solved with the SheIXT structure solution program⁸ using intrinsic phasing and refined with the ShelXL refinement package⁹ using the least-squares minimization by using the OLEX2 software.¹⁰ CCDC 2302485 contains the supplementary crystallographic data for this paper, which are provided free of charge by The Cambridge Crystallographic Data Centre. Crystal data and other details of the structure analyses are summarized in Table S1. Quantum chemical calculations were executed using Turbomole V7.6.1 software,¹¹ employing the B3LYP functional¹² in conjugation with RI¹³ and the def2-TZVPP basis set.¹⁴ Normal mode analysis was used to characterize the minima on potential energy surfaces. Thermochemical data are given with zero-point energy correction derived from harmonic vibrational frequencies, without counterpoise correction. Elemental analysis could not be performed for any of the samples due to their temperature-sensitive nature and their strong oxidizing properties.

1.2 Synthesis of $[Xe(OTeF_5)(NC_5F_5)][Al(OTeF_5)_4]$ (1)

Al(OTeF₅)₃ (114.2 mg, 0.15 mmol, 1 equiv.) was dissolved in SO₂ClF (*ca.* 1 mL) at -50 °C. Xe(OTeF₅)₂ (93.6 mg, 0.15 mmol, 1 equiv.) was added to the stirring clear solution, resulting in an instant colour change to yellow. The mixture was stirred for 30 min at -50 °C and then C₅F₅N (26.0 mg, 0.15 mmol, 1 equiv.) was condensed onto the reaction mixture, forming a light brown solution. The nature of compound **1** was established by NMR and IR spectroscopy. Compound **1** decomposes when subjected to temperatures higher than -10 °C.

¹⁹**F NMR** (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.1.1): δ = -38.4 (m, 1F_A, ¹*J*(¹⁹F_A-¹²⁵Te) = 3350 Hz, Al–OTeF₅), -41.7 (m, 4F_B, ²*J*(¹⁹F_A-¹⁹F_B) = 174, Xe–OTeF₅), -45.5 (m, 1F_A, ¹*J*(¹⁹F_A-¹²⁵Te) = 3420 Hz, Xe–OTeF₅), -45.8 (m, 4F_B, ²*J*(¹⁹F_A-¹⁹F_B) = 188 Hz, Al–OTeF₅), -86.7 (m, F_o, ³*J*(¹⁹F-¹²⁹Xe) = 68.7 Hz) -108.3 (m, F_p), -152.0 (m, 2F_m) ppm. ²⁷Al NMR (78 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.1.2): δ = 45.9 ppm (br, s).

¹²⁹**Xe NMR** (83 MHz, SO₂CIF, ext. acetone-d₆, -50 °C, see Figure S2.1.3): $\delta = -2240.5$ ppm (br, s).

IR (ATR, -50 °C, see Figure S4.1): $\tilde{v} = 1657$ (vw), 1542 (w), 1522 (m), 1444 (m), 1418 (vw), 1326 (vw), 1219 (m), 1112 (m), 1000 (w), 934 (m), 826 (m), 692 (vs), 655 (m), 624 (s), 595 (m), 549 (m), 491 (m), 298 (m), 166 (w) cm⁻¹.

1.3 Synthesis of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2)

Al(OTeF₅)₃ (155.5 mg, 0.21 mmol, 1 equiv.) was dissolved in SO₂ClF (*ca.* 1 mL) at -50 °C. Xe(OTeF₅)₂ (127.4 mg, 0.21 mmol, 1 equiv.) was added to the stirring clear solution, resulting in an instant colour change to yellow. The mixture was stirred for 30 min at -50 °C and then C₅H₃F₂N (24.1 mg, 0.21 mmol, 1 equiv.) was condensed onto the reaction mixture, forming a light green solution. The reaction mixture was analysed by NMR, IR and Raman spectroscopy. Compound **2** decomposes when subjected to temperatures higher than -10 °C. (The secondary C₅H₃F₂N species was identified to be the [HNC₅H₃F₂]⁺ cation by a control experiment, in which C₅H₃F₂N was protonated by *o*DFB based Brønsted acid [ArH][Al(OTeF₅)₄] (Ar = 1,2-difluorobenzene) at -30 °C in *o*DFB, as described elsewhere.¹⁵)

¹**H NMR** (300 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.2.1): δ = 6.7 (d, 2H_m, ³J(¹H-¹⁹F) = 8.4 Hz), 6.8 (d, H_m, ³J(¹H-¹⁹F) = 8.2 Hz, [HNC₅H₃F₂]⁺), 7.8 (m, 1H_p, ³J(¹H-¹H) = 7.4 Hz), 8.0 (m, H_p, ³J(¹H-¹H) = 7.7 Hz, [HNC₅H₃F₂]⁺), 11.0 (s, [HNC₅H₃F₂]⁺) ppm. ¹⁹F **NMR** (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.2.2): δ = -38.2 (m, 1F_A, ¹J(¹⁹F_A-¹²⁵Te) = 3420 Hz, Al-OTeF₅), -44.7 (d, 4F_B, ²J(¹⁹F_A-¹⁹F_B) = 180, Xe-OTeF₅),

-45.2 (m, 1F_A, ¹*J*(¹⁹F_A-¹²⁵Te) = 3385 Hz, Xe–OTeF₅), -45.6 (d, 4F_B, ²*J*(¹⁹F_A-¹⁹F_B) = 186 Hz, Al–OTeF₅), -67.6 (dd, 2F_o, ³*J*(¹⁹F-¹²⁹Xe) = 55.6 Hz), -77.8 (d, F_o, [HNC₅H₃F₂]⁺) ppm. ²⁷Al NMR (78 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.2.3): δ = 46.2 ppm (br, s). ¹²⁹Xe NMR (83 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.2.4): δ = -2433.4 ppm (br, s). IR (ATR, -50 °C, see Figure S4.2): \tilde{v} = 1631 (w), 1489 (w), 1445 (w), 1278 (vw), 1220 (w), 1022 (vw), 933 (m), 829 (w), 688 (vs), 624 (s), 556 (m), 502 (w), 476 (w), 301 (m), 175 (w) cm⁻¹. Raman (1064 nm, -196 °C, see Figure S3.1.1 and Figure S3.1.2): \tilde{v} = 3213 (w), 2837 (w), 1348 (w), 1221 (w), 1076 (w), 1024 (w), 744 (sh, w), 734 (m), 694 (s), 650 (s), 581 (m), 504 (w), 472 (s), 454 (m), 432 (m), 375 (m), 332 (w), 303 (m), 241 (m), 140 (vs), 106 (m), 92 (s), 75 (s) cm⁻¹.

1.4 Synthesis of $[Xe(OTeF_5)(NC_5F_5)][Sb(OTeF_5)_6]$ (3)

By using a similar procedure for that used for $[Xe(OTeF_5)(SO_2CIF)][Sb(OTeF_5)_6]$,¹⁶ this reaction was performed starting from dissolving Sb(OTeF_5)_3 (98.1 mg, 0.12 mmol, 1 equiv.) in SO₂CIF (*ca.* 1 mL) at -50 °C. Xe(OTeF_5)₂ (142.5 mg, 0.23 mmol, 2 equiv.) was added to the stirring cloudy mixture, resulting in a colour change to yellow after 30 min at -50 °C. After stirring for additional 30 min, C₅F₅N (19.8 mg, 0.12 mmol, 1 equiv.) was condensed onto the reaction mixture and reacted for 45 min, forming a yellow to brown coloured solution. Single crystals were obtained upon slowly cooling the concentrated solution from -50 °C to -80 °C.

¹⁹**F NMR** (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C, see Figure S2.3.1): δ = -41.4 (m, F_A ≈ F_B, ¹J(¹⁹F_A-¹²⁵Te) = 3559 Hz, Sb-OTeF₅), -41.4 (m, 4F_B, ²J(¹⁹F_A-¹⁹F_B) = 179, Xe-OTeF₅), -45.2 (m, 1F_A, ¹J(¹⁹F_A-¹²⁵Te) = 3468 Hz, Xe-OTeF₅), -86.6 (m, F_o, ³J(¹⁹F-¹²⁹Xe) = 68.1 Hz) -108.1 (m, F_p), -151.8 (m, 2F_m) ppm.

¹²⁹**Xe NMR** (83 MHz, SO₂CIF, ext. acetone-d₆, -50 °C, see Figure S2.3.2): $\delta = -2240.4$ ppm (br, s).

1.5 Reaction of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (1) with tris(2,4,6-tribromophenyl)amine

A solution of $[Xe(OTeF_5)(NC_5F_5)][Al(OTeF_5)_4]$ (1) in SO₂ClF (0.17 mmol/mL) at -50 °C was treated with solid tris(2,4,6-tribromophenyl)amine (390.6 mg, 0.41 mmol, 2.4 equiv.) Upon addition, the solution immediately changed colour to deep purple and gas evolution was observed. Volatile was removed *in vacuo* while warming up the flask to the ambient temperature, then the remaining was dissolved in 1 mL CH₂Cl₂. The mixture was analysed by EPR spectroscopy at room temperature (see Figure S5).

2. NMR Spectra

2.1. NMR Spectra of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (1)

Figure S2.1.1. ¹⁹F NMR (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (**1**) (*: ext. CFCl₃).

Figure S2.1.2. ²⁷AI NMR (78 MHz, SO₂CIF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (**1**).

Figure S2.1.3. ¹²⁹Xe NMR (83 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (1).

2.2. NMR Spectra of [Xe(OTeF₅)(NC₅H₃F₂)][Al(OTeF₅)₄] (2)

Figure S2.2.1. ¹H NMR (300 MHz, SO₂ClF, ext. acetone- d_6 , -50 °C) spectrum of [Xe(OTeF₅)(NC₅H₃F₂)][Al(OTeF₅)₄] (**2**) (¶: ext. Si(CH₃)₄, #: ext. (CD₃)₂CO *: ext. (CH₃O)₃PO, §: [HC₅H₃F₂N]⁺ cation).

Figure S2.2.2. ¹⁹F NMR (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2) (*: ext. CFCl₃, §: $[HC_5H_3F_2N]^+$ cation).

Figure S2.2.3. ²⁷Al NMR (78 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2).

Figure S2.2.4. ¹²⁹Xe NMR (83 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅H₃F₂)][Al(OTeF₅)₄] (**2**).

2.3. NMR Spectra of $[Xe(OTeF_5)(NC_5F_5)][Sb(OTeF_5)_6]$ (3)

Figure S2.3.1. ¹⁹F NMR (282 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅F₅)][Sb(OTeF₅)₆] (**3**) (*: ext. CFCl₃).

Figure S2.3.2. ¹²⁹Xe NMR (83 MHz, SO₂ClF, ext. acetone-d₆, -50 °C) spectrum of [Xe(OTeF₅)(NC₅F₅)][Sb(OTeF₅)₆] (**3**).

3. Raman Spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2)

Figure S3.1. (A) Experimental Raman spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (**2**) at -196 °C. (B) Calculated Raman spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)]^+$ at B3LYP/def2-TZVPP level of theory. (C) Experimental Raman spectrum of SO₂ClF at -196 °C.

Figure S3.2. (A) Enlarged experimental Raman spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (**2**) at -196 °C. (B) Calculated Raman spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)]^+$ at B3LYP/def2-TZVPP level of theory. (C) Experimental Raman spectrum of SO₂CIF at -196 °C.

4. IR Spectra

4.1. IR Spectrum of [Xe(OTeF₅)(NC₅F₅)][Al(OTeF₅)₄] (1)

Figure S4.1. (A) Experimental IR spectrum of $[Xe(OTeF_5)(NC_5F_5)][Al(OTeF_5)_4]$ (**1**) at -50 °C (ATR). (B) Calculated IR spectrum of $[Xe(OTeF_5)(NC_5F_5)]^+$ at B3LYP/def2-TZVPP level of theory (Left: mid-IR, Right: far-IR).

4.2. IR Spectrum of [Xe(OTeF₅)(NC₅H₃F₂)][Al(OTeF₅)₄] (2)

Figure S4.2. (A) Experimental IR spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)][Al(OTeF_5)_4]$ (2) at -50 °C (ATR). (B) Calculated IR spectrum of $[Xe(OTeF_5)(NC_5H_3F_2)]^+$ at B3LYP/def2-TZVPP level of theory (Left: mid-IR, Right: far-IR).

5. EPR Spectrum

Figure S5. Experimental EPR spectrum showing the signal of the ammoniumyl radical cation $[N(C_6H_2Br-2,4,6)_3]^{++}$ at room temperature. The spectrum was recorded after the reaction of $[Xe(OTeF_5)(NC_5F_5)][Al(OTeF_5)_4]$ (1) with $N(C_6H_2Br-2,4,6)_3$ in CH_2CI_2 at room temperature, according to the shown equation.

6. Crystal Data

Empirical formula	C ₅ Cl _{3.4} F _{43.4} NO _{13.8} S _{3.4} SbTe ₇ Xe
Formula weight	2495.24
Temperature/K	150.0
Crystal system	triclinic
Space group	Pl
<i>a</i> [Å]	9.9625(5)
<i>b</i> [Å]	13.7996(12)
<i>c</i> [Å]	20.0668(18)
α [°]	102.386(2)
<i>в</i> [°]	95.157(2)
۷ [°]	93.654(2)
Volume [ų]	2673.8(4)
Z	2
$ ho_{calc}$ [g·cm ³]	3.099
μ [mm ⁻¹]	5.382
F(000)	2238.0
Crystal size [mm ³]	0.551 × 0.502 × 0.318
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection [°]	4.046 to 52.956
Index ranges	$-12 \le h \le 11, -17 \le k \le 17, -25 \le l \le$
index ranges	25
Reflections collected	87933
Independent reflections	10993 [<i>R</i> _{int} = 0.0513, <i>R</i> _{sigma} = 0.0299]
Data/Restraints/Parameters	10993/1034/847
Goodness-of-fit on F ²	1.139
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0326, wR_2 = 0.0849$
Final R indexes [all data]	$R_1 = 0.0347, wR_2 = 0.0861$
Largest diff. peak/hole [eÅ ⁻³]	1.58/-1.18
CCDC number	2302485

Table S1. Crystal data and structure refinement for compound $[Xe(OTeF_5)(NC_5F_5)][Sb(OTeF_5)_6]$ (3).

7. Quantum Chemical Calculations

Table S2 Selected experimental $[Xe(OTeF_5)(NC_5F_5)][Sb(OTeF_5)_6]$ (**3**) and calculated (B3LYP/def2-TZVPP) geometrical parameters for the $[Xe(OTeF_5)(NC_5F_5)]^+$ cationic adduct.

	Bond lengths [pm]			Bond ang	les [°]
	Exp.	Calc.		Exp.	Calc.
Xe1–N1	233.4(5)	243.2	Xe1-N1-C1	119.6(4)	120.0
01–X1	202.8(4)	202.0	O1-Xe1-N1	179.2(2)	175.9
Te1–O1	188.3(5)	195.3	Te1-01-Xe1	121.4(2)	121.5
N1-C1	133.2(8)	133.1	N1-C1-F1	116.0(5)	116.9
C1-F1	131.6(7)	131.5			

Table S3 Calculated reaction enthalpies for the formation of	
$[Xe(OTeF_5)(py^F)]^+ (py^F = C_5F_5N, C_5H_3F_2N)$ adducts	
	Δ <i>H</i> ª [kJ mol ^{−1}]
$[Xe(OTeF_5)]^+ + C_5F_5N \rightarrow [Xe(OTeF_5)(NC_5F_5)]^+$	-139.9
$[Xe(OTeF_5)]^+ + C_5H_3F_2N \rightarrow [Xe(OTeF_5)(NC_5H_3F_2)]^+$	-188.8

^a Calculations were performed on B3LYP/def2-TZVPP level of theory, neglecting interactions with the weakly coordinating $[Al(OTeF_5)_4]^-$ anion.

Table S4 Calculated adiabatic ionization energies ^[a] , literature known experimental
ionization potentials and experimental oxidation potential for selected compounds.

	E _{calc} a [eV]	E _{exp} [eV]	<i>E</i> ° [V]
$XeF \rightarrow [XeF]^+$	10.71	10.23 ¹⁷ , 10.3 ¹⁸	
$Xe(OTeF_5) \rightarrow [Xe(OTeF_5)]^+$	10.55		
$Xe(OTeF_5)(NC_5F_5) \rightarrow [Xe(OTeF_5)(NC_5F_5)]^+$	9.22		
$FXe(NC_5F_5) \rightarrow [FXe(NC_5F_5)]^+$	8.82		
$N(C_6Br_3H_2)_3 \rightarrow [N(C_6Br_3H_2)_3]^+$	7.31		1.96 ¹⁹

^a Calculations were performed on B3LYP/def2-TZVPP level of theory.

Structure optimizations were performed using the B3LYP functional together with RI, D4 dispersion correction and def2-TZVPP basis set as implemented in the Turbomole V7.6.1 program.

- 7.1 XeF (neutral)
- 7.2 [XeF]⁺
- 7.3 Xe(OTeF₅) (neutral)
- 7.4 [Xe(OTeF₅)]⁺
- 7.5 $Xe(OTeF_5)(NC_5F_5)$ (neutral)
- 7.6 [Xe(OTeF₅)(NC₅F₅)]⁺
- 7.7 FXe(NC₅F₅) (neutral)
- 7.8 [FXe(NC₅F₅)]⁺
- 7.9 $N(C_6H_2Br_3)_3$
- 7.10 $[N(C_6H_2Br_3)_3]^+$
- 7.11 C_5F_5N
- 7.12 $C_5H_3F_2N$
- 7.13 [Xe(OTeF₅)(NC₅H₃F₂)]⁺

7.1 XeF (neutral)

\$coord

E_{tot} = -429.1207424198 H

7.2 [XeF]⁺

Ś	со	or	d	
$\boldsymbol{\gamma}$	$\sim \sim$	~.	9	

0.0000000000000000000000000000000000000	0.00000000000000000000000000000000000	-1.77340422409758 xe 1.77340422409758 f
\$end		

E_{tot} = -428.7282369377 H

7.3 Xe(OTeF₅) (neutral)

\$coord

3.64038128444577	4.99188079524722	0.33441697040895 xe
8.07403152005769	5.05942368337035	-2.20556760708574 o
10.97359852108073	5.16112722054465	-0.06319585569100 te
13.83452219100956	5.25629180296729	1.94709348470183 f
12.38973083610329	7.69633034290789	-2.04311634611858 f
9.53354273795706	7.58181559924671	2.05302613076988 f
9.71266932442594	2.63219064502057	2.03985642502644 f
12.56453906364672	2.74763555578673	-2.06249430475048 f
\$end		

E_{tot} = -1171.823564596 H

7.4 [Xe(OTeF₅)]⁺

\$coord

4.48412558820094	5.00588392894357	-0.23194050777019 xe
7.78145952139043	5.05624143243056	-1.92168678155418 o
11.04200386958330	5.16506590050482	0.11485749128165 te
14.00854060764404	5.26387705578176	1.85943342248510 f
11.99793687116185	7.66705952164483	-2.08468443892479 f
9.53838119725083	7.53913532864350	2.19664830985069 f
9.71086883008722	2.67557090158005	2.17678096694912 f
12.15969899340815	2.75386157556233	-2.10938956505607 f
a .a .al		

\$end

E_{tot} = -1171.436763682 H

7.5 $Xe(OTeF_5)(NC_5F_5)$ (neutral)

Şcoord		
-3.90609743625420	-0.24750914565435	-1.37405883017776 xe
-0.36782861589140	-1.30983481355048	-2.33444507146070 o
2.11188023517464	-2.26576266185521	0.21453897263901 te
4.45122273914070	-3.16128610409932	2.60640234565488 f
-0.38503553613140	-4.03602643488527	1.95095972609762 f
2.83872250864019	-5.09407235143956	-1.67642464099891 f
1.23823775022559	0.57743057664385	2.09108356606981 f
4.48037405688525	-0.42583591392805	-1.54566314841434 f
-8.23169641727171	1.05925339805429	-0.53679283118141 n
-8.87883941853383	3.48004266369633	-0.74917294832000 c
-9.94970996567712	-0.65155936061869	0.13114753836348 c
-12.43420226127043	-0.00967496648577	0.62353554960226 c
-13.12021433027111	2.52623549691182	0.40177405580418 c

-8.87883941853383	3.48004266369633	-0.74917294832000 c
-9.94970996567712	-0.65155936061869	0.13114753836348 c
-12.43420226127043	-0.00967496648577	0.62353554960226 c
-13.12021433027111	2.52623549691182	0.40177405580418 c
-11.31346461600294	4.31431629079931	-0.29776165230253 c
-9.17940750954931	-3.00725443644106	0.30494723399283 f
-14.09790330352151	-1.73341865777035	1.27945213492892 f
-15.44382202512921	3.22330018267177	0.84697759908452 f
-11.90813815068515	6.71561173327124	-0.52071965594901 f
-7.08651157469176	5.06647992191678	-1.41574214891018 f

\$end

E_{tot} = -1915.969171034 H

7.6 [Xe(OTeF₅)(NC₅F₅)]⁺

\$coord

-3.90609743625420	-0.24750914565435	-1.37405883017776 xe
-0.36782861589140	-1.30983481355048	-2.33444507146070 o
2.11188023517464	-2.26576266185521	0.21453897263901 te
4.45122273914070	-3.16128610409932	2.60640234565488 f
-0.38503553613140	-4.03602643488527	1.95095972609762 f
2.83872250864019	-5.09407235143956	-1.67642464099891 f
1.23823775022559	0.57743057664385	2.09108356606981 f
4.48037405688525	-0.42583591392805	-1.54566314841434 f
-8.23169641727171	1.05925339805429	-0.53679283118141 n
-8.87883941853383	3.48004266369633	-0.74917294832000 c
-9.94970996567712	-0.65155936061869	0.13114753836348 c
-12.43420226127043	-0.00967496648577	0.62353554960226 c
-13.12021433027111	2.52623549691182	0.40177405580418 c
-11.31346461600294	4.31431629079931	-0.29776165230253 c
-9.17940750954931	-3.00725443644106	0.30494723399283 f
-14.09790330352151	-1.73341865777035	1.27945213492892 f

-15.44382202512921 3.22330018267177 0.84697759908452 f -11.90813815068515 6.71561173327124 -0.52071965594901 f -7.08651157469176 5.06647992191678 -1.41574214891018 f \$end

E_{tot} = -1915.969171034 H

7.7 FXe(NC₅F₅) (neutral)

\$coord

-5.47171138180923	2.05569228167577	0.16560442860614 xe
-9.72608754263850	2.05825691647547	1.67199190440498 f
1.13326130084258	2.42501798917257	-0.69753341857361 n
2.32604210027625	4.57634879622596	-0.43777935909972 c
2.40529855352507	0.31169696648235	-0.51604578307894 c
4.98357216725947	0.21543393889358	-0.05950894820586 c
6.24430241030345	2.50273318804362	0.21403834082405 c
4.89954622606115	4.75031026868132	0.02343793225209 c
0.97649507376237	6.68405995634863	-0.62832824207259 f
6.06374525578339	6.96147960763773	0.27910952962892 f
8.70427641427075	2.54034729217911	0.65346307136411 f
1.13377476285291	-1.83650345577571	-0.78460794451657 f
6.22824331493255	-1.95939936948456	0.11615848846678 f
1		

\$end

E_{tot} = -1173.602630286 H

7.8 [FXe(NC₅F₅)]⁺

\$coord

(00000000000000000000000	0.00000000000000	-6.03065628971453	xe
0	0.0000000000000000000000000000000000000	0.00000000000000	-9.69793769483740	f
0	0.0000000000000000000000000000000000000	0.00000000000000	-1.57341132016021	n
2	2.18640926668082	0.00000000000000	-0.31613785885661	С
-2	2.18640926668082	0.00000000000000	-0.31613785885661	С
-2	2.28163211036844	0.00000000000000	2.29430407355900	С
(000000000000000000000000	0.0000000000000	3.61707597538799	С
2	2.28163211036844	0.00000000000000	2.29430407355900	С
2	1.26076352700110	0.00000000000000	-1.67537709609209	f
2	1.45437155835922	0.00000000000000	3.49283372870989	f
0	0.000000000000000000000	0.00000000000000	6.08035793025653	f
-4	4.26076352700110	0.00000000000000	-1.67537709609209	f
-4	4.45437155835922	0.00000000000000	3.49283372870989	f

\$end

E_{tot} = -1173.281110156 H

7.9 $N(C_6H_2Br_3)_3$

\$coord

00010		
1.11712075149124	-0.94720007433793	-0.00188636357591 n
1.25962794596811	0.50585617907827	2.23801999800081 c
-0.41803438788786	0.14041737702127	4.26331467183723 c
3.08760991369692	2.40212195217114	2.57361924206142 c
-0.26404294297216	1.52006786298604	6.48160343349493 c
3.21381826089401	3.86409079077654	4.74032761156588 c
1.54425637398222	3.39357607121406	6.69384432358017 c
-1.58768103177591	1.16975565121154	7.99037658716485 h
4.64475997723536	5.30415817473934	4.91285157230641 h
1.14449600046671	0.26391158833658	-2.38544461610592 c

2.74887895621986	-0.52519557127343	-4.34838736185947 c
-0.43118463287609	2.32924364519688	-2.93450272267355 c
2.75628132553808	0.61814607521589	-6.70223393094377 c
-0.38552743135508	3.55568864950250	-5.24569516727128 c
1.19845210959501	2.67207757943841	-7.12591189272273 c
4.01509197459301	-0.05584970083894	-8.15559687409986 h
-1.62389495876812	5.13843302963316	-5.58106309539891 h
0.94773463089014	-3.61173683495483	0.14190558804650 c
-0.86841543785293	-4.98381829222628	-1.22519818987902 c
2.58524524544765	-5.04769501661572	1.66062986983228 c
-1.01947348985795	-7.59466176237080	-1.13272355611027 c
2.40480208180913	-7.65149238700254	1.84939865134339 c
0.61076398799364	-8.91071158151670	0.42785350618750 c
-2.43982320352766	-8.56975739133702	-2.22034734177355 h
3.69806087914471	-8.67592554548975	3.04487015198031 h
-2.89425671644097	3.52304979395247	-0.60905567442669 br
5.18078324866946	-3.12929424756355	-3.89656036592722 br
1.23485807984660	4.29895754244809	-10.32835639391411 br
5.31124150457299	-3.56087022579198	3.46560157607396 br
-3.39674622058303	-3.36655607661474	-3.19787656442917 br
0.38333438024017	-12.49048224235626	0.62078336715764 br
5.66520255061622	3.01992106974002	0.15001784551988 br
-3.16313666230542	-2.16794717855712	4.07594232920893 br
1.73708704297961	5.34384354771732	9.70432183768527 br

\$end

E_{tot} = -23910.58182631 H

7.10 [N(C₆H₂Br₃)₃]⁺ \$coord

1.11744566245537	-0.94768661404032	-0.00160708103368 n
1.25860949845506	0.49209903744489	2.21780410478709 c
-0.38381070512065	0.03633605520653	4.28182704773625 c
3.04944826292962	2.46305088233134	2.48953013083033 c
-0.23533985361899	1.44184153780544	6.46956756227728 c
3.17883172073102	3.88775823484554	4.66603956759000 c
1.54092032086795	3.36910209988034	6.65391289175230 c
-1.52970224809330	1.08208220470808	8.00222377319759 h
4.58196416551875	5.35546408522148	4.84188851032071 h
1.14439084254105	0.25245172653682	-2.36332845880443 c
2.70191351382947	-0.62535158470869	-4.35558129412114 c
-0.38480137978209	2.39342979921439	-2.85647050309454 c
2.71784681393371	0.54597934912388	-6.68183060932114 c
-0.34739427587866	3.58248041360182	-5.17345590694784 c
1.19848846795127	2.65162902398909	-7.08319118041227 c
3.94611928947116	-0.13610336997805	-8.15830174028690 h
-1.55459837020912	5.18874321171418	-5.51463878538311 h
0.94938882294433	-3.58787611312076	0.14068257802899 c
-0.82873695759329	-4.95233578394024	-1.32288558053383 c
2.55054143263885	-5.00183915143027	1.75388938469433 c
-0.98393669809596	-7.54908699443572	-1.19448009042601 c
2.37587426294828	-7.59619328260967	1.90414261630800 c
0.61375244857239	-8.86447694891513	0.42434376608458 c
-2.37650560563025	-8.54321013849682	-2.30187238953138 h
3.63982714943626	-8.63436117138683	3.12007066130922 h
-2.80021567103439	3.63195261988536	-0.52414171078126 br
5.08585002410317	-3.26174273737224	-3.93813725405565 br
1.23485878514028	4.25990487013323	-10.24682389326588 br

5.23260037533083	-3.52499360284058	3.60682749294371 br
-3.31591979973693	-3.35477418782939	-3.34020703411123 br
0.38857796296878	-12.40135515914591	0.61472196967484 br
5.58558488859506	3.13043599673825	0.05427376593603 br
-3.08488756897746	-2.30661223825148	4.13213629823570 br
1.73030452809622	5.29738038165328	9.62751344233935 br
\$end		

E_{tot} = -23910.31268384 H

7.11 C₅F₅N

\$coord

7		
-12.19180168410231	2.75647945000392	0.00000539344407 c
-9.71107102360147	3.61521373360031	-0.00000283523646 c
-7.81257201967956	1.80798862503720	0.00000621802465 c
-12.66247133377423	0.17388401848336	-0.00000081064892 c
-10.58708161183762	-1.42704111440502	0.00000593622432 c
-8.24887777728573	-0.62510430706624	0.00002536628694 n
-10.97188971675136	-3.90845919986912	-0.00001005774722 f
-15.02228297722134	-0.69470554334963	-0.00002133980135 f
-14.09092460233462	4.38505197073991	0.00002266174139 f
-9.21223859258305	6.07982508590600	-0.00001888295968 f
-5.41872480350805	2.56633762369642	-0.00001164932777 f
\$end		

E_{tot} = -744.4778984039 H

7.12 $C_5H_3F_2N$

\$coord

-24.32281413440763	4.18641981741228	0.00580451554585 c
-26.61982845198082	2.91707597622866	0.00193912905469 c
-26.50575215205987	0.30110861713185	0.00491736690363 c
-24.42256206268934	-1.04292839212487	0.01082411770492 n
-22.28963364525752	0.22070658083004	0.01388433978772 c
-22.07586975152141	2.83042648740724	0.01165503271869 c
-24.28385600087877	6.22949548724486	0.00447310159882 h
-28.41608153711007	3.88144051546014	-0.00355400667913 h
-28.66348618536754	-1.01505177275607	0.00179003735346 f
-20.18369748738849	-1.17680798491878	0.01975916684165 f
-20.24415617648349	3.72563532301064	0.01486768344261 h
A 1		

\$end

E_{tot} = -446.7594963453 H

7.13 [Xe(OTeF₅)(NC₅H₃F₂)]⁺

\$coord

-8.04140578056800	0.26008780589980	0.51755457628852 xe
-12.53432489372036	0.05225615824782	0.26047050498456 n
-4.20936078268595	0.19971605629345	0.84300372989350 o
-2.15604450681872	3.03747720285909	-0.21634817084694 te
0.02455087756871	0.80255838723455	-1.75516530701342 f
-0.37883513890972	2.78524712492928	2.76664606295521 f
-4.44045637122533	5.24958394839487	1.29633164080732 f
-4.04419771391447	3.29044195648440	-3.17769190924266 f
-0.21138019508291	5.72670186450511	-1.22383985325849 f
-13.71497065252177	-2.17090488579439	0.08383401882565 c
-13.91765090458469	2.16281218876706	0.28373795842848 c

-16.51390742634978	2.16043735136333	0.13434306690376 c
-17.70308170862765	-0.17557396357964	-0.04839917824475 c
-16.30040420832839	-2.39757453016380	-0.07612058316975 c
-12.61203020875461	4.27869031016143	0.46186823256526 f
-19.74044006101372	-0.26543049830192	-0.17018846756356 h
-17.15035859362420	-4.24681654270633	-0.21532812193821 h
-12.21631856702277	-4.16364272049543	0.07324939722497 f
-17.53321861014056	3.92725010907894	0.16202350513928 h
A 1		

\$end

E_{tot} = -1618.269519171 H

8. References

- K. F. Hoffmann, A. Wiesner, S. Steinhauer and S. Riedel, *Chem. Eur. J.*, 2022, DOI: 10.1002/chem.202201958.
- 2. W. Tötsch and N. Bartlett, J. Fluorine Chem., 1982, 21, 32.
- 3. F. Sladky, Angew. Chem. Int. Ed. Engl., 1969, 8, 523.
- F. Sladky and C. J. Schack in Inorganic Syntheses, ed. J. M. Shreeve, John Wiley & Sons, New York, Chichester, Brisbane, Toronto and Singapore, 1st edn, 1986, vol. 24, ch. 1, pp. 33–37.
- R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, *Magn. Reson. Chem.*, 2008, 46, 582.
- 6. P. H. M. Budzelaar, gNMR (5.0.6.0) NMR Simulation Program, IvorySoft, 2006.
- P. Pröhm, W. R. Berg, S. M. Rupf, P. Voßnacker, S. Riedel, *Chem. Eur. J.*, 2021, 27, 17676.
- 8. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112.
- 9. G. M. Sheldrick, Acta Cryst. C, 2015, **71**, 3.
- 10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.
- 11. TURBOMOLE V7.6.1 2022, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989-2007, TURBOMOLE GmbH since 2007.
- 12. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785. (c) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200. (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- 13. M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys., 2003, 118, 9136.
- 14. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 15. S. Kotsyuda, A. N. Toraman, P. Voßnacker, M. A. Ellwanger, S. Steinhauer, C. Müller and S. Riedel, *Chem. Eur. J.*, 2023, DOI: 10.1002/chem.202202749.
- 16. H. P. A. Mercier, M. D. Moran, J. C. P. Sanders, G. J. Schrobilgen and R. J. Suontamo, *Inorg. Chem.*, 2005, **44**, 49.
- 17. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979
- S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, *J. Phys. Chem. Ref. Data, Suppl.* 1, 1988, **17**, 1.
- 19. W. Schmidt, E. Steckhan, Chem. Ber., 1980, 113, 577.