Supporting Information for:

Iridium-Catalyzed Hydroamination of Internal Homoallylic Amines

An T. Ho¹, Evan P. Vanable², Chelsea San Miguel¹, and Kami L. Hull^{1,2*}

¹Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 ²Department of Chemistry, University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712.

kamihull@utexas.edu

TABLE OF CONTENTS

Α.	General Information	2
В.	Select Optimization	4
C.	Substrate Synthesis	7
D.	General Hydroamination Procedure and Product Characterization	12
E.	Control Experiments	22
F.	Mechanistic Investigations	24
G.	X-Ray Crystal Structure Data for 10 and 22	30
Н.	References	35
I.	HRMS Spectra	36
J.	NMR Spectra	98

A. General Information

General Experimental Procedures:

Unless otherwise specified, all reactions to synthesize homoallylic amines with air sensitive reagents (Grignards, etc.) were carried out in flame-dried glassware under an atmosphere of nitrogen; mildly air sensitive reactions (such as those involving Ti(OEt)₄ were not setup in flame-dried glassware. All hydroamination reactions were, and should be, setup under inert atmosphere; while the precatalysts, ligands, amines, and alkenes are all relatively air stable, the active catalyst is not. Nitrogen was dried by passing through drying tube equipped with Drierite. Air- and moisture-sensitive reagents were handled in a nitrogen-filled glovebox (working oxygen levle ~ 1.0 ppm) or using standard Schlenk technique. Column chromatography was performed with silica gel from Grace Division Discovery Sciences (35-75 μ m mesh); all columns were slurry packed. Analytical thin-layer chromatography (TLC) was performed on precoated glass silica gel plates purchased from EMD Chemicals Inc. and visualized with either short wave (254 nm) ultraviolet light or by staining with Ninhydrin stain or KMnO₄ and briefly heating. Distillations were performed using a 3 cm short-path column under reduced pressure.

Instrumentation:

¹H, ¹³C, and ¹⁹F NMR were recorded using a Varian Unity 400 or 500 MHz (100 or 125 MHz respectively for ¹³C) or a VXR-500 MHz, Bruker Avance NEO 400 MHz (101 MHz for 13C, 376 MHz for 19F), Agilent MR 400 MHz (101 MHz for ¹³C, 376 MHz for ¹⁹F), Bruker Avance III 500 MHz (126 MHz for ¹³C, 471 MHz for ¹⁹F), or Bruker AVIII HD 500 MHz (126 MHz for ¹³C, 471 MHz for ¹⁹F) spectrometer(s). Spectra were referenced to residual solvent using either CDCl₃ (¹H NMR: δ 7.26 ppm, ¹³C NMR: δ 77.36 ppm) or C₆D₆ (¹H NMR: δ 7.15 ppm and ¹³C NMR: δ 128.60 ppm), ¹⁹F NMR spectra were referenced to added C₆F₆ (¹⁹F NMT: δ -164.9 ppm). Chemical shifts are reported in part per million and the multiplicity is as indicated: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constant values are designated by J and are reported in Hertz. Integration of the products is provided. Analysis of products and starting materials by Gas Chromatography (GC) where indicated is performed using a Shimadzu GC-2010 Plus Gas Chromatograph or Shimadzu Nexis GC-2030 gas chromatograph with hydrogen as carrier gas with a flame ionization detector. The analysis by Gas Chromatography Mass Spectrometry (GC-MS) was performed on a Shimadzu GC-2010 Plus coupled with GC-MS QP2010SE or a a Shimadzu GC-2010 Plus Gas chromatograph equipped with Shimadzu GCMS-QP2010 SE mass spectrometer. The analytes is separated by way of a SHRXI-5MS- 30 m x 0.25 mm x 0.25 µm column using helium carrier gas; identification of the analyte is assisted by electron impact ionization. High Resolution-Mass Spectrometry (HR-MS) was performed in the Department of Chemistry at the University of Illinois at Urbana-Champaign and at the Mass Spec Facility at the University of Texas at Austin. All air-sensitive reactions involving the hydroamination reaction, unless otherwise indicated, were set-up with the aid of a glove box maintained under a nitrogen atmosphere.

Materials:

Solvents used for extraction and column chromatography were reagent grade and used as received. Reaction solvents tetrahydrofuran (Fisher, unstabilized HPLC ACS grade), diethyl ether (Fisher, BHT stabilized ACS grade), methylene chloride (Fisher, unstabilized HPLC grade), dimethoxyethane (Fisher, certified ACS), toluene (Fisher, optima ACS grade), 1,4-dioxane (Fisher, certified ACS), acetonitrile (Fisher, HPLC grade), and hexanes (Fisher, ACS HPLC grade) were dried on a Pure Process Technology Glass Contour Solvent Purification System using activated Stainless Steel columns while following manufacture's recommendations for solvent preparation and dispensation unless otherwise noted. were distilled and

degassed by the freeze-pump-thaw method before use. All liquid aldehydes and amines were freshly distilled prior to use.

B. Select Optimization

Table S1. Ligand screen

tol-**BINAP** Ar = 4-Me-C₆H₄

DTBM-SEGPHOS Ar = 3,5-tBu-4-MeO-C₆H₂

Table S2. Additive Screen

Table S3. Additive Screen for Cyclic Olefin

NH ₂	H ₂ N	1.5 mol % [Ir(cod)Cl] ₂ 3.3 mol % <i>tol</i> -BINAP	NH ₂
Ph	*	25% Mg(NO ₃) ₂ neat, 110 °C,18 h	Ph
1 equiv.	7.5 equiv.		

Additive	In-situ Yield	d.r.
KBr	20	0.46
Cal ₂	27	1.22
LiNO₃	41	9.71
MgSO ₄	21	1.39
Ca(NO ₃) ₂	27	2.99
KI	34	3.09
Nal	40	6.38
CaBr ₂	18	1.10
Mg(NO ₃) ₂	47	28.17
Csl	34	4.59
Li ₂ SO ₄	20	1.34
MgBr ₂	21	1.60
ZnBr ₂	50	10.87
K_2SO_4	20	1.44
ZnI ₂	47	4.24
Lil	46	3.54

C. Substrate Synthesis

General Procedure A: Synthesis of linear internal olefins

$$H_2N \longrightarrow OH \xrightarrow{1. \text{ Boc}_2O (1.03 \text{ equiv}), H_2O:CH_2Cl_2 (3:1)}{2. C_2O_2Cl_2, \text{ DMSO}, \text{ Et}_3N, CH_2Cl_2, -78 \ ^\circ \text{C to rt}} H_2N \longrightarrow H$$

Step 1. 3-amino-1-propanol derivatives (1 equiv) were protected by adding di-*tert*-butyl-dicarbonate (1.03 equiv) to a biphasic mixture of deionized water (3 mL/mmol sm) and DCM (1 mL/mmol sm). This was stirred for 1-24 h, extracted twice with 30 mL dichloromethane, dried over brine and magnesium sulfate, and the solvent was removed *in vacuo*. These products were taken to the next step without further purification.

Step 2. The protected material was oxidized using a typical Swern oxidation condition. An oven-dried flask was placed under N₂ and 2 mL dichloromethane/mmol starting material was added to it. This was chilled to -78 °C and had 1.5 equiv oxalyl chloride added to it. 2.0 equiv dimethylsulfoxide (mixed 1:1 with dichloromethane to prevent freezing in the syringe) was added to this dropwise over five minutes. The solution was stirred for fifteen minutes at this temperature, and then a dichloromethane solution (2 mL/mmol) of the Boc amine was added to the solution over ten minutes. This was stirred for a further 30 minutes and 5 equiv trimethylamine was added to the reaction. The reaction was allowed to warm to room temperature overnight and quenched with 2 mL/mmol of saturated ammonium chloride solution and 1 mL/mmol of deionized water. The mixture was extracted twice with 40 mL dichloromethane, dried with sodium sulfate, and the solvent removed *in vacuo*. The aldehydes produced were mostly stable to column chromatography, however, generally, they were used without further purification. Note: purified yields ranged from 60-80% over 2 steps; purification was not found to improve yields for further reactions.

Step 3. The resulting aldehydes were then subjected to a *Z*-selective Wittig olefination. An oven-dried flask containing 2.2 equiv of the corresponding triphenylphosphonium bromide or iodide salt was cycled to a nitrogen atmosphere and chilled to 0 °C. To this was added 3 mL dry THF/mmol aldehyde, and 2.1 equiv KHMDS in toluene (0.7 M solution) slowly, producing bright red or orange suspensions. This was allowed to stir for 1-2 hours at this temperature. The aldehyde was dissolved in THF (2 mL/mmol) and added dropwise to the ylide solution. The reaction was allowed to warm up to rt overnight and quenched (allowing it to stir longer resulted in no further product formation, and in some cases degradation) using 2 mL/mmol starting material saturated ammonium chloride solution. The resulting suspension was extracted twice with 50 mL diethyl ether, loaded onto Celite, and columned using 25% ethyl acetate in hexanes. These columns generally did not remove all of the impurities, however, the goal was to remove most of the phosphine oxide and phosphine byproducts. These reactions consistently produced >20:1 *Z*-olefin, although with modest yields (30-50%).

Step 4. The Boc group was then removed to reveal the free internal Z-homoallylamine. This was accomplished by dissolving the starting olefin in 1.5 mL/mmol dichloromethane and chilling it to 0 °C. TFA was added (5 equiv) dropwise, usually inducing a stark color change. This was stirred at rt for 1.5 hours, and then chilled, 1.5 mL/mmol starting material deionized water added, 1.2 mL/mmol starting material 5 M NaOH added slowly, and a basic pH confirmed using pH test strips. This was extracted with 3 x 10 mL

dichloromethane, dried using sodium sulfate, and the solvent removed *in vacuo*. These products could be purified using distillation under reduced pressure (0.2-1 torr) to afford the pure *Z*-homoallylamines in 25-70% yields.

General Procedure B: Synthesis of Cyclic Internal Olefins

1.0 equiv of benzaldehyde was combined with 1.05 equiv LiHMDS in THF at 0 °C. This was warmed to room temperature overnight, concentrated by rotovap, and distilled (55 °C, 0.4 torr) to afford benzaldehyde trimethylsilyl imine in 61% yield.

The trimethylsilyl imine was put under a nitrogen atmosphere and dissolved in 8 mL/mmol diethyl ether. Then, 1.5 equiv titanium isopropoxide (neat) was added in a slow dropwise fashion. The reaction was stirred for 5 minutes, and chilled to -78 °C. To this was added slowly 3 equiv cyclopentylmagnesium chloride in THF. The mixture was stirred for 10 minutes and then warmed to a -40 °C where it stirred for an additional 1 hour. This solution was chilled to -78 °C, and then 1.3 equiv of the corresponding lithium alkoxide of the allylic alcohol (2-cyclopenten-1-ol or 2-cyclohexen-1-ol) was added (in 5 mL/mmol alkoxide of THF). This was allowed to warm to rt and stir over for two days. The reaction was quenched with 5 mL/mmol saturated sodium bicarbonate solution, stirred vigorously for 1 h, and filtered through a pad of Celite using sodium bicarbonate and diethyl ether to rinse. This was extracted with 3 x 50 mL portions of diethyl ether, dried over sodium sulfate, and concentrated *in vacuo*. The free amine was produced in > 20:1 d.r. and distilled under reduced pressure to afford the pure product. Yields were 50-65%.

General Procedure A

E:Z ratio 1:5

¹H NMR (500 MHz, CDCl₃): δ 7.34 (qd, *J* = 8.3, 4.0 Hz, 4H), 7.26 – 7.21 (m, 1H), 5.58 (dddd, *J* = 10.9, 8.4, 6.8, 5.2 Hz, 1H), 5.38 (dddt, *J* = 11.4, 8.3, 6.6, 1.8 Hz, 1H), 3.97 (dd, *J* = 7.7, 5.9 Hz, 1H), 2.49 – 2.35 (m, 2H), 1.60 (dd, *J* = 6.8, 1.8 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 146.46, 128.70, 127.25, 127.23, 127.00, 126.65jj, 56.34, 37.51, 13.34 ppm.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₁H₁₆N⁺, 162.1283; found, 162.1385.

General Procedure A

E:Z < 1:10

¹H NMR (500 MHz, CDCl₃): δ 7.28 (t, J = 7.5 Hz, 2H), 7.22 – 7.14 (m, 3H), 5.61 (dtdd, J = 9.4, 6.8, 6.0, 1.5 Hz, 1H), 5.41 (dddt, J = 11.4, 8.5, 5.0, 1.8 Hz, 1H), 2.82 (ddd, J = 10.0, 8.0, 5.1 Hz, 1H), 2.80 – 2.72 (m, 1H), 2.65 (ddd, J = 13.7, 10.2, 6.1 Hz, 1H), 2.20 (dt, J = 13.4, 6.2 Hz, 1H), 2.11 (dt, J = 14.7, 7.9 Hz, 1H), 1.78 (dddd, J = 15.1, 7.2, 6.1, 4.9 Hz, 1H), 1.82-1.75 (m, 1H), 1.64 (dq, J = 7.6, 1.1 Hz, 3H), 1.41 (s, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 142.66, 128.71, 128.70, 127.49, 126.82, 126.10, 51.38, 39.72, 35.82, 33.09, 13.44.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ jcalculated for C₁₃H₂₀N⁺, 190.1596; found, 190.1597.

General Procedure A

E:Z = 6:1

¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.00 (t, *J* = 8.8 Hz, 2H), 5.64 – 5.46 (m, 1H), 5.40 – 5.24 (m, 1H), 3.96 (dd, *J* = 6.0, 5.8 Hz, 1H), 2.37 (qt, *J* = 13.4, 6.4 Hz, 2H), 1.64 (s, 2H), 1.61 – 1.51 (m, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ 161.92 (d, J^{CF} = 244.5 Hz), 141.73 (d, J^{CF} = 3.3 Hz), 127.97 (d, J^{CF} = 8.0 Hz), 127.01, 126.71, 115.18 (d, J^{CF} = 21.1 Hz), 55.45, 37.37, 13.10 ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.38 (tt, J = 8.2, 5.1 Hz) ppm.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₁H₁₅FN⁺, 180.2459; found, 180.1190.

General Procedure A

E:Z = 1:5

¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.31 (m, 4H), 7.26 – 7.21 (m, 1H), 5.53 – 5.44 (m, 1H), 5.35 – 5.28 (m, 1H), 3.96 (dd, *J* = 7.6, 6.0 Hz, 1H), 2.45 – 2.36 (m, 2H), 2.03 (dddd, *J* = 14.6, 7.3, 5.5, 3.7 Hz, 2H), 1.52 (s, 2H), 0.92 (t, *J* = 7.5 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 146.26, 134.57, 128.48, 127.03, 126.46, 125.45, 56.22, 37.61, 20.86, 14.35.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₂H₁₈N, 176.1439; found, *z* 176.1440.

General Procedure B

d.r. > 20:1

¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 5.85 (bs, 2H), 3.77 (d, *J* = 7.3 Hz, 1H), 2.38 (dddd, *J* = 10.8, 8.4, 5.7, 2.2 Hz, 1H), 2.00 (ddt, *J* = 8.6, 4.7, 2.1 Hz, 2H), 1.72 (dtd, *J* = 13.9, 6.7, 5.6, 3.9 Hz, 1H), 1.51 (tdd, *J* = 10.1, 7.0, 3.1 Hz, 4H), 1.35 – 1.25 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 145.82, 129.82, 128.58, 128.10, 127.13, 127.09, 60.70, 43.35, 27.23, 25.67, 21.83 ppm.

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₃H₁₈N⁺, 188.1439; found, 188.1445.

General Procedure B

d.r. ~ 14:1

¹H NMR (500 MHz, CDCl₃): δ 7.35 – 7.30 (m, 4H), 7.24 (dtd, *J* = 8.5, 4.4, 2.2 Hz, 1H), 5.88 (dq, *J* = 5.5, 2.2 Hz, 1H), 5.82 – 5.78 (m, 1H), 3.75 (dd, *J* = 7.3, 1.1 Hz, 1H), 3.05 – 2.97 (m, 1H), 2.38 – 2.19 (m, 2H), 1.87 – 1.75 (m, 1H), 1.55 (dddd, *J* = 13.2, 9.1, 6.5, 5.3 Hz, 1H), 1.50 (bs, 2H) ppm.

 ^{13}C NMR (126 MHz, CDCl_3): δ 146.15, 133.51, 131.63, 128.59, 127.12, 127.08, 60.89, 54.11, 32.52, 27.55 ppm.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₂H₁₆N, 174.1283; found, 174.1277.

D. General Hydroamination Procedure and Product Characterization

1,4- Selective General Procedure C for internal olefins

To a 4 mL vial equipped with a stirbar was added $[Ir(cod)Cl]_2$ (2.01 mg, 1.5 mol %), *tol*-BINAP (4.48 mg, 3.3 mol %), Mg(NO₃)₂ (7.4 mg, 0.05 mmol, 0.25 equiv), homoallylic amine (0.2 mmol, 1.0 equiv) and aryl amine (1.5 mmol, 7.5 equiv). The 4 mL vial was sealed with a Teflon cap, removed from nitrogen-filled glove box, and heated to 100 °C for 16 h while stirring. The crude reaction was purified directly by column chromatography (eluent: ramp from 97% DCM:3% NH₄OH: 0% MeOH to 92% DCM:3% NH₄OH:5% MeOH).

NH₂ F 3

60% yield 2.0:1 dr

N4,1-diphenylpentane-1,4-diamine (3)

The product was synthesized according to General Procedure C. This product (60%, 0.12 mmol) was isolated as a 2:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product as a 2:1 mixture of diastereoisomers.

¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 7.16 (t, *J* = 7.8 Hz, 2H), 6.68 (td, *J* = 7.4, 1.4 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 2H), 3.90 (t, *J* = 6.9 Hz, 1H), 3.51 – 3.42 (m, 1H), 1.91 – 1.73 (m, 2H), 1.71 – 1.61 (m, 1H, *major*), 1.59 – 1.52 (m, 0.5 H, *minor*), 1.51 – 1.43 (m, 0.5 H, *minor*), 1.42-1.31 (m, 1H, *major*) 1.17 (d, *J* = 6.4, 2.2 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 147.86, 146.62, 129.59, 128.86, 127.35, 126.62, 117.18, 113.40, 56.71, 48.83, 36.33, 34.33, 21.16 ppm.

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₃N₂, 255.1861; found, 255.1864.

The diastereoisomeric ratio was determined by ¹H NMR; one of the CH₂ groups separate.

NH₂ H 74% yield 2:1 dr

N2,7-diphenylheptane-2,5-diamine (4)

The product was synthesized according to General Procedure C. This product (74%, 0.15 mmol) was isolated at 90 °C as a 2:1 mixture of diastereomers (approximated by ¹³C NMR, no peaks resolved in the ¹H NMR), with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, $CDCl_3$): δ 7.33 – 7.29 (m, 2H), 7.24 – 7.15 (m, 5H), 6.69 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 8.0 Hz, 2H), 3.48 (h, J = 6.1 Hz, 1H), 2.86 – 2.72 (m, 3H), 2.66 (dddd, J = 13.5, 9.6, 6.3, 2.7 Hz, 2H), 1.87 – 1.75 (m, 2H), 1.73 – 1.41 (m, 6H), 1.21 (d, J = 6.4 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 147.93, 147.91 (minor), 142.48, 129.65, 128.74, 128.68, 126.15, 117.27 (minor), 117.24, 113.46 (minor), 113.44, 51.30, 51.28 (minor),49.03, 48.95 (minor), 40.08, 34.61, 33.89, 32.89, 32.85 (minor), 21.31, 21.24 (minor) ppm.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calculated for C₁₉H₂₇N₂, 283.2174; found mass, 283.2163.

The only two signals that showed baseline separation are shown below and support a d.r. of approximately 2:1.

N2-(4-bromophenyl)-7-phenylheptane-2,5-diamine (5)

The product was synthesized according to General Procedure C. This product (50%, 0.10 mmol) was isolated as a 1.5:1 mixture of diastereomers (approximated by ¹³C NMR; there were no separate peaks in the ¹H NMR), with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, $CDCl_3$): δ 7.31 – 7.25 (m, 2H), 7.24 – 7.15 (m, 5H), 6.43 (d, *J* = 8.8 Hz, 1H), 3.40 (hept, *J* = 7.2, 6.7 Hz, 1H), 2.73 (dtd, *J* = 16.5, 8.7, 7.6, 3.4 Hz, 2H), 2.62 (ddd, *J* = 13.6, 10.0, 6.3 Hz, 1H), 1.80 – 1.70 (m, 1H), 1.67 – 1.31 (m, 5H), 1.17 (dd, *J* = 6.3, 1.2 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 146.70, 146.68 (minor), 142.24, 132.07, 128.53, 128.45, 125.94, 114.73 (minor), 114.71, 108.37 (minor), 108.35 (major), 51.02 (major), 50.99 (minor), 48.93 (minor), 48.84 (major), 40.07 (minor), 40.02 (major), 34.46 (minor), 34.40 (major), 33.52 (major), 33.45 (minor), 32.69 (minor), 32.64 (major), 20.90 (major), 20.84 (minor) ppm.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₆N₂Br, 361.1279; found, 361.1274.

N4-(4-methoxyphenyl)-1-phenylpentane-1,4-diamine (6)

The product was synthesized according to General Procedure C. This product (49%, 0.098 mmol) was isolated as a 1.5:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.31 (m, 4H), 7.26 – 7.20 (m, 1H), 6.75 (d, *J* = 8.9 Hz, 2), 6.50 (d, *J* = 8.9 Hz, 2H), 3.88 (t, *J* = 6.9 Hz, 1H), 3.74 (s, 3H), 3.39 – 3.30 (m, 1H), 2.27 (br s, 2H), 1.60 (ddd, *J* = 17.2, 11.1, 5.6 Hz, 0.6H, 1H major), 1.55 – 1.37 (m, 0.9H, 2H minor), 1.36 – 1.27 (m, 1H, major), 1.2 (overlapping d, *J* = 6.4 Hz, 3H, major and minor) ppm.

δ ¹³C NMR (126 MHz, CDCl₃): δ 151.96, 146.27 (minor), 146.19 (major), 141.88, 128.65, 127.17, 126.44, 115.07, 114.82 (major), 114.79 (minor), 56.50 (major), 56.46 (minor) 55.96, 49.70 (minor), 49.68 (major), 36.00 (major), 35.98 (minor) 34.11 (major), 34.04 (minor), 20.99 (minor), 20.97 (major) ppm.

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅N₂O, 285.1967; found, 285.1965.

7 29% yield 1.6:1 dr

1-phenyl-N4-(o-tolyl)pentane-1,4-diamine (7)

The product was synthesized according to General Procedure C. This product (29%, 0.058 mmol) was isolated as a 1.6:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.30 (m, 4H), 7.28 – 7.25 (m, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 7.3 Hz, 1H), 6.63 (t, *J* = 7.5 Hz, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 3.97 – 3.89 (m, 1H), 3.57 – 3.47 (m, 1H), 2.73 (bs, 3H), 2.11 (s, 3H), 1.92 – 1.75 (m, 2H), 1.73 – 1.63 (m, 1H, major), 1.63 – 1.44 (m, 1H, minor 2H), 1.41 – 1.33 (m, 1H, major), 1.19 (d, *J* = 6.3, Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 145.47, 130.37, 128.76, 127.38, 127.23, 126.52, 121.83, 121.82, 116.47, 110.19 (major), 110.13 (minor), 56.45 (major), 56.42 (minor), 48.43 (minor), 48.41 (major), 35.66 (major), 35.61 (minor), 34.09 (major), 34.00 (minor), 21.17 (minor), 21.12 (major), 17.75 (major), 17.73 (minor) ppm.

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅N₂, 269.2018; found, 269.2017

1-(4-fluorophenyl)-N4-phenylpentane-1,4-diamine (8)

The product was synthesized according to General Procedure C. This product (60%, 0.12 mmol) was isolated as a 1.7:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.20 (m, 2H), 7.14 (dd, *J* = 8.5, 7.2 Hz, 2H), 7.00 (td, *J* = 8.6, 6.2 Hz, 2H), 6.66 (td, *J* = 7.3, 1.0 Hz, 1H), 6.53 (d, *J* = 7.4 Hz, 2H), 3.89 (t, *J* = 6.8 Hz, 1H), 3.43 (h, *J* = 6.3 Hz, 1H), 2.67 (bs, 2H), 1.91 – 1.64 (m, 2H), 1.64 – 1.53 (m, 1H, major), 1.52-1.36 (m, 2H, minor)), 1.36-1.22 (m, 1H, major) 1.14 (d, *J* = 6.3 Hz, 3H, minor) 1.13 (d, *J* = 6.3 Hz, 3H, major) ppm.

¹³C NMR (101 MHz, CDCl₃): δ 162.01 (d, *J* = 245.0 Hz) (overlapping peaks), 147.56 (overlapping peaks), 141.17 (overlapping peaks), 129.40 (overlapping peaks), 128.07 (d, *J* = 7.9 Hz) (overlapping peaks), 117.06 (overlapping peaks), 115.43 (d, *J* = 21.3 Hz) (overlapping peaks), 113.21 (major), 113.20 (minor), 55.77 (major), 55.74 (minor), 48.57 (minor), 48.50 (major), 35.78 (overlapping peaks), 33.88 (major), 33.73 (minor), 20.94 (minor), 20.93 (major).

¹⁹F NMR (376 MHz, CDCl₃): δ -118.43 (overlapping peaks) ppm.

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₁FN₂, 273.1762; found, 273.1759.

 NH_2

25% yield 2.5:1 dr

N4,1-diphenylhexane-1,4-diamine (9)

The product was synthesized according to General Procedure C. This product (25%, 0.050 mmol) was isolated as a 2.2:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.24 (m, 5H), 7.15 (t, *J* = 7.8 Hz, 2H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 3.90 (t, *J* = 7.1 Hz, 1H), 3.28 (p, *J* = 6.1 Hz, 1H), 2.84 (br s, 3H), 1.90 – 1.69 (m, 2H), 1.68 – 1.29 (m, 4H), 0.89 (t, *J* = 7.5 Hz, 3H, major), 0.88 (t, *J* = 7.5 Hz, 3H, minor).

¹³C NMR (126 MHz, CDCl₃): δ 148.14 (major), 148.13 (minor), 145.50 (overlapping peaks), 129.40 (overlapping peaks), 128.72(overlapping peaks), 127.36 (minor), 127.33 (major), 126.54 (minor), 126.48 (major), 116.78 (minor), 116.76 (major), 113.05 (major), 113.03 (minor), 56.46 (minor), 54.21 (minor),

54.18 (major), 35.51 (major), 35.34 (minor), 31.32 (major), 31.04 (minor, 27.49 (minor), 27.47 (major), 10.22 (minor), 10.13 (major).

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅N₂⁺, 269.2012; found mass, 269.2019

10

50% yield >20:1 dr

(+/-) N-((trans)-3-(famino(phenyl)methyl)cyclohexyl)aniline (10)

This product (50%, 0.10 mmol) was isolated as a mixture of diastereomers with predominantly the shown diastereomer (>20:1), with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.32 (m, 2H), 7.32 – 7.24 (m, 3H), 7.19 (t, *J* = 7.4 Hz, 2H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 7.3 Hz, 2H), 3.82 – 3.76 (m, 1H), 3.69 (d, *J* = 7.9 Hz, 1H), 2.10 (d, *J* = 13.3 Hz, 1H), 1.85 (tdt, *J* = 11.3, 7.6, 3.6 Hz, 1H), 1.81 – 1.74 (m, 1H), 1.73 – 1.40 (m, 7H), 1.01 – 0.89 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 147.35, 145.02, 129.30, 128.31, 127.10, 127.04, 116.83, 113.03, 60.81, 47.50, 39.78, 33.99, 30.19, 28.89, 20.43 ppm.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₅N₂⁺, 281.2012; found mass, 281.2018

CO₂Et 11 41% yield 12.0:1 dr

ethyl 4-(((1R,3R)-3-((R)-amino(phenyl)methyl)cyclopentyl)amino)benzoate (11)

This product (41%, 0.082 mmol) was isolated as a mixture of diastereomers with predominantly the shown diastereomer (12:1 selectivity), with > 20:1 selectivity over the 1,3 and 1,5 diamine product. (note: initial d.r. of substrate is 14:1)

¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, *J* = 8.7 Hz, 2H), 7.39 – 7.30 (m, 4H), 7.30 – 7.23 (m, 1H), 6.54 (d, *J* = 8.7 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.94 (m, 1H), 3.71 (d, *J* = 8.9 Hz, 1H), 2.38 (h, *J* = 9.5 Hz, 1H), 2.21 – 1.86 (m, 5H), 1.53 (dtd, *J* = 10.6, 7.2, 3.1, 1H), 1.44 (ddt, *J* = 13.4, 8.0, 4.2 Hz, 1H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.31 – 1.23 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 167.22, 151.61, 145.56, 131.78, 128.80, 127.55, 127.08, 118.72, 112.11, 61.73, 60.47, 54.09, 46.61, 37.92, 33.75, 29.10, 14.80.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₂₁H₂₇N₂O₂, 339.2073; found mass, 339.2071

N-(3-(amino(phenyl)methyl)cyclopentyl)-4-chloroaniline (12)

This product (51%, 0.10 mmol) was isolated as a mixture of diastereomers with predominantly the shown diastereomer (13:1 selectivity), with > 20:1 selectivity over the 1,3 and 1,5 diamine product (note: initial d.r. of substrate is 14:1).

¹H NMR (500 MHz, CDCl₃): δ 7.40 – 7.31 (m, 3H), 7.30 – 7.23 (m, 2H), 7.12 (d, *J* = 8.8 Hz, 2H), 6.51 (d, *J* = 8.8 Hz, 2H), 3.84 (qd, *J* = 6.7, 3.7 Hz, 1H), 3.69 (d, *J* = 8.9 Hz, 1H), 2.72 – 2.29 (bs, 3H), 2.37 (h, *J* = 9.5 Hz, 1H), 2.13 (dddd, *J* = 12.7, 8.8, 6.7, 3.6 Hz, 1H), 1.95 – 1.80 (m, 2H), 1.51 (dtd, *J* = 11.1, 7.4, 3.4 Hz, 1H), 1.41 (dtd, *J* = 13.2, 8.2, 5.5 Hz, 1H), 1.31 – 1.18 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 146.59, 145.64, 129.31, 128.78, 127.51, 127.09, 121.90, 114.51, 61.80, 54.58, 46.60, 37.91, 33.78, 29.17.

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₈H₂₂N₂Cl⁺, 301.1466; found mass, 301.1465

 NH_2 Ph 17 65% yield 1.1:1 dr

6-morpholino-1-phenylheptan-3-amine (17)

The product was synthesized according to General Procedure C. This product (65%, 0.13 mmol) was isolated as a 1.1:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.31 – 7.26 (m, 2H), 7.19 (d, *J* = 7.8 Hz, 3H), 3.77 – 3.64 (m, 4H), 2.78-2.71 (m, 2H), 2.69 – 2.58 (m, 1H), 2.57-2.51 (m, 2H), 2.51 – 2.40 (m, 3H), 2.15 – 2.01 (bs, 2H), 1.76 (m, 1H), 1.69 – 1.48 (m, 2H), 1.45 – 1.25 (m, 3H), 0.98 (dd, *J* = 6.6, 1.7 Hz, 3H) ppm. *Note. This was isolated as a 1.1:1 mixture of diastereoisomers; the overlapping signals complicated analysis.*

¹³C NMR (126 MHz, CDCl₃): δ 142.35 (overlapping peaks), 128.53 (overlapping peaks), 128.48 (overlapping peaks), 125.94 (overlapping peaks), 67.54, 67.52, 59.64, 59.61, 51.24, 51.18, 49.00, 48.95, 39.87, 39.80, 35.09, 35.03, 32.75, 32.72, 30.04, 30.00, 14.30 (overlapping peaks) ppm. *Note. This was isolated as a 1.1:1*

mixture of diastereoisomers; the carbon signals typically come in pairs. We were unable to definitively assign major/minor isomers.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₉N₂O⁺, 277.2274; found mass, 277.2267.

18 52% yield 1:1 dr

1-phenyl-4-(piperidin-1-yl)pentan-1-amine (18)

The product was synthesized according to General Procedure C. This product (52%, 0.13 mmol) was isolated as a 5:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.30 (m, 4H), 7.25 – 7.21 (m, 1H), 3.85 (t, *J* = 6.7 Hz, 1H), 2.56 (m, 1H), 2.43 (m, 4H), 2.01 (s, 2H), 1.77 – 1.52 (m, 7H), 1.41 (q, *J* = 5.9 Hz, 2H), 1.22 – 1.10 (m, 1H), 0.93 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.81, 128.59, 127.02, 126.45, 59.93, 56.73, 54.74, 49.45, 37.18, 30.52, 29.83, 26.36, 25.99, 24.93, 14.06, 13.97. *Note. This was isolated as a 5:1 mixture of diastereoisomers, the signals for the major isomer are provided.*

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₆H₂₇N₂⁺, 247.2169; found mass, 247.2176.

4-(4-methoxypiperidin-1-yl)-1-phenylpentan-1-amine (19)

The product was synthesized according to General Procedure C. This product (50%, 0.1 mmol) was isolated as a 1.4:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.26 (m, 4H), 7.26 – 7.20 (m, 1H), 3.90 – 3.82 (m, 1H), 3.31 (s, 3H), 3.24 – 3.16 (m, 1H), 2.74 – 2.59 (m, 3H), 2.38 (t, *J* = 9.1 Hz, 1H), 2.32 – 2.12 (m, 3H), 1.94 (bs, 2H), 1.71 (m, 2H), 1.58 (m, 2H), 1.39 – 1.33 (m, 1H (0.47H, minor)), 1.22 – 1.11 (m, 1H (0.75H, major)), 0.96 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.65 (minor), 146.55 (major), 128.60 (overlappling peaks), 127.07 (major), 127.03 (minor), 126.42 (major), 126.38 (minor), 59.38 (overlapping peaks), 56.62 (major), 56.43 (minor),

55.63 (overlapping peaks), 44.81 (major), 44.74 (minor), 36.93 (major), 36.84 (minor), 31.04 (broad, overlapping peaks), 30.95 (broad, overlapping peaks), 30.62 (major), 30.43 (minor), 29.81 (minor), 14.11 (major), 14.03 (minor).

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₈N₂O⁺, 277.2274; found mass, 277.2277

 NH_2 Ph

20 51% yield 1.1:1 dr

4-(4-methylpiperidin-1-yl)-1-phenylpentan-1-amine (20)

The product was synthesized according to General Procedure C. This product (51%, 0.11 mmol) was isolated as a 1.1:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (500 MHz, $CDCl_3$): δ 7.34 – 7.27 (m, 4H), 7.21 (d, J = 17.1 Hz, 1H), 3.84 (m, 1H), 2.72 – 2.61 (m, 2H), 2.54 (m, 1H), 2.23 (m, 1H), 2.11-1.90 (m, 2H), 1.74 – 1.54 (m, 5H), 1.52 – 1.06 (m, 5H), 0.92 (t, J = 6.7 Hz, 3H), 0.88 (d, J = 6.3 Hz, 3H). Note. This was isolated as a 1.1:1 mixture of diastereoisomers; the overlapping signals complicated analysis.

¹³C NMR (126 MHz, CDCl₃): δ 146.76, 146.67, 128.51 (overlapping signals), 126.95, 126.92, 126.39, 126.35, 59.48, 59.43, 56.67, 56.49, 50.60, 50.51, 46.92, 46.82, 37.11, 37.06, 34.80, 34.74, 34.62, 34.57, 31.27, 31.24, 30.60, 30.59, 22.04 (overlapping signals), 14.09, 14.00. *Note. This was isolated as a 1.1:1 mixture of diastereoisomers; the carbon signals typically come in pairs. We were unable to definitively assign major/minor isomers.*

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₉N₂⁺, 261.2325; found mass, 261.2326

21 39% yield 1:1 dr

1-phenyl-4-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)pentan-1-amine (21)

The product was synthesized according to General Procedure C. This product (39%, 0.079 mmol) was isolated as a 1.1:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine product.

¹H NMR (400 MHz, $CDCl_3$): δ 7.33 – 7.28 (m, 4H), 7.22 (m, 1H), 3.92 (m, 4H), 3.84 (m, 1H), 2.93 (m, 1H), 2.66 – 2.50 (m, 4H), 2.50 – 2.39 (m, 2H), 1.90 (bs, 2H), 1.80 – 1.63 (m, 4H), 1.62-1.51 (m, 1H(0.7H)), 1.46 – 1.29 (m, 2H (1.1H)), 1.22 – 1.09 (m, 1H (0.6H)), 0.92 (d, *J* = 6.6 Hz, 3H (1.5H), 0.91 (d, *J* = 6.6 Hz, 3H (1.5H)). Note. This was isolated as a 1.1:1 mixture of diastereoisomers; the overlapping signals complicated analysis.

¹³C NMR (101 MHz, CDCl₃): δ 146.66, 146.57, 128.61 (overlapping signals), 127.07, 127.05, 126.43, 126.40, 107.66, 107.61, 64.29 (overlapping signals), 59.09, 59.05, 56.65, 56.49, 46.14 (overlapping signals), 37.00, 36.90, 35.34, 35.30, 30.83, 30.80, 14.26, 14.12. Note. This was isolated as a 1.1:1 mixture of diastereoisomers; the carbon signals typically come in pairs. We were unable to definitively assign major/minor isomers.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₈H₂₉N₂O₂⁺, 305.2224; found mass, 305.2230.

 NH_2 22 40% yield 1.2:1 dr

4-(4-methylpiperazin-1-yl)-1-phenylpentan-1-amine (22)

The product was synthesized according to General Procedure C. This product (40%, 0.8 mmol) was isolated at 100 °C as a 1.2:1 mixture of diastereomers, with > 20:1 selectivity over the 1,3 and 1,5 diamine products.

¹H NMR (500 MHz, CDCl₃): δ 7.30 (m, 5H), 7.23 (m, 1H), 3.84 (m, 1H), 2.55-2.35 (m, 9zH), 2.25 (s, 3H), 1.71 (m, 2H), 1.62-1.52 (m, 1H, major (0.55H)), 1.45 – 1.36 (m, 1H, minor (0.45H)), 1.31 (ddt, *J* = 13.3, 8.9, 7.0 Hz, 1H, minor), 1.23 (s, 1H (NH)), 1.20-1.10 (m, 1H, major), 0.95-0.91 (m, 3H, apparent triplet, overlapping doublets for major and minor diastereoisomers).

¹³C NMR (126 MHz, CDCl₃): δ 146.50, 146.36, 128.57 (overlapping major and minor), 127.08, 127.04, 126.44, 126.41, 58.99, 58.96, 56.65, 56.55, 55.53, 55.48, 47.97 (broad peak), 46.11, 46.10, 36.74, 36.70, 30.52, 30.48, 29.80, 14.30, 14.26. Note. This was isolated as a 1.2:1 mixture of diastereoisomers; the carbon signals typically come in pairs. We were unable to definitively assign major/minor isomers.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₆H₂₈N₃⁺, 262.2278; found mass, 262.2287.

29% vield >20:1 dr

(3-morpholinocyclohexyl)(phenyl)methanamine (23)

This product (29%, 0.058 mmol) was isolated as a mixture of diastereomers with predominantly the shown diastereomer (>20:1 selectivity), with > 20:1 selectivity over the 1,3 and 1,5 diamine products.

¹H NMR (500 MHz, CDCl₃): δ 7.42 – 7.26 (m, 4H), 7.23 (t, *J* = 6.9 Hz, 1H), 3.74 – 3.67 (m, 4H), 2.43 (m, 4H), 2.34 (m, 1H), 2.05 – 1.89 (m, 2H), 1.77 – 1.65 (m, 1H), 1.64 – 1.49 (m, 4H), 1.44 (ddt, *J* = 13.2, 6.6, 3.1 Hz, 2H), 1.38 (dtd, *J* = 12.0, 6.7, 6.2, 3.3 Hz, 2H), 1.08 – 0.96 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 145.98, 128.59, 127.21, 127.18, 67.71, 60.03, 59.20, 50.69, 39.75, 30.97, 29.83, 28.65, 20.78.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₇N₂O⁺, 275.2118; found mass = 275.2117

E. Control Experiments

a. Reactivity Comparison of cis and trans olefin isomers

Figure S1. GC spectrum of starting material of (E)-1a with E:Z ratio of 6.9:1

Figure S2. GC spectrum of the reaction mixture after 16 h with remaining (E)-1a with E:Z ratio of 3.3:1

When (*E*)-**1a** is used in the reaction, rather than (*Z*)-**1a**, we see a significant reduction in yield, 35% and 80% yield, respectively. Further, the *E*:*Z* ratio of **1a** erodes over the course of the reaction, as the intial ratio was 6.9:1 and the final ratio, after 16 hours, is 3.3:1. This suggests that the alkene is isomerizing under our reaction conditions. The d.r. for the reactions with the *cis* and *trans* alkenes are identical, as depicted by the ¹H NMR signal corresponding to the CH₃ shown (top spectra, in green, is the *cis* alkene; bottom spectra is the *trans*).

b. Hydroamination Control Experiments with Cyclohexene

Figure S4. . GC trace of hydroamination with cyclohexene and morpholine.

No hydroamination products are observed in the absence of the amine-directing group, suggesting that it is necessary for reactivity.

F. Mechanistic Investigations

a. Competition Hammett plot with cyclic internal alkene 1e

To a 4 mL vial equipped with stir bar was added $[Ir(cod)Cl]_2$ (2.01 mg, 1.5 mol %), *tol*-BINAP (4.48 mg, 3.3 mol %), MgNO₃ (7.4 mg, 0.05 mmol, .25 equiv), **1e** (0.2 mmol, 1 equiv). A mixture of aniline (1.5 mmol, 7.5 equiv) and substituted aniline (1.5 mmol, 7.5 equiv.) was made and heated at 30 °C until the solid was fully dissolved; the aniline mixture was added to the 4 mL vial, sealed with Teflon cap, removed from the nitrogen-filled glove box, and heated to 100 °C for 2 h while stirring. The resulting slurry was then cooled to room temperature, the 4 mL vial was uncapped, 1-methylnaphthalene (5 μ L, 35.2 μ mol) was added as an internal standard, and *ca* 1 mL each of half-saturated K₂CO₃ (aq) and CH₂Cl₂ was added to the slurry. The 4 mL vial was capped, the biphasic mixture shaken several times. The crude organic layer was analyzed by GC and calibrated *in situ* yields of **X** vs. **H** were determined by comparison to an internal standard.

Aniline	Products ratio (X/H)	Log ₁₀ ([X]/[H])
H ₂ N tBu 26	1.465	0.630
H ₂ N Me 27	1.384	0.618
H ₂ N OMe 28	0.509	-0.085
H ₂ N Cl 29	0.681	-0.303
H ₂ N OEt 30	0.170	-0.375

Table S4. Initial rate constants for the hydroamination of 1e

¹H NMR and HRMS Data for 25-29:

26. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.13 (m, 7H), 6.61 (d, *J* = 8.2 Hz, 2H), 3.69 (m, 1H), 3.63 (d, *J* = 9.1 Hz, 1H), 2.25 – 2.20 (m, 2H), 2.10-2.00 (m, 1H), 1.83 – 1.67 (m, 2H), 1.52 – 1.33 (m, 4H), 1.27 (s, 9H), 0.97 – 0.77 (m, 1H), 0.77-0.64 (m, 1H).

HR-MS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₃H₃₂N₂Na⁺, 359.2458; found mass, 359.2461

27. ¹H NMR (400 MHz, CDCl₃) δ 7.39 − 7.22 (m, 5H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 3.76 − 3.69 (m, 1H), 3.65 (d, *J* = 8.5 Hz, 1H), 2.21 (s, 3H), 2.19 − 1.98 (m, 2H), 1.84 − 1.71 (m, 1H), 1.50 − 1.35 (m, 3H), 1.34 − 1.20 (m, 2H), 0.92 − 0.78 (m, 1H).

HR-MS (ESI-TOF) *m*/*z*: [M+Na]⁺ calculated for C₂₀H₂₆N₂Na⁺, 317.1988; found mass, 317.1984

28. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.29 – 7.16 (m, 3H), 7.06 (t, *J* = 8.1 Hz, 1H), 6.24 (d, *J* = 8.1 Hz, 1H), 6.23 (d, *J* = 8.1 Hz, 1H), 6.18 (d, *J* = 2.2 Hz, 1H), 3.77 (s, 3H), 3.76 – 3.71 (m, 1H), 3.66 (d, *J* = 8.1 Hz, 1H), 2.07 (d, *J* = 13.4 Hz, 1H), 1.88 – 1.80 (m, 1H), 1.80 – 1.70 (m, 1H), 1.58 – 1.45 (m, 3H), 1.44 –

1.34 (m, 2H), 0.95 – 0.84 (m, 1H). HR-MS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₆N₂ONa⁺, 333.1937; found mass, 333.1941

29. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 2H), 7.26 – 7.17 (m, 3H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.9 Hz, 2H), 3.74 – 3.66 (m, 1H), 3.64 (d, J = 8.3 Hz, 1H), 2.67 – 2.17 (bs, 3H), 2.09 (d, *J* = 13.5 Hz, 1H), 2.00 – 1.88 (m, 1H), 1.78 – 1.68 (m, 1H), 1.55 – 1.21 (m, 5H), 0.86 (q, *J* = 10.9 Hz, 1H). HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₉H₂₄ClN₂⁺, 315.1623; found mass, 315.1617

30. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.8 Hz, 2H), 7.39 – 7.22 (m, 5H), 6.57 (d, *J* = 8.7 Hz, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 1H), 3.67 (d, *J* = 8.2 Hz, 1H), 2.10 (d, *J* = 12.8 Hz, 1H), 1.90 – 1.68 (m, 6H), 1.62 – 1.48 (m, 3H), 1.47 – 1.39 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 0.92 (q, *J* = 12.1 Hz, 1H). HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C22H28N2O2⁺, 353.2224; found mass, 353.2230

Figure S5. Hammett plot for the hydroamination of 1e with sigma value.

Figure S6. Hammett plot for the hydroamination of 1e with sigma plus value

b. Competition Hammett Study with acyclic cis-alkene 1a

To a 4 mL vial equipped with stir bar was added [Ir(cod)Cl]₂ (2.01 mg, 1.5 mol %), *tol*-BINAP (4.48 mg, 3.3 mol %), MgNO₃ (7.4 mg, 0.05 mmol, .25 equiv), **1a** (0.2 mmol, 1 equiv). A mixture of aniline (1.5 mmol, 7.5 equiv) and substituted aniline (1.5 mmol, 7.5 equiv.) was made and heated at 30 °C until solid was dissolved and the mixture was homogenous. The anilines mixture was added to the 4 mL vial, the vial was sealed with Teflon cap, removed from nitrogen filled glove box, and heated to 100 °C for 2 h while stirring. The resulting slurry was then cooled to room temperature, the 4 mL vial was uncapped, 1-methylnaphthalene (5 μ L, 35.2 μ mol) was added to the slurry. The 4 mL vial was capped, the biphasic mixture shaken several times. The crude organic layer was analyzed by GC and calibrated *in situ* yields of **X** vs. **H** were determined by comparison to an internal standard.

Figure S7. Hammett plot for the hydroamination of **1a** with sigma value.

Figure S8. Hammett plot for the hydroamination of 1a with sigma plus value

Aniline	Products ratio (X/H)				Log ₁₀ ([X]/[H])
, uninc	Run 1	Run 2	Run 3	Average	
H ₂ N OMe 6	7.278	4.658	4.651	6±1	0.7426
H ₂ N ^t Bu 31	2.663	1.976	2.284	2.3±0.3	0.3632
H ₂ N Me 32	2.575	2.291	1.807	2.2±0.4	0.3472
H ₂ N CI 33	0.484	0.490	0.488	0.487±0.002	-0.3123

Table S5. Initial rate constants for the hydroamination of 1a

¹H NMR Data for 30-32:

31. ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.21 (m, 7H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.48 (d, *J* = 8.4 Hz, 2H), 3.88 (t, *J* = 6.9 Hz, 1H), 3.47 – 3.37 (m, 1H), 2.13 (s, 3H), 1.90 – 1.71 (m, 2H), 1.60 (dddd, *J* = 13.0, 11.1, 6.3, 4.9 Hz, 1H (0.65H, major)), 1.51 (ddt, *J* = 13.1, 8.9, 6.4 Hz, 1H (0.35H, minot)), 1.47 – 1.38 (m, 1H (0.35H, minor)), 1.38 – 1.29 (m, 1H (0.65H, major)), 1.27 (s, 9H), 1.13 (d, *J* = 6.3 Hz, 3H (minor)), 1.13 (d, *J* = 6.3 Hz, 3H (major)). HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₁H₃₀N₂⁺, 311.2475; found mass, 311.2482

32. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.21 (m, 5H), 6.95 (d, *J* = 7.9 Hz, 2H), 6.46 (d, *J* = 7.9 Hz, 2H), 3.88 (t, *J* = 6.9 Hz, 1H), 3.40 (d, *J* = 6.3 Hz, 1H), 2.22 (s, 3H), 2.09 (s, 3H), 1.89 – 1.70 (m, 2H), 1.60 (tt, *J* = 11.3, 5.5 Hz, 1H (0.7H, major)), 1.51 (dq, *J* = 14.9, 7.0 Hz, 1H (0.3H minor)), 1.47 – 1.37 (m, 1H (0.3H, minor)), 1.32 (tt, *J* = 12.0, 5.8 Hz, 1H (0.7H, major)), 1.12 (d, *J* = 6.4 Hz, 3H).

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₁H₃₁N₂⁺, 311.2482; found mass, 311.2475

33. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.23 (m, 5H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.40 (d, *J* = 8.8 Hz, 2H), 3.90 (t, *J* = 7.0 Hz, 1H), 3.35 (q, *J* = 6.4 Hz, 1H), 2.43 (s, 3H), 1.94 – 1.72 (m, 2H), 1.57 (tt, *J* = 11.5, 5.8 Hz, 1H (0.7H major)f), 1.52 – 1.37 (m, 2H (0.6H, minor)), 1.32 (td, *J* = 12.1, 5.7 Hz, 1H (0.7H, major)), 1.10 (d, *J* = 6.3 Hz, 3H (minor)), 1.09 (d, *J* = 6.3 Hz, 3H (major)).

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₂ClN₂⁺, 289.1466; found mass, 289.1462

Table S6. Chloride Loading Screen

G. X-Ray Crystal Structure Data for 10 and 22

Preparation of 10•napthalene-1,5-disulfonic acid

X-ray quality crystals were obtained for **10**•naphthalene-1,5-disulfonic acid by mixing 0.1 mmol **10** and 0.1 mmol Armstrong's Acid (naphthalene-1,5-disulfonic acid)in 1 mL ethanol for 30 minutes at room temperature, then taking a small portion of this and layering it with fresh ethanol and EtOAc as an antisolvent, and waiting for 2 weeks for suitable crystals to form.

X-ray crystallography parameters and select bond lengths and angles for 10•Armstrong's Acid:

X-Ray Diffraction Techniques: The structure was collected on a Bruker three-circle platform goniometer equipped with an Apex II CCD and an Oxford cyrostream cooling device. Radiation was from a graphite fine focus sealed tube Mo K α (0.71073 Å) source. A suitable crystal was mounted on a cryoloop using paratone N oil. The structure was collected at 100 K. Data was collected as a series of ϕ and/ or ω scans. Data was integrated using SAINT¹ and scaled with either numerical or multi-scan absorption correcting using SADABS.¹ Using Olex2,² the structure was solved with the XS³ structure solution program using the Patterson method and refined with the XL⁴ refinement package using Least Squares minimization.

Formula	$C_{160}H_{128}N_8O_{32}S_8$
W	2931.26
Crystal system	Monoclinic
Space group (Z)	$P2_1/C$
a (Å)	15.6273(6)
b (Å)	11.1454(4)
c (Å)	21.3411(8)
a (°)	90°
β (°)	104.896(2)°
γ (°)	90°
Volume (Å ³)	3592.1(2)
Calc. ρ (g/cm ³)	1.355
μ (mm ⁻¹)	0.21
Crystal Size (mm)	0.104x0.119x0.322
Reflections	74455
Completeness	1.0
(to 2θ)	(50.79)
GOF on F ²	1.122
R1, wR2 ^c	0.0529, 0.1797
$[I>2\sigma(I)]$	

Table S7. X-ray diffraction experimental details for 10• napthalene-1,5-disulfonic acid

^a $\lambda = 0.71073$ Å; ^b T=100 K; ^c R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, wR2 = { $\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$ }^{1/2}

Figure S9. Crystal structure of **10**•napthalene-1,5-disulfonic acid with select atoms labeled. Hydrogen atoms have been omitted, one thing to note is that both amines are protonated. Thermal ellipsoids are drawn at 50% probability.

X-ray quality crystals were obtained for **22**•2TsOH through mixing 0.2 mmol **22** and 0.42 mmol *p*-toluene sulfonic acid monohydrate (TsOH•H₂O) in 1 mL ethanol for 30 minutes at room temperature, then taking a small portion of this and layering it with fresh ethanol and diethyl ether as an antisolvent, and waiting for 2 weeks for suitable crystals to form.

X-ray crystallography parameters and select bond lengths and angles for 22•2TsOH:

X-Ray Diffraction Techniques: The structure was collected on a Bruker three-circle platform goniometer equipped with an Apex II CCD and an Oxford cyrostream cooling device. Radiation was from a graphite fine focus sealed tube Mo K α (0.71073 Å) source. A suitable crystal was mounted on a cryoloop using paratone N oil. The structure was collected at 100 K. Data was collected as a series of ϕ and/ or ω scans. Data was integrated using SAINT and scaled with either numerical or multi-scan absorption correcting using SADABS. Using Olex2, the structure was solved with the XS structure solution program using the Patterson method and refined with the XL refinement package using Least Squares minimization.

Formula	$C_{31}H_{42}N_2O_7S_2$
W	2475.13
Crystal system	Cubic
Space group (Z)	$P2_{1}2_{1}2_{1}$
a (Å)	11.1123(4)
b (Å)	11.2096(4)
c (Å)	24.9678(9)
a (°)	90°
β (°)	90°
γ (°)	90°
Volume (Å ³)	3110.1(0)
Calc. ρ (g/cm ³)	1.322
μ (mm ⁻¹)	0.22
Crystal Size (mm)	0.15x0.475x0.529
Reflections	77911
Completeness	1.0
(to 2θ)	(56.61)
GOF on F ²	1.035
R1, wR2 ^c	0.0275, 0.0737
$[I > 2\sigma(I)]$	

 Table S8. X-ray diffraction experimental details for 22•2TsOH

^a $\lambda = 0.71073$ Å; ^b T=100 K; ^c R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, wR2 = { $\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$ }^{1/2}

Figure S10. Crystal structure of **22**•2TsOH with select atoms labeled. Hydrogen atoms have been omitted, one thing to note is that both amines are protonated. Thermal ellipsoids are drawn at 50% probability.

H. References

(1) Bruker AXS. 2009, Apexx II. Bruker AXS, Madison, Wisconsin.

(2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Journal of Applied Crystallography* 2009, **42**, 339-341.

(3) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H Puschmann, *Acta Crystallographica Section A Foundations and Advances* 2015, **71**, 59-75.

(4) G. M. Sheldrick, Acta Crystallographica Section A Foundations of Crystallography 2008, **64**, 112-122.

I. HRMS Spectra

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₁H₁₆N⁺, 162.1283; found, 162.1285.

Simulated
Monoisotopic Mass, Even Electron Ions

51 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-200 H: 0-200 N: 0-6 Na: 0-1 Br: 0-1

ev-e-z-me

Qtof_69271 57 (2.183) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (57:61)

1: TOF MS ES+ 1.57e+003

100⊣				162.1285						1.070	000
% 158.10	001 159.0785	160.1134	161.0953		163.1313	164.1308	165.0934	166.0903	167.1006	167.9653 168.4	752
158.0	159.0	160.0	161.0	162.0	163.0	164.0	165.0	166.0	167.0	168.0	111/2
Minimum: Maximum:		5.0	5.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Foi	rmula				
162.1285	162.1283	0.2	1.2	4.5	0.9	C11	1 н16	N			

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ jcalculated for C₁₃H₂₀N⁺, 190.1596; found, 190.1597.

Monoisotopic Mass, Even Electron Ions 40 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-6 Na: 0-1

ev-e-hcinn

Qtof_69269 68 (2.591) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (68:72)

1: TOF MS ES+ 3.76e+003

100⊣				190.1597					
% 0 188.14	65 188.8428	189.1282 1	190. ^{190.}	0428	190.5819	191.1635 191.5509	192.1680 1	92.5425 193.1235 m	ı/z
188.00	188.50	189.00	189.50	190.00	190.50	191.00 191.50	192.00 1	92.50 193.00	
Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
190.1597	190.1596	0.1	0.5	4.5	0.4	C13 H20 N			

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₁H₁₅FN⁺, 180.1189; found, 180.1190.

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
163.0927			11743325			
180.1190	180.1183	1	601519	C11H14FN	(M+H)+	-3.84
181.1224	181.1215	1	73559	C11H14FN	(M+H)+	-5.07
182.1252	182.1247	1	5551	C11H14FN	(M+H)+	-2.85

--- End Of Report ---

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₂H₁₈N+, 176.1439; found, *z* 176.1440.

Monoisotopic Mass, Even Electron Ions 58 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-6 Na: 0-1 Br: 0-1

c12h17n

Qtof_69275 59 (2.235) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (56:60)

1: TOF MS ES+ 3.41e+003

100 _∃			176.1440						
% 174.12	78 175.11	41 175.6443	3 1	76.4840	177.1476	178.149317	8.3090	179.1038	179.6699 180.1312 180.3554
174.00	175.00		176.00		177.00	178.00	1	179.00	180.00
Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
176.1440	176.1439	0.1	0.6	4.5	1.8	C12 H18	N		

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₃H₁₈N⁺, 188.1439; found, 188.1445.

Monoisotopic Mass, Even Electron Ions 39 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-6 Na: 0-1 ev-e-cyen

Qtof_69267 73 (2.796) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (73:78)

1: TOF MS ES+ 3.50e+003

100⊣			188.1445								
% 185.11	99 186.1245	187.1119		189.1478	190.1528	191.1091	192.6273	193.1244	194.0968	195.1042	196.0039 m/z
185.0	186.0	187.0	188.0	189.0	190.0	191.0	192.0	193.0	194.0	195.0	196.0
Minimum: Maximum:		5.0	5.0	-1.5 100.	0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FI	IT FO	ormula				
188.1445	188.1439	0.6	3.2	5.5	1.3	C	13 H18	N			

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₂H₁₆N+, 174.1277; found, 174.1277

Monoisotopic Mass, Even Electron Ions 37 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-6 Na: 0-1 ev-e-cyp

Qtof_69268 58 (2.217) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (55:58)

174.1277 100-%-175.1316175.8790 176.1431 177.0843 177.3403 178.1027 174.0103 174.4639 172.1213 173.1017 179.1075 0----- m/z 172.00 173.00 174.00 178.00 179.00 175.00 176.00 177.00 -1.5 Minimum: Maximum: 5.0 5.0 100.0 Calc. Mass PPM DBE i-FIT Formula Mass mDa 174.1277 174.1283 -0.6 -3.4 5.5 36.6 C12 H16 N

1: TOF MS ES+ 6.02e+002

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₇H₂₃N₂+, 255.1856; found, 255.1864.

Monoisotopic Mass, Even Electron Ions

225 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

1370-6-z-me-an

Qtof_68319 74 (2.830) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (74:79)

1: TOF MS ES+ 2.61e+003

100⊣					255.	1864					2.010	.000
%	252.1430	253.1592	2 25	54.1521	255.1263	255.4822	256.1891	257.1935	258.1535	259.1245	260.1448	m/z
0 1 1 1	252.00	253.00	254	1.00	255.00)	256.00	257.00	258.00	259.00	260.00	111/2
Minimum: Maximum:			5.0	5.0	-1	1.5 00.0						
Mass	Calc. N	Mass	mDa	PPM	DI	BE	i-FIT	Formula				
255.1864	255.18	61	0.3	1.2	7	.5	1.7	C17 H23	3 N2			

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₇N₂+, 283.2169; found mass, 283.2163.

Monoisotopic Mass, Even Electron Ions 249 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

1392-an-hcinn

Qtof_68321 46 (1.775) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (45:46)

1: TOF MS ES+ 4.05e+003

100⊣			283	.2163				
% 280.595	<u>8 281.1756</u> 281.00	281.5372 282.2107 282.00	283.1525 283.00	283.3007	284.2207 284.00	284.7698 285.225 285.00	<u>3 285.6985 286.2249</u> 286.00	287.0893 287.00 m/z
Minimum: Maximum:		5.0	5.0 1	1.5 00.0				
Mass	Calc. Mass	mDa	PPM D	BE	i-FIT	Formula		
283.2163	283.2174 283.2150	-1.1 1.3	-3.9 7 4.6 4	.5	10.1 28.5	C19 H27 N2 C17 H28 N2	Na	

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₆N₂Br+, 361.1279; found, 361.1274.

Monoisotopic Mass, Even Electron Ions

122 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-6 Na: 0-1 Br: 0-1

ev-e-hcinn-4br

Qtof_69270 71 (2.694) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (71:72) 1: TOF MS ES+ 1.49e+003

100∃				:	361.1274		363.125	4					
% 0	357.0804	358.64	17 359.205	1 360.0916		362.1317		364.1282	365.131	366.6323	367.1146	367.6340	368.6667 -√ m/z
356.0	357.0	358.0	359.0	360.0	361.0	362.0	363.0	364.0	365.0	366.0	367.0	368.0	369.0
Minimum: Maximum:			5.0	5.0	-1.5 100.0)							
Mass	Calc. Mas	s	mDa	PPM	DBE	i-F	IT	Formula	L				
361.1274	361.1279		-0.5	-1.4	7.5	2.0		С19 Н2	6 N2	Br			

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₈H₂₅N₂O+, 285.1967; found, 285.1965.

Monoisotopic Mass, Even Electron Ions 251 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

1394-z-me-meo

Qtof_68324 57 (2.183) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (55:57)

285.1965

1: TOF MS ES+ 5.62e+003

100				285.196	05							
%	283.6637	284.159	7_284.3234 ²⁸	35.1239	285.9	834 286.2000	286.6662	287.2	025 287.666	288.1529	288.663	0_288.8269,-
0-1-1-1	283.50	284.00	284.50	285.00	285.50	286.00 2	86.50 28	7.00	287.50	288.00	288.50	289.00
Minimum Maximum	1: 1:		5.0	5.0	-1.5 100.0							
Mass	Calc.	. Mass	mDa	PPM	DBE	i-FIT	Form	ula				
285.196	5 285.1	1967	-0.2	-0.7	7.5	2.0	C18	H25	N2 0			

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅N₂+, 269.2012; found, 269.2017

Monoisotopic Mass, Even Electron Ions 269 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-5 O: 0-6 Na: 0-1 Z-Me-oTol2

Qtof_68337 57 (2.183) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (54:60)

1: TOF MS ES+ 2.87e+003

100⊐				269.	2017					2.070 000
%	266.6797	267.1648	268.1765	269.1418	269.66	337 ^{270.2057}	271.2083	271.6736 272.1634	273.1676273.67	739 273.9765
266.00)	267.00	268.00	269.00		270.00	271.00	272.00	273.00	274.00
Minimur Maximur	n: n:		5.0	5.0	-1.5 100.0					
Mass	Cal	c. Mass	mDa	PPM	DBE	i-FIT	Formula			
269.20	17 269	.2018	-0.1	-0.4	7.5	1.2	C18 H25	N2		

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₂FN₂+, 273.1762; found, 273.1759.

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
273.1759	273.1762	1	1530428	C17H21FN2	(M+H)+	1.07
274.1794	274.1793	1	300359	C17H21FN2	(M+H)+	-0.37
275.1820	275.1824	1	26914	C17H21FN2	(M+H)+	1.61
276.1970	276.1856	1	2327	C17H21FN2	(M+H)+	-41.53

--- End Of Report ---

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₈H₂₅N₂⁺, 269.2018; found mass, 269.2019

Monoisotopic Mass, Even Electron Ions

237 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

1380-z-et-an

Qtof_68320 61 (2.319) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (61:66)

1: TOF MS ES+ 1.40e+004

100⊣				269.	2019					
%	265.1718	266.1638	267.1725	268.1748	270.2052	271.2079	272.1461	273.1468	274.1626	274.6808
264.0	265.0	266.0	267.0	268.0 269.0	270.0	271.0	272.0	273.0	274.0	275.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0						
Mass	Calc. Mas	s mDa	PPM	DBE	i-FIT	Formula				
269.2019	269.2018	0.1	0.4	7.5	2.0	C18 H25	N2			

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₅N₂⁺, 281.2012; found mass, 281.2013

Monoisotopic Mass, Even Electron Ions 251 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1 ev-e-cyen-an

Qtof_70102 61 (2.319) AM (Cen,5, 80.00, Ar,14000.0,734.47,0.70,LS 5); Sm (SG, 2x5.00); Cm (58:61)

-		•			281.2013							1.99e+003
100 % 0 276.0	277.1732 277 277.0	278.0	279.1859 279.0	280.1706	281.0	282.2057 282.0	283.1534 283.0	284.1594 284.0	285.6746 285.0	286.1837 286.0	286.6779 	88.1579 m/z 88.0
Minimum Maximum	:		5.0	5.0	-1.5 100.0							
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	E	Formula				
281.201	3 281.20	18	-0.5	-1.8	8.5	2.4	C	с19 н25	N2			

1: TOF MS ES+

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₁H₂₇N₂O₂⁺, 339.2073; found mass, 339.2071

Monoisotopic Mass, Even Electron Ions 300 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

cyp-ester

Qtof_68332 50 (1.911) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (48:50)

1: TOF MS ES+ 5.51e+003

100¬				33	9.2071						
336.16 336.00	62	337.1762 337.00	338.17 338.00	75 339.0562 339.0	339.777 00	5 340.2107 340.00	341.2131 341.00	342.2113 342.00	343.2409 343.00	343.7138 	m/z
Minimum: Maximum:			5.0	5.0	-1.5 100.0						
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Formula				
339.2071	339.2	073	-0.2	-0.6	9.5	6.1	С21 Н27	N2 02			

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₂N₂Cl⁺, 301.1466; found mass, 301.1465

S66

Monoisotopic Mass, Even Electron Ions

500 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1 CI: 0-1

cyp-4cl

Qtof_68330 59 (2.251) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (55:63)

1: TOF MS ES+ 4.81e+003

100 % 297.618 0	7 298.1120	299.1230	300.1158	301.1 6191	465 301.2124 302.1143	303.1439	304.1464	305.1503	306.1213 m/z
297.00	298.00	299.00	300.00	301.00	302.00	303.00	304.00	305.00	306.00
Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
301.1465	301.1472 301.1453	-0.7 1.2	-2.3 4.0	8.5 13.5	3.9 741.6	C18 H22 C19 H17	N2 Cl N4		

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₉N₂O⁺, 277.2274; found mass, 277.2267.

Monoisotopic Mass, Even Electron Ions

245 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

1392-morph-hcinn

Qtof_68322 71 (2.693) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (71:72)

1: TOF MS ES+ 4.09e+003

100 _∃				277.	2267											
%	269.141	⁰ 272.1611	275.208	³¹ 276.1962	278.2291	279.2238	283	3.1531 ^{284.1}	579 287.	2126 ²⁹	0.2130	291.208	8 293.2	097 295.2	2025 297.1	710 m/z
0 11111	270.0	272.0	274.0	276.0	278.0	280.0	282.0	284.0	286.0	288.0	290.0	0 29	2.0	294.0	296.0	298.0
Minimum Maximum	1: 1:			5.0	5.0	-1.5 100.	0									
Mass	C	alc. Mass	5	mDa	PPM	DBE		i-FIT	Form	ula						
277.226	57 2 2	77.2256 77.2280		1.1 -1.3	4.0 -4.7	1.5 4.5		114.8 80.2	C15 C17	Н30 Н29	N2 (N2 () Na				

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₆H₂₇N₂⁺, 247.2174; found mass, 247.2176.

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
247.2176	247.2169	1	713338	C16H26N2	(M+H)+	-2.85
248.2205	248.2200	1	129202	C16H26N2	(M+H)+	-1.79
249.2251	249.2232	1	13058	C16H26N2	(M+H)+	-7.69
250.1587	250.2263	1	1486	C16H26N2	(M+H)+	270.12

--- End Of Report ---

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₉N₂O⁺, 277.2274; found mass, 277.2277

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
277.2277	277.2274	1	1854404	C17H28N2O	(M+H)+	-0.95
278.2312	278.2306	1	362767	C17H28N2O	(M+H)+	-2.01
279.1632	279.2336	1	1161	C17H28N2O	(M+H)+	252.03

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₉N₂⁺, 261.2325; found mass, 261.2326

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
261.2326	261.2325	1	4427268	C17H28N2	(M+H)+	-0.35
262.2362	262.2357	1	877679	C17H28N2	(M+H)+	-2.03
263.2394	263.2388	1	83968	C17H28N2	(M+H)+	-2.04
264.2429	264.2420	1	4643	C17H28N2	(M+H)+	-3.32

HR-MS (ESI-TOF) *m*/*z*: [M+H]⁺ calculated for C₁₈H₂₉N₂O₂⁺, 305.2224; found mass, 305.2230.

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
144.1020			1712258			
305.2230	305.2224	1	504905	C18H28N2O2	(M+H)+	-2.02
306.2255	306.2255	1	105557	C18H28N2O2	(M+H)+	0.04
307.2284	307.2284	1	12823	C18H28N2O2	(M+H)+	-0.14
308.2316	308.2310	1	2389	C18H28N2O2	(M+H)+	-1.75

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₆H₂₈N₃⁺, 262.2278; found mass, 262.2287.

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
262.2287	262.2278	1	359567	C16H27N3	(M+H)+	-3.69
263.2315	263.2308	1	64990	C16H27N3	(M+H)+	-2.55
264.2337	264.2338	1	6170	C16H27N3	(M+H)+	0.32
265.2100	265.2368	1	459	C16H27N3	(M+H)+	101.12

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₇N₂O⁺, 275.2118; found mass = 275.2117

Monoisotopic Mass, Even Electron Ions 245 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-200 H: 0-200 N: 0-5 O: 0-5 Na: 0-1

cyen-morph

Qtof_68328 57 (2.183) AM (Cen,5, 80.00, Ar,14000.0,558.36,0.70,LS 5); Sm (SG, 2x5.00); Cm (55:57)

1: TOF MS ES+ 2.99e+003

100-					275.2	2117								2.000	000
%	271.1831	272.2014	273.1982	274.1804		276.2148	277.2047	278.1908	279.192	25	280.2011	280.7028	282.2192	283.1516	m/7
0	271.0	272.0	273.0	274.0	275.0	276.0	277.0	278.0	279.0	1	280.0	281.0	282.0	283.0	11/2
Minimum: Maximum:			5.0	5.0		-1.5 100.0									
Mass	Calc.	Mass	mDa	PPM		DBE	i-FIT	Form	ula						
275.2117	275.2	2123	-0.6	-2.2	2	5.5	9.7	C17	H27	N2	0				

HR-MS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₃H₃₂N₂Na⁺, 359.2458; found mass, 359.2461

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
320.2368			2726235			
359.2461	359.2458	1	346872	C23H32N2	(M+Na)+	-0.85
360.2503	360.2490	1	169485	C23H32N2	(M+Na)+	-3.53
361.2537	361.2522	1	38309	C23H32N2	(M+Na)+	-4.11
362.2579	362.2554	1	4415	C23H32N2	(M+Na)+	-7.01

HR-MS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₀H₂₆N₂Na⁺, 317.1988; found mass, 317.1984

Simulated

324.0000

MS Zoomed Spectrum

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
278.1898			1259193			
317.1984	317.1988	1	97266	C20H26N2	(M+Na)+	1.38
318.2026	318.2020	1	42477	C20H26N2	(M+Na)+	-1.88
319.2071	319.2052	1	8702	C20H26N2	(M+Na)+	-6.1
320.2890	320.2084	1	69	C20H26N2	(M+Na)+	-251.79
End Of Repo	ort					

HR-MS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₀H₂₆N₂ONa⁺, 333.1937; found mass, 333.1941

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
294.1847			3007993			
333.1941	333.1937	1	347719	C20H26N2O	(M+Na)+	-1.25
334.1984	334.1969	1	152979	C20H26N2O	(M+Na)+	-4.33
335.2032	335.1999	1	32556	C20H26N2O	(M+Na)+	-9.68
336.2080	336.2028	1	4433	C20H26N2O	(M+Na)+	-15.48

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₄ClN₂⁺, 315.1623; found mass, 315.1617

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
171.1159			1251253			
315.1617	315.1623	1	15687	C19H23CIN2	(M+H)+	1.63
316.1659	316.1654	1	5465	C19H23CIN2	(M+H)+	-1.36
317.1642	317.1599	1	5498	C19H23CIN2	(M+H)+	-13.56
318.1660	318.1627	1	2041	C19H23CIN2	(M+H)+	-10.52
End Of Repo	ort					

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₂H₂₉N₂O₂⁺, 353.2224; found mass, 353.2230

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
336.1963			1492790			
353.2230	353.2224	1	100199	C22H28N2O2	(M+H)+	-1.83
354.2275	354.2256	1	44184	C22H28N2O2	(M+H)+	-5.5
355.2316	355.2285	1	10049	C22H28N2O2	(M+H)+	-8.72

HR-MS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₁H₃₁N₂⁺, 311.2487; found mass, 311.2475

MS Zoomed Spectrum

MS	Spe	ctrum	Peak	List
----	-----	-------	------	------

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)	
294.2209			2958008				
311.2475	311.2482	1	1934663	C21H30N2	(M+H)+	2.13	
312.2515	312.2514	1	462614	C21H30N2	(M+H)+	-0.24	
313.2543	313.2546	1	54890	C21H30N2	(M+H)+	1.01	
314.2558	314.2578	1	3433	C21H30N2	(M+H)+	6.25	
End Of Repo	ort						

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅N₂⁺, 269.2018; found mass, 269.2008

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
252.1738			2727513			
269.2008	269.2012	1	215531	C18H24N2	(M+H)+	1.49
270.2040	270.2044	1	44052	C18H24N2	(M+H)+	1.59
271.2065	271.2076	1	4694	C18H24N2	(M+H)+	3.94

HR-MS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₂ClN₂⁺, 289.1472; found mass, 289.1462

MS Zoomed Spectrum

MS Spectrum Peak List

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
272.1194			1794913			
289.1462	289.1466	1	50341	C17H21CIN2	(M+H)+	1.4
290.1491	290.1498	1	10365	C17H21CIN2	(M+H)+	2.27
291.1438	291.1441	1	17968	C17H21CIN2	(M+H)+	1.08
292.1458	292.1470	1	3362	C17H21CIN2	(M+H)+	3.94

J. NMR Spectra

.o

-10

Ó

13C, 100.61 Hz, cdcl3

⊢11000

ŅH₂ Ħ

9

Ph

Т

0.0

9.5

9.0

8.0

0.0

9.5

9.0

8.5

7.5

7.0

6.5

4.5

3.5

4.0

3.0

2.5

1.5

2.0

1.0

5.5

6.0

S129

0.0

0.5

