Supplementary Information

Divergent Access to Polycyclic Spiro- and Fused-*N*,*O*-Ketals through Bi(OTf)₃-Catalyzed [4+2]-Annulation of Cyclic *N*-Sulfonyl Ketimines and Alkynols

Ashwini K. Nakate,^{†,§} Priyanka Kataria,^{†,§} Pooja I. Sambherao,^{†,§} Gamidi Rama Krishna,^{†,‡} and Ravindar Kontham^{*,†,§}

[†]Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

[§]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

[‡]Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

*E-mail: <u>k.ravindar@ncl.res.in</u>; <u>konthamravindar@gmail.com</u>

S. No	Contents	Page No
1.	General Information	S2
2.	Synthesis of 5-hexyn-1-ols (1)	S2
3.	Synthesis of 4-pentyn-1-ols (2)	S 3
4.	Synthesis of methylbenzo[d]isothiazole 1,1-dioxide (S1)	S4
5.	General Procedure for the synthesis of cyclic <i>N</i> -sulfonyl ketimines (5)	S4
6.	Chemical structures of cyclic N-sulfonyl ketimines (5)	S4
7.	General Procedure for the synthesis of spiro- and fused- <i>N</i> , <i>O</i> -ketals (6, 7 and 8) from cyclic N-sulfonyl ketimines (5) and alkynols (1 and 2)	S5
8.	Synthesis and characterization of fused- N , O -ketals (6) from 5-hexyn-1- ols (1) and cyclic N -sulfonyl ketimines (5)	S6
9.	Synthesis and characterization of fused- <i>N</i> , <i>O</i> -ketals (7) from 4-pentyn- 1-ols (2) and cyclic <i>N</i> -sulfonyl ketimines (5)	S 16
10.	Synthesis and characterization of spiro- <i>N</i> , <i>O</i> -ketals (8) from 4-pentyn-1- ols (2) and cyclic <i>N</i> -sulfonyl ketimines (5):	S20
11.	Synthetic utility	S30
12.	Control experiment	S31
13.	Single crystal X-ray analyses	S32
14.	¹ H, ¹³ C and 2D NMR Spectra	S37

Table of Contents

1. General Information: All reactions were performed under argon atmosphere with oven (80 °C) or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodium-benzophenone under the argon atmosphere immediately before use. Anhydrous dichloromethane, dichloroethane, methanol, and fluorobenzene were purchased from commercial sources and used without any further treatment. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel, and 30 °C corresponds to the room temperature (35 °C)(rt) of the laboratory when the experiments were carried out. Analytical thin-layer chromatography (TLC) was performed on TLC Silica gel 60 F₂₅₄. Visualization was accomplished with short-wave UV light, anisaldehyde, or KMnO₄ staining solutions followed by heating. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ¹H and ¹³C NMR spectra were recorded on Bruker AV 200, 400, and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.27 ppm, δ C = 77.00 ppm), the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet doublet; and br, broad. Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump, FT-IR instrument (Bruker Alpha Model) at normal temperature with a NaCl pellet (IR grade). Experimental procedures for all new compounds and known compounds without published experimental procedures are described below. Compounds that are not presented in the main text (manuscript) are numbered starting from S1.

2. Synthesis of 5-hexyn-1-ols (1):

Alkynol 1a was purchased from commercial sources.

2-(Prop-2-yn-1-yloxy)ethan-1-ol (1b), 2,2-dimethylhex-5-yn-1-ol (1c), and 5-(But-3-yn-1-yl)-4-hydroxydihydrofuran-2(3H)-one (1f):

2-(Prop-2-yn-1-yloxy)ethan-1-ol (1b), 2,2-dimethylhex-5-yn-1-ol (1c), and 5-(but-3-yn-1-yl)-4-hydroxydihydrofuran-2(3H)-one (1f) were prepared using reported procedures.¹

1-(Prop-2-yn-1-yloxy)propan-2-ol and 2-(prop-2-yn-1-yloxy)propan-1-ol (1e):

1-(Prop-2-yn-1-yloxy)propan-2-ol and 2-(prop-2-yn-1-yloxy)propan-1-ol (1e) was prepared using reported procedure.²

Hept-6-yn-2-ol(1d) and 2-methylhept-6-yn-2-ol(1j):

Hept-6-yn-2-ol(1d), 2-methylhept-6-yn-2-ol(1j) was prepared using reported procedure.³

3. Synthesis of 4-pentyn-1-ols (2):

Alkynol 2a was purchased from commercial sources.

Compound **2b-2g** were prepared using known literature procedures.⁴

^{1 (}a) Nakate, A. K.; Thorat, S. S.; Jain, S.; Gamidi, R. K.; Kumar, V.; Kontham, R. *Org. Chem. Front*, **2022**, 9, 802–809. (b) Ashwini K. N.; Madhukar S. P.; Ravindar K. *Org. Biomol. Chem.*, **2018**, *16*, 3229-3240.

² Harada, T.; Muramatsu, K.; Mizunashi, K.; Kitano, C.; Imaoka, D.; Fujiwara, T.; Kataoka, H. J. Org. Chem., 2008, 73, 249–258.

³ Thorat, S. S.; Kataria, P.; Kontham, R. Org. Lett. 2018, 20, 872–875.

4. Synthesis of methylbenzo[d]isothiazole 1,1-dioxide (S1): Following the literature

procedure²² saccharin (10 g, 54.5 mmol, 1.0 eq.) was dissolved in anhydrous THF (100 mL) and cooled to 0 $^{\circ}$ C under argon atmosphere. Then, methyl magnesium bromide (0.3 M in Et₂O, 36 mL, 109 mmol, 2.0 eq.) was added over 10 minutes. The reaction mixture was moved to room

temperature (35 °C) for 17 h. After completion of the reaction, it was quenched through the slow addition of sat. aq. solution of NH₄Cl (50 mL) at 0 °C, and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (3x50 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated to dryness under reduced pressure to give **S1** as an off-white solid (5.34 g, 29.5 mmol, 54%). ¹H NMR (CDCl₃, 200 MHz): δ 7.99-7.87 (m, 1H), 7.80-7.70 (m, 3H), 2.67 (s, 3H).

5. General Procedure for the synthesis of cyclic N-sulfonyl ketimines (5):

Following the known literature procedure, compound **S1** (1 eq) and aldehyde derivatives **S0** (1 eq) were dissolved in ethanol (10 mL). Then, added acetic acid (0.1 eq) followed by piperidine (0.1 eq), and the resulting mixture was stirred at 80 °C for 3 h, then cooled to 0 °C and filtered. The obtained cake was washed with cold ethanol and subjected to the next step without further purification **5**. (Please see Supporting Information for chemical structures of **5a-5k**).

6. Chemical structures of cyclic *N*-sulfonyl ketimines (5):

⁴ (a) Kambale, D. A.; Thorat, S. S.; Pratapure, M. S.; Gonnade, R. G.; Kontham, R. *Chem. Commun.*, **2017**, *53*, 6641–6644. (b) Kambale, D. A.; Borade, B. R.; Kontham, R. *Org. Bio. Chem.* **2021**, *19*, 6618–6622.

7. General Procedure for the synthesis of spiro- and fused-*N*,*O*-ketals (6, 7 and 8) from cyclic *N*-sulfonyl ketimines (5) and alkynols (1 and 2):

To a single neck 10 mL round bottom flask equipped with positive argon flow, alkynol **1** or **2** (1.01 mmol) and α,β -unsaturated ketimines 5 (1.01 mmol) in 2 mL of anhydrous CH₂Cl₂ were taken under argon atmosphere, then Bi(OTf)₃ (0.101 mmol) was added to the reaction mixture at room temperature (35 °C). The resulting reaction mixture was stirred at rt for 8 h. After completion of the reaction (monitored by TLC, visualized using UV, anisaldehyde, and KMnO₄ staining solutions), the reaction mixture was quenched with saturated aqueous NaHCO₃ solution, the aqueous layer was extracted with CH₂Cl₂ (2x5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified using silica-gel column chromatography (100-200 mesh) to afford the corresponding spiro- and fused-*N*,*O*-ketals **6**, **7** and **8**.

8. Synthesis and characterization of fused-*N*,*O*-ketals (6) from 5-hexyn-1-ols (1) and cyclic *N*-sulfonyl ketimines (5):

12a-Methyl-5-phenyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2e]pyridine 11,11-dioxide (6aa): Following the General Procedure, to the mixture of 5-hexyn-

1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-styrylbenzo[*d*]isothiazole 1,1-dioxide (**5a**) (0.272 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C)and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 12a-methyl-5-phenyl-3,4,4a,12atetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6aa**) (0.308 g, 82%) with dr (1:0.2) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (d, J = 7.8 Hz, 1H), 7.74-7.01 (m, 1H), 7.66-7.01 (m, 1H), 7.59-7.51 (m, 1H), 7.41-7.35 (m, 2H), 7.32-7.27 (m, 1H), 7.25-7.22 (m, 2H), 5.79 (dd, J = 4.25, 0.63 Hz, 0.1H), 5.67 (dd, J = 2.3, 1.0 Hz, 1H), 4.39-4.29 (m, 1H), 4.21 (dd, J = 5.88, 2.38 Hz, 1H), 3.92-3.83 (m, 1H), 1.95-1.87 (m, 4H), 1.60-1.51 (m, 2H), 1.37-1.25 (m, 1H), 1.04-0.92 (m, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 143.7, 140.6, 133.5, 132.9, 132.4, 130.2, 129.1, 128.7, 128.6, 127.8, 127.1, 126.8, 121.0, 121.0, 100.6, 99.4, 91.6, 89.8, 63.8, 63.5, 49.2, 46.6, 45.5, 43.1, 26.1, 25.9, 25.5, 25.5, 20.9; IR (KBr, cm⁻¹): υ 3153, 3072, 2934, 1717, 1461, 1305, 1177, 1071, 1010, 758, 699; MP: 200-204.5 °C; HRMS (ESI) m/z calcd for C₂₁H₂₁O₃NS [M+H]⁺ 368.1315, found 368.1306.

12a-Methyl-5-(naphthalen-1-yl)-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ab**): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2-(naphthalen-1-yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5b**) (0.322 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C)and reaction mixture was stirred for 8

h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 12a-methyl-5-(naphthalen-1-yl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6ab**) (0.330 g, 79%) as a white crystal. TLC: $R_f = 0.50$ (SiO₂, 15% EtOAc/hexanes); **6ab** was confirmed by ¹H NMR,

¹³C NMR, DEPT, HRMS and XRD analysis;²⁰ ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (d, J = 8.38 Hz, 1H), 7.92 (dd, J = 7.88, 1.13 Hz, 1H), 7.86-7.74 (m, 3H), 7.68-7.63 (m, 1H), 7.61-7.52 (m, 3H), 7.50-7.45 (m, 1H), 7.40 (dd, J = 7.07, 1.06 Hz, 1H), 5.76 (d, J = 1.25 Hz, 1H), 5.02 (dd, J = 5.63, 2.25 Hz, 1H), 4.35 (td, J = 11.76, 3.63 Hz, 1H), 3.86 (td, J = 11.76, 2.63 Hz, 1H), 2.33-2.20 (m, 1H), 2.08 (s, 3H) 1.51-1.29 (m, 3H), 0.80-0.71 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 136.2, 134.1, 133.6, 133, 132.5, 131.4, 130.2, 129.4, 129.2, 127.9, 126.7, 126.4, 126.1, 125.3, 122.5, 121.1, 101.6, 91.6, 63.8, 44.5, 25.8, 25.5, 21.5; IR (KBr, cm⁻¹): υ 3142, 3064, 2930, 1705, 1459, 1311, 1177, 1069, 1027, 794, 698; HRMS (ESI) *m/z* calcd for C₂₅H₂₃O₃NS [M+H]⁺ 418.1471, found 418.1466.

12a-Methyl-5-(naphthalen-2-yl)-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ac**): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2-(naphthalen-2-yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5c**) (0.322 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C)and reaction mixture was stirred for 8

h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 12a-methyl-5-(naphthalen-2-yl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6ac**) (0.299 g, 71%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.87-7.82 (m, 4H), 7.79 (d, J = 7.93 Hz, 1H), 7.69 (s, 1H), 7.66 (t, J = 7.63 Hz, 1H), 7.61-7.56 (m, 1H), 7.54-7.46 (m, 2H), 7.36 (dd, J = 1.53, 8.24 Hz, 1H), 5.85-5.74 (m, 1H), 4.38 (dd, J = 2.44, 5.49 Hz, 1H), 4.35 (dd, J = 3.97, 6.41 Hz, 1H), 3.88 (d, J = 12.21 Hz, 1H), 2.34-2.28 (m, 1H), 2.02 (td, J = 5.49, 10.38 Hz, 1H), 1.96 (s, 3H), 1.55-1.49 (m, 2H), 1.40-1.34 (m, 1H), 1.00-0.95 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 138.2, 133.7, 133.5, 133, 132.6, 132.6, 130.3, 129.2, 128.4, 127.8, 127.8, 127, 126.9, 126.5, 126, 121.1, 121.1, 100.5, 91.6, 63.9, 46.6, 43.2, 25.9, 25.5, 21.1; IR (KBr, cm⁻¹): υ 3143, 3004, 2929, 1702, 1599, 1464, 1308, 1178, 1069, 1011, 746; MP: 176-179.2 °C; HRMS (ESI) *m/z* calcd for C₂₅H₂₃O₃NS [M+H]⁺ 418.1471, found 418.1464.

5-(Anthracen-9-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ad**): Following the General Procedure, to the mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (E)-3-(2-(anthracen-9-

yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5d**) (0.376 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C)and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(anthracen-9-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo [2,3-

a]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6ad**) (0.325 g, 68%) as an off-white solid. TLC: $R_f = 0.50$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 9.01 Hz, 1H), 8.46 (s, 1H), 8.28 (d, J = 9.01 Hz, 1H), 8.08 (d, J = 8.25 Hz, 1H), 8.03 (d, J = 8.26 Hz, 1H), 7.89 (d, J = 7.50 Hz, 1H), 7.73-7.58 (m, 4H), 7.58-7.50 (m, 1H), 7.50-7.34 (m, 2H), 6.09 (m, 1H), 5.69-5.66 (m, 1H), 4.46 (dt, J = 3.63, 11.88 Hz, 1H), 3.96-3.90 (m, 1H), 2.53-2.45 (m, 1H), 2.18 (s, 3H), 2.12-1.82 (m, 2H), 1.60 (br. s., 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.6, 133.1, 132.1, 131.7, 131.6, 131.3, 130.7, 130.1, 130.0, 129.7, 129.6, 129.5, 128.4, 127.0, 126.7, 125.2, 125.1, 124.8, 122.9, 121.2, 120.9, 105.3, 91.4, 64.3, 46.9, 39.5, 26.0, 26.0, 22.8; HRMS (ESI): m/z calcd for C₂₉H₂₆O₃NS [M+H]⁺ 468.1628, found 468.1622.

5-([1,1'-Biphenyl]-4-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ae**): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2-([1,1'-biphenyl]-4-yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5e**) (0.348 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C)and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-([1,1'-biphenyl]-4-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11dioxide (**6ae**) (0.294 g, 65%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 1H), 7.74 (d, J = 7.75 Hz, 1H), 7.67-7.53 (m, 6H), 7.48-7.43 (m, 2H), 7.37 (td, J = 1.13, 7.25 Hz, 1H), 7.31(d, J = 8.13Hz, 2H), 5.70 (dd, J = 1.13, 2.50 Hz, 1H), 4.40-4.29 (m, 1H), 4.25 (dd, J = 2.38, 5.88 Hz, 1H), 3.95-3.84 (m, 1H), 1.99-1.94 (m, 1H), 1.93 (s, 3H), 1.65-1.55 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.7, 140.1, 139.7, 133.6, 133.0, 132.5, 130.2, 129.1, 129.0, 129.0, 127.5, 127.3, 127.1, 121.0, 121.0, 100.5, 91.6, 63.9, 46.6, 42.8, 25.9, 25.6, 21.0; HRMS (ESI): m/z calcd for C₂₇H₂₆O₃NS [M+H]⁺ 444.1628, found 444.1621.

12a-Methyl-5-(p-tolyl)-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (6af): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (1a) (0.1 g, 1.01 mmol) and (E)-3-(4methylstyryl)benzo[d]isothiazole 1,1-dioxide (5f) (0.286 g, 1.01 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 12a-methyl-5-(p-tolyl)-3,4,4a,12a-tetrahydro-2H,5Hbenzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6af) (0.246 g, 64%) with dr (1:0.1) as an off-white solid.. TLC: $R_f = 0.70$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 7.88 Hz, 1H), 7.72 (d, *J* = 7.75 Hz, 1H), 7.66-7.60 (m, 1H), 7.55 (t, J = 7.38 Hz 1H), 7.18 (d, J = 7.88 Hz, 2H), 7.12 (d, J = 8.13 Hz, 2H), 5.68-5.63 (m, 1H), 4.39-4.29 (m, 1H), 4.17 (dd, J = 2.25, 5.75 Hz, 1H), 3.91-3.83 (m, 1H), 2.37 (s, 3H), 1.90 (s, 3H), 1.89-1.84 (m, 1H), 1.59-1.50 (m, 2H), 1.39-1.20 (m, 2H), 1.07-0.96 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 137.5, 136.8, 133.6, 132.9, 132.3, 130.1, 129.3, 129.2, 128.5, 121, 101, 91.6, 63.9, 46.6, 42.7, 25.6, 25.6, 21.2, 20.9; IR (KBr, cm⁻¹): v 3133, 3071, 2940, 1667, 1511, 1463, 1308, 1176, 1069, 1008, 932, 748; MP: 216-219 °C; HRMS (ESI) m/z calcd for C₂₂H₂₃O₃NS [M+H]⁺ 382.1471, found 382.1469.

5-(2-Bromophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3-

a)pyrano[3,2-e)pyridine 11,11-dioxide (6ag): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (1a) (0.1 g, 1.01 mmol) and (E)-3-(2bromostyryl)benzo[d]isothiazole 1,1-dioxide (5g) (0.351 g, 1.01 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 5-(2-bromophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ag) (0.380 g, 83%) in dr (1:0.3) as a white solid. TLC: $R_f = 0.70$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR

(CDCl₃, 400 MHz): δ 7.86 - 7.80 (m, 1H), 7.78 - 7.69 (m, 1H), 7.68-7.55 (m, 4H), 7.36-7.29 (m, 1H), 7.25-7.09 (m, 2H), 5.65 (dd, J = 4.88, 1.0 Hz, 0.34H),), 5.61-5.55 (m, 1H), 4.62 (dd, J = 2.4, 5.6 Hz, 1H), 4.40-4.23 (m, 1H), 3.95-3.82 (m, 1H), 2.34-2.20 (m, 1H), 1.95 (s, 3H), 1.60-1.56 (m, 2H), 139-1.25 (m, 1H), 0.96-0.86 (m 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 140.6, 137.5, 136.8, 133.6, 133.0, 132.9, 132.3, 130.2, 129.4, 129.2, 128.5, 127.7, 121.0, 101.0, 99.7, 91.6, 89.9, 63.9, 63.6, 46.6, 45.2, 42.7, 26.2, 25.9, 25.6, 21.2, 21; IR (KBr, cm⁻¹): v 3191, 3144, 3069, 2928, 2859, 1699, 1666, 1462, 1391, 1311, 1184, 1012, 933, 750, 693; MP: 197-199.4 °C; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₀O₃NBrS [M+H]⁺ 446.0420, found 446.0411.

5-(4-Chloro-2-fluorophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5Hbenzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ah**): Following the

General Procedure, to the mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-chloro-2fluorostyryl)benzo[d]isothiazole 1,1-dioxide (**5h**) (0.321 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt.

Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(4-chloro-2-fluorophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ah**) (0.169 g, 39%) with dr (1:0.5) as an off-white solid. TLC: $R_f = 0.70$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 2H), 7.76-7.69 (m, 2H), 7.65 (d, J = 7.63 Hz, 1H), 7.58 (d, J = 7.38 Hz, 1H), 7.19 (d, J = 8.00 Hz, 1H), 7.16-7.13 (m, 2H), 7.12-7.09 (m, 1H), 5.60 (d, J = 4.38 Hz, 1H), 5.54-5.51 (m, 1H), 4.47 (dd, J = 2.25, 5.63 Hz, 1H), 4.37-4.29 (m, 1H), 4.25 (dt, J = 2.75, 11.76 Hz, 1H), 3.91-3.86 (m, 2H), 3.72 (d, J = 4.63 Hz, 1H), 1.00-0.93 (m, 1H); 1.89 (s, 3H), 1.76-1.70 (m, 1H), 1.61-1.55 (m, 3H), 1.36-1.28 (m, 1H), 1.00-0.93 (m, 1H); 1³C{¹H} NMR (101 MHz, CDCl₃) δ 161.8, 159.3, 133.8, 133.7, 133.6, 133.5, 133.1, 133.0, 133.0, 132.9, 131.0, 130.9, 130.5, 130.4, 130.3, 130.2, 128.8, 126.5, 126.4, 124.5, 124.4, 124.3, 121.1, 121.0, 116.6, 116.3, 98.7, 97.0, 91.4, 89.9, 63.8, 43.9, 36.3, 36.3, 25.7, 25.6, 25.4, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.37, -115.91; HRMS (ESI): m/z calcd for C₂₁H₂₀O₃NCIFS [M+H]⁺ 420.0831, found 420.0825.

5-(2-Methoxyphenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ai**): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.302 g, 1.01 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30%

EtOAc/hexanes) afforded 5-(2-methoxyphenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6ai**) (0.325 g, 80%) with dr. 1:0.2 as a white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.83-7.79 (m, 1H), 7.76-7.70 (m, 1H), 7.62 (td, J = 7.25, 1.06 Hz, 1H), 7.58-7.52 (m, 1H), 7.30-7.27(m, 1H), 7.23-7.16 (m, 1H), 6.98-6.85 (m, 2.46H), 5.68 (dd, J = 4.88, 1.08 hz, 0.23H), 5.63 (dd, J = 2.56, 1.08 hz, 1H), 4.59 (dd, J = 5.63, 2.50 Hz, 1H), 4.40-4.23 (m, 1H), 3.90-3.88 (m, 1H), 3.86 (m, 3H), 2.22-2.12 (m, 1H), 1.92 (s, 3H), 1.60-1.53(m, 2H), 1.35-1.22 (m, 1H), 0.99-0.88(m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 157.1, 133.5, 132.9, 132.2, 130.1, 130, 129.5, 129.3, 128.8, 128.2, 128, 121.1, 120.9, 120.3, 120.3, 110.4, 101.7, 99.9, 91.8, 90.6, 63.8, 63.6, 55.5, 55.5, 47.2, 43, 41.1, 36.8, 26.6, 256, 25.7, 25.7, 21.4; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₃O₄NS [M+H]⁺ 398.1421, found 398.1413.

5-(4-Methoxyphenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6aj**): Following the General Procedure, to the

mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.302 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 5-(4-methoxyphenyl)-12a-methyl-3,4,4a,12atetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6aj**) (0.332 g, 82%) as an white solid, **6aj** was confirmed by ¹H NMR, ¹³C NMR, DEPT, HRMS and 2D analysis;²⁰ TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (d, J = 7.78 Hz, 1H), 7.70 (d, J = 7.78 Hz, 1H), 7.65-7.60 (m, 1H), 7.58-7.53 (m, 1H), 7.16-7.12 (m, 2H), 6.93-6.88 (m, 2H), 5.63 (dd, J = 2.40 Hz, 1.03 1H), 4.39-4.28 (m, 1H), 4.16 (dd, J = 5.72, 2.29 Hz, 1H), 3.87 (dt, J = 11.27, 1.92 Hz, 1H), 3.82 (s, 3H), 1.92-1.83 (m, 4H), 1.57-1.54 (m, 2H), 1.34-1.27 (m, 1H), 1.07-0.97 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 158.8, 133.6, 132.9, 132.5, 132.3, 130.2, 129.6, 129.2, 121.1, 114.1, 101.1, 91.7, 63.9, 55.5, 46.7, 42.3, 25.9, 25.6, 20.6; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₃O₄NS [M+H]⁺ 398.1421, found 398.1416.

5-(4-(Benzyloxy)phenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2H,5Hbenzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (**6ak**): Following the

General Procedure, to the mixture of 5-hexyn-1-ol (**1a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-(benzyloxy)styryl)benzo[*d*]isothiazole 1,1-dioxide (**5k**) (0.380 g, 1.01 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(4-(benzyloxy)phenyl)-12amethyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5] isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6ak**) (0.313 g, 65%) as a white solid. TLC: $R_f = 0.70$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (d, J = 7.75 Hz, 1H), 7.72-7.67 (m, 1H), 7.65-7.59 (m, 1H), 7.59-7.52 (m, 1H), 7.48-7.32 (m, 5H), 7.14 (d, J = 8.63 Hz, 2H), 6.98 (d, J = 8.63 Hz, 2H), 5.68-5.59 (m, 1H), 5.08 (s, 2H), 4.39-4.28 (m, 1H), 4.22 (t, J =5.75 Hz, 1H), 4.16 (dd, J = 2.38, 5.75 Hz, 1H), 3.92-3.82 (m, 1H), 1.90 (s, 3H), 1.86 (dd, J =3.13, 8.13 Hz, 1H), 1.48-1.38 (m, 1H), 1.36-1.29 (m, 2H), 1.07-0.98 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158. 137.1, 133.6, 132.9, 132.8, 132.3, 130.2, 129.6, 129.2, 128.8, 128.2, 127.6, 121, 121, 115, 101.1, 91.6, 70.3, 63.9, 46.7, 42.3, 25.9, 25.6, 21; IR (KBr, cm⁻¹): υ 3747, 3401, 3363, 3293, 2934, 1510, 1452, 1307, 1244, 1179, 1057, 934, 815, 697; HRMS (ESI) *m/z* calcd for C₂₈H₂₇O₄NS [M+H]⁺ 474.1734, found 474.1731.

5-(4-Methoxyphenyl)-12a-methyl-2,3,4a,12a-tetrahydro-5H-benzo[4,5] isothiazolo[2,3-

a][1,4]dioxino[2,3-e]pyridine 11,11-dioxide (6bj): Following the *General Procedure*, to the mixture of 2-(prop-2-yn-1-yloxy)ethan-1-ol (1b) (0.1 g, 1.01 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (5j) (0.299 g, 1.01 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(4-

methoxyphenyl)-12a-methyl-2,3,4a,12a-tetrahydro-5Hbenzo[4,5]isothiazolo[2,3-*a*][1,4] dioxino[2,3-*e*]pyridine 11,11dioxide (**6bj**) (0.230 g, 58%) as a white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.82 (d, J = 7.93 Hz, 1H), 7.69 (d, J = 7.63 Hz, 1H), 7.62 (td, J = 7.32, 1.22 Hz, 1H), 7.59-7.55 (m, 1H), 7.25-7.23 (m, 2H), 6.95-6.88(m,

2H), 5.57 (dd, J = 2.44, 1.22 Hz, 1H), 4.61 (d, J = 3.36 Hz, 1H), 4.03-3.97 (m, 1H), 3.82 (s, 3H), 3.81-3.78 (m, 1H), 3.69-3.62 (m, 2H), 3.54 (dd, J = 4.27, 1.22 Hz, 1H), 1.80 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 133.5, 133, 131.6, 131.1, 130.4, 130.2, 129, 121.2, 121, 113.8, 100.2, 88.2, 79.4, 67.5, 61.9, 55.4, 42.9, 23.5; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₁NO₅S [M+H]⁺ 400.1213, found 400.1205.

3,3,12a-Trimethyl-5-(p-tolyl)-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**6cf**): Following the *General Procedure*, to the

mixture of 3,3-dimethylhex-5-yn-1-ol (**1c**) (0.1 g, 0.792 mmol) and (*E*)-3-(4-methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.223 g, 0.792 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.051 g, 0.079 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 3,3,12a-trimethyl-5-(*p*-tolyl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6cf**) dr. 1:0.1 (0.195 g, 60%) as an off-white solid. TLC: $R_f = 0.70$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (d, J = 7.75 Hz, 1H), 7.71(d, J = 7.88 Hz, 1H), 7.63 (td, J = 7.25, 1.13 Hz, 1H), 7.58-7.53 (m, 1H), 7.19-7.16 (m, 2H), 7.13-7.08 (m, 2H), 5.65 (dd, J = 2.38, 1.00 Hz, 1H), 4.18 (dd, J = 5.88, 2.38 Hz, 1H), 4.06 (d, J = 11.88 Hz, 1H), 3.36 (dd, J = 11.63, 2.63 Hz, 1H), 2.37 (s, 3H), 2.18-2.08 (m, 1H), 1.94 (s, 3H), 1.14 (d, J = 13.3 Hz, 1H), 0.91 (s, 3H), 0.73 (s, 3H), 0.68-0.64 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 137.4, 136.7, 133.6, 132.9, 132.3, 130.1, 129.4, 129.2, 128.4, 121, 101, 91.1, 73.1, 42.7, 42.2, 34.2, 30.5, 27.4, 25.7, 23.7, 21.2; HRMS (ESI) *m*/*z* calcd for C₂₄H₂₇O₃NS [M+H]⁺ 410.1784, found 410.1779.

5-(2-Methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2H,5Hbenzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (**6di**): Following the

General Procedure, to the mixture of hept-6-yn-2-ol (**1d**) (0.1 g, 0.892 mmol) and (*E*)-3-(2-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.266 g, 0.892 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.058 g, 0.089 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(2-methoxyphenyl)-2,12adimethyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6di**) (0.290 g, 79%) with dr. 2:1 as a white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.79-7.69 (m, 3H), 7.66-7.58 (m, 1.43H), 7.53 (q, *J* = 7.84 Hz, 1.46H), 7.31-7.26 (m, 1H), 7.24-7.16 (m, 2H), 6.99-6.83 (m, 3H), 5.66 (d, *J* = 4.48 Hz, 0.5H); 5.61 (s, 1H), 4.63-4.55 (m, 1H), 4.47-4.31 (m, 1H), 3.89 (s, 1H), 3.86 (s, 3H), 2.17-2.05 (m, 2H), 1.92 (s, 3H), 1.72 (d, *J* = 11.13, Hz, 1H), 1.60-1.54 (m, 1H), 1.32 (dd, *J* = 12.88, 2.63 Hz, 1H),1.25-1.21 (m, 4H), 0.91 (dd, *J* = 13.13, 3.25 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 157.1, 156.9, 133.6, 133.4, 132.8, 132.7, 132.1, 131.5, 130, 129.9, 129.4, 129.1, 128.9, 128.7, 128, 127.9, 121, 120.9, 120.7, 120.2, 120.1, 110.2, 101.4, 99.5, 91.8, 90.7, 69.1, 68.9, 55.4, 55.4, 46.8, 42.5, 40.9, 36.5, 33.3, 32.8, 28.9, 27, 25.9, 22, 21.4, 21.3; IR (KBr, cm⁻¹): υ 3175, 3145, 3077, 2933, 1705, 1661, 1593, 1532, 1458, 1307, 1241, 1169, 1075, 1023, 916, 833, 752, 647; M. P:197.4 °C ; HRMS (ESI) *m/z* calcd for C₂₃H₂₅O₄NS [M+H]⁺ 412.1577, found 412.1571.

5-(4-Methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2H,5H-

benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6dj): Following the

General Procedure, to the mixture of hept-6-yn-2-ol (**1d**) (0.1 g, 0.892 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.266 g, 0.892 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.058 g, 0.089 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(4-methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11dioxide (**6dj**) (0.299 g, 81%) as an white crystal. **6dj** was confirmed by ¹H NMR, ¹³C NMR, DEPT, and XRD analysis;²⁰ TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.82 - 7.52 (m, 6H), 7.23 - 7.11 (m, 3H), 6.95-6.81 (m, 3H), 5.62 (dd, J = 2.38, 1.13 Hz, 1 H), 4.49-4.36 (m, 1H), 4.16 (dd, J = 5.82, 2.31 Hz, 1 H), 3.85-3.81 (m, 3H), 3.79 (s, 3H), 1.90 (s, 4H), 1.86-1.80 (m, 2H), 1.65-1.53 (m, 3H), 1.26-1.21 (m, 4H), 1.04-0.94 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158.7, 133.6, 132.8, 132.8, 132.2, 130.1, 129.5, 129.1, 121.0, 120.9, 114.0, 113.9, 100.9, 99.1, 91.8, 90.3, 69.3, 55.4, 49.4, 46.4, 45.0, 42.1, 32.8, 27.1, 26.1, 21.6, 21.4; IR (KBr, cm⁻¹): υ 3146, 3074, 2952, 1722, 1603, 1458, 1373, 1260, 1174, 1127, 1038, 978, 831, 698; HRMS (ESI) m/z calcd for C₂₃H₂₅O₄NS [M+H]⁺ 412.1577, found 412.1574.

5-(4-Methoxyphenyl)-2,12a-dimethyl-2,3,4a,12a-tetrahydro-5H-benzo[4,5]isothiazolo [2,3a][1,4]dioxino[2,3-e]pyridine 11,11-dioxide and 5-(4-methoxyphenyl)-3,12a-dimethyl -2,3,4a,12a-tetrahydro-5H-benzo[4,5]isothiazolo[2,3-a][1,4]dioxino[2,3-e]pyridine 11,11dioxide (**6ej & 6ej**'): Following the General Procedure, to the mixture of 1-(prop-2-yn-1-

yloxy)propan-2-ol (**1e**) (0.1 g, 0.876 mmol) and (*E*)-3-(2methoxystyryl)benzo[*d*]isothiazole 1,1dioxide (**5j**) (0.262 g, 0.876 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.057 g, 0.087 mmol) was added under argon

atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) 5-(2-methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2H,5Hafforded benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide and 5-(4-methoxyphenyl)-3,12a-dimethyl -2,3,4a,12a-tetrahydro-5H-benzo[4,5]isothiazolo[2,3-a][1,4]dioxino[2,3elpyridine 11,11-dioxide (**6ej** and **6ej**') (0.219 g, 60%) as a 1:0.6 mixture as an off-white solid. TLC: $R_f = 0.80$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.83-7.77 (m, 1.56H), 7.73-7.67 (m, 1.65H), 7.61(t, J = 7.44 Hz, 1.58H), 7.57-7.52 (m, 1.55H), 7.32-7.27 (m, 3H), 7.00-6.94 (m, 1H), 6.94-6.90 (m, 1.6H), 5.58 (dd, J = 2.29, 1.14 Hz, 1H), 5.56-5.54 (m, 0.5H), 4.65 (ddd, J = 10.68, 6.48, 3.05, Hz, 1H), 4.60-4.54 (m, 1.54H), 4.18-4.12 (m, 1H), 3.91-3.86 (m, 5H), 3.72-3.69 (m, 2H), 3.66-3.61 (m, 1H), 3.20 (t, J = 11.44 Hz, 1H), 1.86-1.77 (m, 5H), 1.13 (d, J = 6.10 Hz, 3H); 0.94 (d, J = 6.10 Hz, 1.69H); ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 126 MHz): δ 156.8, 133.4, 132.9, 131.9, 131.4, 130.8, 130, 129.9, 129.1, 128.4, 128.1, 127.3, 121.1, 120.9, 120.5, 120.3, 110.1, 110, 100.9, 100.1, 88.6, 87.4, 76.4, 73, 72.2, 67.3, 66.7, 55.6, 36.5, 36.3, 23.5, 23.1, 16.7, 16.3; HRMS (ESI) m/z calcd for $C_{22}H_{23}O_5NS [M+H]^+$ 414.1370, found 414.1367.

5-(4-Methoxyphenyl)-12a-methyl-1,3a,4,4a,12a,13a-hexahydro-2H,5Hbenzo[4,5]isothiazolo[2,3-a]furo[2',3':5,6]pyrano[3,2-e]pyridin-2-one 11,11-dioxide (**6fj**):

Following the *General Procedure*, to the mixture of (4R,5S)-5-(but-3-yn-1-yl)-4-hydroxydihydrofuran-2(3*H*)-one (**1f**) (0.1 g, 0.648 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1dioxide (**5**j) (0.073 g, 0.648 mmol) in anhydrous CH₂Cl₂ (2 mL), Bi(OTf)₃ (0.042 g, 0.064 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was

stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 5-(4-methoxyphenyl)-12a-methyl-1,3a,4,4a,12a,13a-hexahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[2',3':5,6]pyrano[3,2-*e*]pyridin-2-one 11,11-dioxide (**6fj**) (0.173 g, 59%) as an white solid. TLC: $R_f = 0.40$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (d, *J* = 7.63 Hz, 1H), 7.76-7.72 (m, 1H), 7.67 (td, *J* = 7.57, 1.25 Hz, 1H), 7.62-7.57 (m, 1H), 7.18-7.09 (m, 2H), 6.95-6.87 (m, 2H), 5.72 (d, *J* = 2.44, 1.19 Hz, 1H), 5.17 (q, *J* = 2.50, Hz, 1H), 4.42 (q, *J* = 3.00, Hz, 1H), 4.22 (dd, *J* = 5.75, 2.38 Hz, 1H), 3.83 (s, 3H), 2.74 (d, *J* = 2.50 Hz, 2H), 2.27-2.16 (m, 1H), 1.87 (s, 3H), 1.59-1.57 (m, 1H), 1.55-1.51 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 176.1, 159, 133.3, 132.4, 131.1, 130.5, 129.4, 129, 121.2, 121.1, 114.3, 101.4, 90.3, 77.5, 69.9, 55.5, 41.3, 39, 38.7, 25.1, 22.6; IR (KBr, cm⁻¹): υ 3144, 3037, 2924, 1781, 1702, 1653, 1510, 1464, 1307, 1248, 1180, 1105, 1047, 935, 832, 698; HRMS (ESI) *m/z* calcd for C₂₄H₂₃O₆NS [M+H]⁺ 454.1319, found 454.1314.

9. Synthesis and characterization of fused-*N*,*O*-ketals (7) from 4-pentyn-1-ols (2) and cyclic *N*-sulfonyl ketimines (5):

11a-Methyl-4-phenyl-2,3,3a,11a-tetrahydro-4H-benzo[4,5]isothiazolo[2,3-a]furo[3,2-

e]pyridine 10,10-dioxide (7aa): Following the *General Procedure*, to the mixture of 4pentyn-1-ol (**2a**) (0.1 g, 1.18 mmol) and (*E*)-3-styrylbenzo[*d*]isothiazole 1,1-dioxide (**5a**) (0.317 g, 1.18 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.077 g, 0.118 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30%

EtOAc/hexanes) afforded 4-([1,1'-biphenyl]-4-yl)-11a-methyl-

2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[3,2*e*]pyridine 10,10-dioxide (**7aa**) (0.299 g, 71%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (d, J = 7.63 Hz, 1H), 7.70 (d, J = 7.63Hz, 1H), 7.63 - 7.59 (m, 1H), 7.58-7.54 (m, 1H), 7.38-7.34 (m,

2H), 7.31-7.27 (m, 3H), 5.61 (d, J = 1.53 Hz, 1H), 4.39-4.31 (m, 1H), 4.15 (dd, J = 6.10, 2.29 Hz, 1H), 3.95 (q, J = 8.52 Hz, 1H), 2.49-2.40 (m, 1H), 2.01-1.93 (m, 1H), 1.92 (s, 3H), 1.45-1.38 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 141.7, 134.1, 132.7, 130.7, 130.2, 128.9, 128.7, 127.9, 127.3, 121.1, 120.9, 98.5, 95.2, 67.3, 52, 40.3, 26.6, 22.9; HRMS (ESI) m/z calcd for C₂₀H₁₉O₃NS [M+H]⁺ 354.1158 found 354.1155.

11a-Methyl-4-(naphthalen-2-yl)-2,3,3a,11a-tetrahydro-4Hbenzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7ac): Following the General Procedure, to the mixture

of 4-pentyn-1-ol (**2a**) (0.1 g, 1.18 mmol) and (*E*)-3-(2-(naphthalen-2-yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5c**) (0.379 g, 1.18 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.077 g, 0.118 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 11a-methyl-4-(naphthalen-2-yl)-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[3,2-*e*]pyridine 10,10-dioxide (**7ac**) (0.360 g, 75%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.80 (m, 4H), 7.76 (d, J = 7.75 Hz, 1H), 7.73 (s, 1H), 7.64 (dt, J = 1.13, 7.50 Hz, 1H), 7.60-7.54 (m, 1H), 7.51-7.47 (m, 2H), 7.41 (dd, J = 1.75, 8.50 Hz, 1H), 5.73 (dd, J = 1.00, 2.50 Hz, 1H), 4.42-4.28 (m, 2H), 3.94 (q, J = 8.38 Hz, 1H), 2.60-2.51 (m, 1H), 2.08-1.98 (m, 1H), 1.96 (s, 3H), 1.62 (s, 2H), 1.44-1.34(m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 139.2, 134.1, 133.6, 132.8, 132.7, 130.9, 130.3, 128.7, 128.6, 127.8, 127.8, 126.5, 126.3, 126.2, 126.0, 121.2, 120.9, 98.5, 95.3, 67.3, 51.9, 40.4, 26.7, 22.9; HRMS (ESI): m/z calcd for C₂₄H₂₂O₃NS [M+H]⁺ 404.1315, found 404.1313.

4-([1,1'-Biphenyl]-4-yl)-11a-methyl-2,3,3a,11a-tetrahydro-4H-benzo[4,5]isothiazolo[2,3a]furo[3,2-e]pyridine 10,10-dioxide (7ae): Following the General Procedure, to the mixture of 4-pentyn-1-ol (2a) (0.1 g, 1.18 mmol) and (E)-3-(2-([1,1'-biphenyl]-4-

yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5e**) (0.450 g, 1.18 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.077 g, 0.118 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 4-([1,1'-biphenyl]-4-yl)-

11a-methyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[3,2-*e*]pyridine 10,10dioxide (**7ae**) (0.331 g, 65%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (d, J = 7.63 Hz, 1H), 7.72 (d, J = 7.63 Hz, 1H), 7.65 - 7.55 (m, 6H), 7.49-7.42 (m, 2H), 7.39-7.33 (m, 3H), 5.64 (d, J = 1.75 Hz, 1H), 4.44-4.34 (m, 1H), 4.20 (dd, J = 6.19, 2.31 Hz, 1H), 3.98 (q, J = 8.46 Hz, 1H), 2.55-2.47 (m, 1H), 2.06-1.94 (m, 1H), 1.94 (s, 3H), 0.88-0.84 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 140.8, 140.7, 140.3, 134.1, 132.7, 130.8, 130.3, 129, 128.7, 128.3, 127.6, 127. 2, 121.2, 120.9, 98.5, 95.3, 67.4, 51.9, 40.1, 26.6, 22.9; HRMS (ESI) *m/z* calcd for C₂₆H₂₃O₃NS [M+H]⁺ 430.1471, found 430.1470.

4-(2-Methoxyphenyl)-11a-methyl-2,3,3a,11a-tetrahydro-4H-benzo[4,5]isothiazolo[2,3a]furo[3,2-e]pyridine 10,10-dioxide (**7ai**): Following the *General Procedure*, to the mixture

EtOAc/hexanes)

of 4-pentyn-1-ol (**2a**) (0.1 g, 1.18 mmol) and (*E*)-3-(2methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.355 g, 1.18 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.077 g, 0.118 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30%

4-(2-methoxyphenyl)-11a-methyl-2,3,3a,11a-tetrahydro-4H-

benzo[4,5]isothiazolo[2,3-*a*]furo[3,2-*e*]pyridine 10,10-dioxide (**7ai**) (0.354 g, 78%) as an offwhite solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes) **7ai** was confirmed by ¹H NMR, ¹³C NMR, DEPT, and 2D analysis;²⁰ ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (d, J = 7.75 Hz, 1H), 7.70 (d, J = 7.75 Hz, 1H), 7.65 - 7.52 (m, 2H), 7.29 (s, 1H), 7.21 (d, J = 7.50 Hz, 1H), 6.97-6.88 (m, 2H), 5.57 (d, J = 2.25 Hz, 1H), 4.55 (dd, J = 6.13, 2.50 Hz, 1H), 4.37-4.30 (m, 1H), 3.95 (q, J = 8.59 Hz, 1H), 3.88 (s, 3H), 2.78-2.66 (m, 1H), 1.92 (s, 3H), 0.87-0.84 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 156.9, 134 132.6, 130.5, 130.3, 128.3, 128.3, 121.1, 120.9, 120.7, 110.3, 99.5, 95.3, 67.4, 55.6, 48.5, 26.9, 22.8; IR (KBr, cm⁻¹): υ 3200, 3143, 2927, 1705, 1651, 1605, 1465, 1304, 1242, 1174, 1025, 962, 896, 752, 695; HRMS (ESI) m/z calcd for C₂₁H₂₁O₄NS [M+H]⁺ 384.1264, found 384.1257.

4-(4-Methoxyphenyl)-2,11a-dimethyl-2,3,3a,11a-tetrahydro-4H-benzo[4,5]isothiazolo[2,3a]furo[3,2-e]pyridine 10,10-dioxide (**7bj**): Following the *General Procedure*, to the mixture

of hex-5-yn-2-ol (**2b**) (0.1 g, 1.01 mmol) and (*E*)-3-(4methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.304 g, 1.01 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.066 g, 0.101 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 4-(4-methoxyphenyl)-2,11a-dimethyl-2,3,3a,11atetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[3,2-*e*]pyridine 10,10-dioxide (**7bj**) (0.285 g, 70%) with dr (1:0.3) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.83-7.51 (m, 6H), 7.23-7.12 (m, 3H), 6.93-6.86 (m, 3H), 5.70-5.63 (m, 0.3H), 5.56 (d, *J* = 1.63 Hz, 1H), 4.71-4.63 (m,1H), 4.08 (dd, *J* = 6.13, 2.38 Hz, 1H), 3.82 (s, 3H), 2.54-2.44 (m, 1H), 2.14-1.97 (m, 1H), 1.91-1.87 (m, 3H), 1.19(d, *J* = 6.38 Hz, 4H), 1.10-1.00(m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158.8, 134.1, 133.8, 132.7, 132.7, 130.8, 130.2, 130.2, 129.2, 129.1, 128.9, 128.9, 128.8, 121.1, 120.9, 114.3, 114.2, 114.1, 98.9, 95.8, 74.6, 55.5, 50.9, 39.4, 33.3, 23.3, 22.6; IR (KBr, cm⁻¹): ν 3267, 3194, 3143, 3076, 2931, 1728, 1655, 1607, 1513, 1460, 1305, 1246, 1175, 1115, 1031, 957, 896, 753; HRMS (ESI) *m/z* calcd for C₂₂H₂₃O₄NS [M+H]⁺ 398.1421, found 398.1417.

4-(4-Methoxyphenyl)-2,2,11a-trimethyl-2,3,3a,11a-tetrahydro-4H-benzo[4,5]isothiazolo[2,3a]furo[3,2-e]pyridine 10,10-dioxide (**7cf**): Following the *General Procedure*, to the mixture

of 2-methylhex-5-yn-2-ol (**2c**) (0.1 g, 0.892 mmol) and (*E*)-3-(4methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.252 g, 0.892 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.058 g, 0.089 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30%

EtOAc/hexanes) afforded 4-(4-methoxyphenyl)-2,2,11a-trimethyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-*a*]furo[3,2-*e*]pyridine 10,10-dioxide (**7cf**) (0.253 g, 71%) with dr. 1:0.3 as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃,

400 MHz): δ 7.83 - 7.78 (m, 1H), 7.70 - 7.66 (m, 1H), 7.64-7.51 (m, 3H), 7.20-7.12 (m 5H), 5.61 (d, *J* = 2.25 Hz, 1H), 5.70 (d, *J* = 4.63 Hz, 0.3H), 4.10 (dd, *J* = 6.63, 2.63 Hz, 1H), 2.70-2.59 (m, 1H), 2.39-2.32 (m, 4H), 2.17-210 (m, 1H), 1.94-1.90 (m, 3H), 1.25 (s, 6H), 1.19 (s, 4H), 0.92-0.79 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 138.8, 136.9, 134.1, 132.8, 132.7, 130.9, 130.2, 129.5, 128.8, 127.9, 121.1, 120.9, 99.6, 95.6, 83.5, 51.7, 39.9, 39.8, 29.7, 29.4, 24.7, 21.2; HRMS (ESI) *m/z* calcd for C₂₃H₂₅NO₃S [M+H]⁺ 398.1628, found 398.1619.

10. Synthesis and characterization of spiro-*N*,*O*-ketals (8) from 4-pentyn-1-ols (2) and cyclic *N*-sulfonyl ketimines (5):

9-(Naphthalen-2-yl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'furan-4',1"-cyclopentane] 5,5-dioxide (8dc): Following the General Procedure, to the

mixture of (1-(prop-2-yn-1-yl)cyclopentyl)methanol (**2d**) (0.1 g, 0.724 mmol) and (*E*)-3-(2-(naphthalen-2yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5c**) (0.230 g, 0.724 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.047 g, 0.072 mmol) was added under argon atmosphere at room temperature

(35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(naphthalen-2-yl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclopentane] 5,5-dioxide (**8dc**) (0.264 g, 80%) as an yellow semi-solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.87-7.79 (m, 4H), 7.77 (s, 1H), 7.70 - 7.66 (m, 1H), 7.64-7.53 (m, 2H), 7.51-7.41 (m, 3H), 5.87 (m, 1H), 4.27-4.16 (m, 2H), 3.92 (d, *J* = 8.50, Hz, 1H), 3.45 (d, *J* = 6.38 Hz, 1H), 3.25 (d, *J* = 14.76 Hz, 1H), 2.31 (d, *J* = 12.51 Hz, 1H), 2.14 (d, *J* = 14.88 Hz, 1H), 1.80-1.67 (m, 4H), 1.57-1.50 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 140.9, 133.6, 132.9, 132.6, 132.4, 131.5, 130, 129.2, 128.6, 127.7, 127.6, 126.3, 126.2, 126.1, 125.8, 120.9, 104.9, 94.1, 68.8, 46.7, 44.1, 37.4, 36.8, 35. 25.9, 25.8, 24.4, 23.1; IR (KBr, cm⁻¹): υ 3065, 2924, 1699, 1632, 1536, 1455, 1455, 1301, 1238, 1170, 1020, 748; HRMS (ESI) *m*/*z* calcd for C₂₈H₂₇O₃NS [M+H]⁺ 458.1784, found 458.1770.

9-(*p*-Tolyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1"-cyclopentane] 5,5-dioxide (**8df**): Following the General Procedure, to the mixture of (1-(prop-2-yn-1-yl)cyclopentyl)methanol (**2d**) (0.1 g, 0.724 mmol) and (*E*)-3-(4-

methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.194 g, 0.724 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.047 g, 0.072 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(*p*-tolyl)-8,9-dihydro-

3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclopentane] 5,5dioxide (**8df**) (0.240 g, 78%) as a yellow semi-solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 7.63, Hz, 1H), 7.67-7.49 (m, 3H), 7.22-7.13 (m, 4H), 5.76 (m, 1H), 4.16 (d, J = 8.50, Hz, 1H), 4.00 (ddd, J = 12.35, 5.66, 2.25 Hz, 1H), 3.87 (d, J = 8.50, Hz, 1H), 3.21 (d, J = 14.76, Hz, 1H), 2.35 (s, 3H), 2.31-2.23 (m, 1H) 2.20-2.07 (m, 2H), 1.69-1.60 (m, 2H), 1.54-1.42 (m, 6H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 140.6, 136.8, 133, 132.5, 131.4, 130, 129.6, 129.4, 127.7, 121, 120.9, 105.5, 94.3, 78.3, 46.9, 44.2, 37, 36.8, 35.1, 26.1, 24.5, 23.2, 21.2; IR (KBr, cm⁻¹): υ 3065, 2924, 1699, 1632, 1536, 1455, 1455, 1301, 1238, 1170, 1020, 748; HRMS (ESI) *m/z* calcd for C₂₅H₂₇O₃NS [M+H]⁺ 422.1784, found 422.1778.

9-(4-Methoxyphenyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'furan-4',1"-cyclopentane] 5,5-dioxide (**8dj**): Following the General Procedure, to the mixture

of (1-(prop-2-yn-1-yl)cyclopentyl)methanol (**2d**) (0.1 g, 0.724 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.215 g, 0.724 mmol) in anhydrous CH_2Cl_2 (2 mL) Bi(OTf)₃ (0.047 g, 0.072 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(4-methoxyphenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclopentane] 5,5dioxide (**8dj**) (0.260 g, 82%) with dr 1:3 as an yellow solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (td, J = 1.0, 7.7 Hz, 2H), 7.65-7.45 (m, 5H), 7.24-7.18 (m, 3H), 6.92-6.83 (m, 3H), 5.80-5.73 (m, 2H), 4.26-4.13 (m, 2H), 3.99 (ddd, J = 2.5, 5.7, 12.3 Hz, 2H), 3.87 (d, J = 8.5 Hz, 1H), 3.83-3.80 (m, 5H), 3.80-3.73 (m, 2H), 3.49 (d, J = 14.4 Hz, 1H), 3.21 (d, J = 14.8 Hz, 0.5H), 2.37-2.23 (m, 2H), 2.17-2.07 (m, 3H), 1.90-1.61 (m, 11H), 1.59-1.42 (m, 7H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158.6, 135.5, 135.5, 132.8, 132.8, 132.3, 131.2, 129.8, 129.2, 129.2, 128.6, 120.8, 120.8, 120.7, 114.1, 105.5, 105.4, 94.2, 94.1, 78.8, 55.3, 50.8, 46.8, 46.1, 45.9, 44.0, 39.5, 36.6, 36.4, 36.2, 34.9, 34.8, 29.5, 25.8, 25.8, 24.8, 24.3, 24.2, 23.0; IR (KBr, cm⁻¹): υ 3068, 2935, 1725, 1653, 1603, 1511, 1456, 1456, 1303, 1245, 1171, 1029, 832, 746; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₇O₄NS [M+H]⁺ 438.1734, found 438.1719.

9-(Naphthalen-2-yl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'furan-4',1''-cyclohexane] 5,5-dioxide (**8ec**): Following the General Procedure, to the mixture

of (1-(prop-2-yn-1-yl)cyclohexyl)methanol (**2e**) (0.1 g, 0.657 mmol) and (*E*)-3-(2-(naphthalen-2-yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5c**) (0.207 g, 0.657 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.042 g, 0.065 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(naphthalen-2-yl)-8,9dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclopentane] 5,5-dioxide (**8ec**) (0.242 g, 78%) as an yellow solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.87-7.79 (m, 4H), 7.76 (s, 1H), 7.71 - 7.65 (m, 1H), 7.64-7.58 (m, 1H), 7.58-7.51 (m, 1H), 7.50-7.46 (m, 2H), 7.42 (dd, J = 8.50, 1.63 Hz, 1H), 5.87 (s, 1H), 4.29-4.18 (m, 2H), 3.80 (d, J = 8.13, Hz, 1H), 3.52 (d, J = 14.51 Hz, 1H), 2.46-2.37 (m, 1H), 2.31-2.21 (m, 1H), 2.13 (d, J = 14.51 Hz, 1H), 1.76-1.60 (m, 8H), 1.57-1.48 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 141.1, 133.7, 133.1, 132.7, 132.5, 131.7, 130.1, 129.4, 128.7, 127.8, 127.7, 126.4, 126.3, 126.2, 125.9, 121.1, 121, 105.2, 94.3, 79.1, 51, 46.3, 45.9, 39.7, 37.4, 35, 25, 24.4; IR (KBr, cm⁻¹): υ 3066, 2942, 2867, 1697, 1665, 1599, 1464, 1305, 1243, 1172, 1005, 815, 746 ; HRMS (ESI) *m/z* calcd for C₂₉H₂₉O₃NS [M+H]⁺ 472.1941, found 472.1928.

9-(*p*-Tolyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (**8ef**): Following the *General Procedure*, to the mixture of (1-

(prop-2-yn-1-yl)cyclohexyl)methanol (**2e**) (0.1 g, 0.657 mmol) and (*E*)-3-(4-methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.186 g, 0.657 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.042 g, 0.065 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(*p*-tolyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclohexane] 5,5-dioxide (**8ef**) (0.220 g, 79%) as a yellow semisolid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, *J* = 7.6 Hz, 1 H), 7.65-7.50 (m, 3 H), 7.22-7.14 (m, 4 H), 5.76 (s, 1 H), 4.16 (d, *J* = 8.5 Hz, 1 H), 4.00 (ddd, *J* = 2.1, 5.6, 12.3 Hz, 1 H), 3.87 (d, *J* = 8.4 Hz, 1 H), 3.21 (d, *J* = 14.8 Hz, 1 H), 2.35 (s, 3 H), 2.32-2.24 (m, 1 H), 1.79-1.59 (m, 3 H), 1.55-140 (m.,7 H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 140.7, 136.9, 133.0, 132.5, 131.4, 130.0, 129.7, 129.4, 127.8, 121.0, 121.0, 105.5, 94.3, 77.5, 76.9, 46.9, 44.2, 37.0, 36.9, 35.1, 26.1, 24.5, 23.3, 21.2; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₉NO₃S [M+H]⁺ 436.1941, found 436.1934.

9-(2-Methoxyphenyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'furan-4',1"-cyclohexane] 5,5-dioxide (**8ei**): Following the General Procedure, to the mixture

of (1-(prop-2-yn-1-yl)cyclohexyl)methanol (**2e**) (0.1 g, 0.657 mmol) and (*E*)-3-(2-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.194 g, 0.657 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.042 g, 0.065 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromaography (SiO₂, 30% EtOAc/hexanes) afforded 9-(2-methoxyphenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclohexane] 5,5dioxide (**8ei**) (0.220 g, 75%) as a yellow solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes; ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 7.75 Hz, 1H), 7.62-7.57 (m, 1H), 7.57-7.50 (m, 1H), 7.44 (d, J = 7.75 Hz, 1H), 7.22-7.16 (m, 1H), 7.11 (dd, J = 1.38, 7.63 Hz, 1H), 6.92-6.83 (m, 2H), 4.71 (s, 1H), 4.33 (d, J = 8.63 Hz, 1H), 4.03 (d, J = 9.01 Hz, 1H), 3.85 (s, 3H), 3.73 (s, 1H), 3.65-3.54 (m, 1H), 2.53 (dd, J = 4.75, 17.13 Hz, 1H), 2.39 (dd, J = 11.76, 16.88 Hz, 1H), 2.23-2.13 (m, 2H), 1.71 (dd, J = 3.75, 12.88 Hz, 1H), 1.61 (d, J = 11.01 Hz, 2H), 1.46 (d, J = 12.13 Hz, 1H), 1.36 (d, J = 13.01 Hz, 1H), 1.19 (d, J = 12.63 Hz, 1H), 1.01-0.82 (m, 3H), 0.73-0.59 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 159.7, 157.2, 143.6, 135.8, 132.6, 131.3, 129.6, 127.9, 126.4, 125.8, 121.5, 120.7, 112.6, 110.7, 79.3, 65.3, 55.5, 49.1, 47.4, 36.8, 35.6, 31.9, 29.8, 24.9, 23.7, 23.2; IR (KBr, cm⁻¹): υ 3011, 2944, 2355, 1673, 1600, 1454, 1345, 1289, 1241, 1163, 1036, 938, 750; HRMS (ESI) *m*/z calcd for C₂₆H₂₉O₄NS [M+H]⁺ 452.1890, found 452.1874. 9-(4-Methoxyphenyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'furan-4',1''-cyclohexane] 5,5-dioxide (**8ej**): Following the *General Procedure*, to the mixture

of (1-(prop-2-yn-1-yl)cyclohexyl)methanol (**2e**) (0.1 g, 0.657 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.194 g, 0.657 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.042 g, 0.065 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(4-methoxyphenyl)-8,9dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclohexane] 5,5-dioxide (**8ej**) (0.246 g, 82%) with dr 1:3 as an yellow solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 7.5 Hz, 2 H), 7.67 - 7.48 (m, 5 H), 7.24 - 7.14 (m, 4 H), 6.93 - 6.86 (m, 3 H), 5.75 (br. s., 1.5 H), 4.22 (d, J = 8.1 Hz, 1 H), 4.16 (d, J = 8.4 Hz, 1 H), 4.03-3.94 (m, 2 H), 3.87 (d, J = 8.5 Hz, 1 H), 3.81 (s, 5 H), 3.79 -3.74 (m, 1 H), 3.52 - 3.42 (m, 1 H), 3.21 (d, J = 14.9 Hz, 1 H), 2.35 - 2.23 (m, 2 H), 2.20 -2.07 (m, 4 H), 1.87 - 1.57 (m, 9 H), 1.57 - 1.42 (m, 10 H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158.6, 135.5, 135.5, 132.8, 132.8, 132.3, 131.2, 131.2, 129.9, 129.2, 129.2, 128.6, 120.8, 120.8, 120.8, 114.2, 105.5, 105.4, 94.2, 94.1, 78.9, 68.8, 55.3, 50.8, 46.8, 46.1, 45.9, 44.0, 40.5, 39.5, 36.7, 36.4, 36.2, 34.9, 34.8, 26.6, 25.9, 25.8, 24.8, 24.3, 24.2, 23.1; IR (KBr, cm⁻¹): υ 3019, 2938, 1706, 1664, 1607, 1514, 1449, 1305, 1242, 1172, 1023, 833, 743; HRMS (ESI) *m/z* calcd for C₂₆H₂₉O₄NS [M+H]⁺ 452.1890, found 452.1876.

9-(4-(Benzyloxy)phenyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1"-cyclohexane] 5,5-dioxide (**8ek**): Following the General Procedure, to the

mixture of (1-(prop-2-yn-1-yl)cyclohexyl)methanol (**2e**) (0.1 g, 0.657 mmol) and (*E*)-3-(4-(benzyloxy)styryl)benzo[*d*]isothiazole 1,1-dioxide (**5k**) (0.244 g, 0.657 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.042 g, 0.065 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(4-(benzyloxy)phenyl)-8,9dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan-4',1"-cyclohexane] 5,5-dioxide (**8ek**) (0.208 g, 60%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 7.75, Hz, 1H), 7.65-7.50 (m, 3H), 7.46-7.33 (m, 5H), 7.21(d, J = 8.50, Hz, 2H), 6.96 (d, J = 8.63, Hz, 2H), 5.76 (s, 2H), 4.21 (d, J = 8.38, Hz, 1H), 3.99 (d, J = 12.88, Hz, 1H), 3.76 (d, J = 8.25, Hz, 1H), 3.48 (d, J = 14.38, Hz, 1H), 2.37-2.31 (m, 1H), 2.16-2.08 (m, 2H), 1.70-1.64 (m, 4H), 1.49 (d, J = 6.38, Hz, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158, 136.0, 133.0, 130.1, 128.9, 128.8, 128.1, 127.6, 121.1, 120.9, 115.3, 105.7, 94.4, 79.1, 70.3, 51.0, 46.1, 39.7, 36.4, 35, 25, 24.4.

4',4'-Dimethyl-9-(naphthalen-1-yl)-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxidedioxide (8fb): Following the General Procedure, to the

mixture of 2,2-dimethylpent-4-yn-1-ol (**2f**) (0.1 g, 0.891 mmol) and (*E*)-3-(2-(naphthalen-1-yl)vinyl)benzo[*d*]isothiazole 1,1dioxide (**5b**) (0.284 g, 0.891 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.038 g, 0.89 mmol) was added under argon atmosphere at (35 °C) and the reaction mixture was stirred for 8

h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 4',4'-dimethyl-9-(naphthalen-1-yl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxidedioxide (**8fb**) (0.284 g, 74%) as a yellow semi-solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes) 8fb was confirmed by ¹H NMR, ¹³C NMR, DEPT, HRMS and 2D NMR analysis;^{20 1}H NMR (CDCl₃, 400 MHz): δ 8.22 (d, J = 8.38 Hz, 1 H), 7.95-7.89 (m, 1 H), 7.83 - 7.76 (m, 2 H), 7.70-7.63 (m, 1 H), 7.62-7.50 (m, 4 H), 7.48-7.43 (m, 2 H), 5.96 (s, 1 H), 4.94 (s, 1 H), 4.31 (d, J = 8.25, Hz, 1 H), 3.77 (d, J = 8.13, Hz, 1 H), 3.37 (d, J = 14.76 Hz, 1 H), 2.57 (dd, J = 12.69, 4.57 Hz, 1 H), 2.36-2.20 (m, 1 H), 2.01 (d, J = 14.63 Hz, 1 H), 1.31 (s, 3 H), 1.24 (s, 3 H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 139.4, 134.2, 133.1, 132.5, 131.5, 131.1, 130.1, 129.4, 129.3, 129, 127.7, 126.6, 125.9, 125.9, 123, 121.1, 121, 105.5, 95, 80.4, 61.8, 47.8, 45.3, 40.1, 28.9, 25; HRMS (ESI) *m/z* calcd for C₂₆H₂₅NO₃S [M+H]⁺ 432.1628, found 432.1628.

4',4'-Dimethyl-9-(p-tolyl)-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8**ff): Following the *General Procedure*, to the mixture of

2,2-dimethylpent-4-yn-1-ol (**2f**) (0.1 g, 0.891 mmol) and (*E*)-3-(4-methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.252 g, 0.891 mmol) in anhydrous CH_2Cl_2 (2 mL), $Bi(OTf)_3$ (0.058 g, 0.089 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 4',4'-dimethyl-9-(*p*-tolyl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8ff**) (0.234 g, 66%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.80-7.76 (m, 1H), 7.65-7.56 (m, 2H), 7.55-7.50 (m, 1H),7.22-7.14 (m, 4H), 5.80-5.74 (m, 1H), 4.22 (d, *J* = 8.25 Hz, 1H), 4.02 (ddd, *J* = 12.48, 5.72, 2.44 Hz, 1H), 3.67 (d, *J* = 8.25 Hz, 1H), 3.32 (d, *J* = 14.76 Hz, 1H), 2.40-2.29 (m, 4H), 2.22-2.12 (m, 1H), 2.07-1.95(m, 1H), 1.28 (s, 3H), 1.22 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 140.6, 136.9, 133, 132.5, 131.4, 130, 129.6, 127.7, 121, 120.9, 105.5, 94.9, 80.4, 47.8, 46.6, 40.1, 37, 29, 25, 21.2; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₅NO₃S [M+H]⁺ 398.1628, found 398.1619.

9-(2-Bromophenyl)-4',4'-dimethyl-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8fg**): Following the *General Procedure*, to the mixture of

2,2-dimethylpent-4-yn-1-ol (**2f**) (0.1 g, 0.891 mmol) and (*E*)-3-(2-bromostyryl)benzo[*d*]isothiazole 1,1-dioxide (**5g**) (0.310 g, 0.891 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.058 g, 0.089 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 9-(2-bromophenyl)-4',4'-dimethyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8fg**) (0.340 g, 83%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes, **8fg** was confirmed by ¹H NMR, ¹³C NMR, DEPT, and 2D NMR analysis;²⁰ ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 7.75 Hz, 1H), 7.71-7.66 (m, 1H), 7.64-7.51 (m, 3H), 7.31 (d, *J* = 7.75 Hz, 2H), 7.17-7.10 (m, 1H), 5.78 (s, 1H), 4.58 (ddd, *J* = 12.29, 5.41, 2.31 Hz, 1H), 4.20 (d, *J* = 8.25 , Hz, 1H), 3.70 (d, *J* = 8.13 , Hz, 1H), 3.30 (d, *J* = 14.63, Hz, 1H), 2.54 (dd, *J* = 12.95, 4.57 Hz, 1H), 2.04-1.94 (m, 2H), 1.25 (s, 3H), 1.28 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 142.6, 133.2, 133.1, 132.5, 132.3, 130.2, 129.3, 128.9, 128.6, 128.2, 124.5, 121.1, 120.9, 104.1, 94.7, 80.4, 47.8, 44.2, 40.1, 36.8, 28.8, 25.1; HRMS (ESI) *m/z* calcd for C₂₂H₂₂BrNO₃S [M+H]⁺ 460.0577, found 460.0571.

9-(*Naphthalen-1-yl*)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8gb**): Following the *General Procedure*, to the mixture of 2,2-diphenylpent-4-yn-1-ol (**2g**) (0.1 g, 0.423 mmol) and (*E*)-3-(2-(naphthalen-1-

yl)vinyl)benzo[*d*]isothiazole 1,1-dioxide (**5b**) (0.135 g, 0.423 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.027 g, 0.042 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 9-(naphthalen-1-yl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8gb**) (0.203 g, 86%) as an off-white crystal, **8gb** was confirmed by ¹H NMR, ¹³C NMR, DEPT, and XRD analysis;²⁰ TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.91-7.80 (m, 3H), 7.73 (t, J = 7.00 Hz, 2H), 7.64 (td, J = 7.60, 1.19 Hz, 1H), 7.59-7.43 (m, 5H), 7.42-7.28 (m 8H), 7.24-7.20 (m 1H), 7.11-7.06 (m, 1H), 6.01-5.94 (m, 1H), 5.11-5.03 (m, 1H), 4.83-4.71(m, 2H), 4.44 (d, J = 14.13 Hz, 1H), 2.86 (dd, J = 14.20, 1.31 Hz, 1H), 2.09-1.96 (m, 1H), 1.88(d, J = 12.26 Hz, 1H): ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 145.9, 143.9, 139.5, 133.9, 133.2, 132.3, 131.3, 130.2, 129.4, 129, 128.8, 128.7, 127.6, 128.5, 127.6, 127.4, 127.3, 126.8, 126.7, 126.4, 125.9, 123.1, 121.1, 121.1, 105.6, 94.9, 76.2, 56.1, 46.1, 43.8; IR (KBr, cm⁻¹): ν 3067, 3031, 2926, 1595, 1539, 1492, 1451, 1306, 1249, 1174, 1039, 813, 751, 696; HRMS (ESI) m/z calcd for C₃₆H₂₉O₃NS [M+H]⁺ 556.1941, found 556.1931.

4',4'-Diphenyl-9-(p-tolyl)-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5] isothiazolo[2,3-benzo[4,5] isothiazolo[2,5] isot

a]pyridine-7,2'-furan] 5,5-dioxide (8gf): Following the General Procedure, to the mixture of

2,2-diphenylpent-4-yn-1-ol (**2g**) (0.1 g, 0.423 mmol) and (*E*)-3-(4-methylstyryl)benzo[*d*]isothiazole 1,1-dioxide (**5f**) (0.119 g, 0.423 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.027 g, 0.042 mmol) was added under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 8 h at rt. Purification of the crude product by column

chromatography (SiO₂, 30% EtOAc/hexanes) afforded 4',4'-diphenyl-9-(*p*-tolyl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8gf**) (0.152 g, 69%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 7.88 Hz, 1H), 7.67-7.58 (m, 2H), 7.56-7.51 (m, 1H), 7.42 (d, J = 7.75 Hz, 2H), 7.33-7.29 (m, 5H), 7.25-7.16 (m, 3H), 7.10 (d, J = 8.00 Hz, 2H), 7.03 (m, J = 7.88 Hz, 2H) 5.79 (s, 1H), 4.97 (d, J = 9.38 Hz, 1H), 4.67 (d, J = 9.26 Hz, 1H), 4.42 (d, J = 14.01 Hz, 1H), 3.95-3.83 (m, 1H), 2.85 (d, J = 14.13 Hz, 1H), 2.31 (s, 3H), 1.87-1.76 (m, 1H), 1.74-1.65 (m, 1H): ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 146.1, 144.1, 140.5, 136.6,

133.1, 130.1, 129.5, 129.4, 128.7, 128.6, 127.5, 127.5, 127.3, 126.8, 126.7, 121.1, 120.9, 105.7, 94.8, 76.3, 56, 46.1, 44.9. 36.2, 21.1; IR (KBr, cm⁻¹): υ 3062, 3014, 2927, 1659, 1596, 1491, 1449, 1304, 1174, 1037, 751, 695; HRMS (ESI) *m*/*z* calcd for C₃₃H₂₉O₃NS [M+H]⁺ 520.1941, found 520.1927.

9-(2-Bromophenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8gg**): Following the *General Procedure*, to the mixture of

2,2-diphenylpent-4-yn-1-ol (**2g**) (0.1 g, 0.423 mmol) and (*E*)-3-(2-bromostyryl)benzo[*d*]isothiazole 1,1-dioxide (**5g**) (0.147 g, 0.423 mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.027 g, 0.042 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

(SiO₂, 30% EtOAc/hexanes) afforded 9-(2-bromophenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8gg**) (0.205 g, 83%) as an off-white solid. TLC: $R_f = 0$. (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, J = 7.63 Hz, 1H), 7.71-7.67 (m, 1H), 7.66-7.60 (m, 1H), 7.56 (d, J = 7.75 Hz, 1H), 7.49 (d, J = 7.75 Hz, 1H), 7.42 (d, J = 7.38 Hz, 2H), 7.35-7.29 (m, 6H), 7.25-7.20 (m, 4H), 7.09-7.04 (m, 1H), 5.77 (s, 1H), 4.99 (d, J = 9.51 Hz, 1H), 4.67 (d, J = 9.26 Hz, 1H), 4.52-4.40 (m, 2H), 2.82 (d, J = 14.01 Hz, 1H), 2.00-1.90 (m, 1H), 1.65(t, J = 12.44 Hz, 1H): ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 146.2, 144.2, 142.6, 133.2, 133.1, 132.4, 130.3, 129.2, 129, 128.9, 128.7, 128.5, 128.5, 128.1, 128, 127.6, 127.4, 126.8, 126.6, 124.5, 121.2, 121, 104.5, 94.9, 76.5, 56.1, 46.1, 43, 36.4; IR (KBr, cm⁻¹): υ 3745, 3073, 3040, 2997, 2924, 2336, 1699, 1656, 1590, 1468, 1306, 1245, 1174, 1024, 868, 755, 697; HRMS (ESI) *m*/*z* calcd for C₃₂H₂₆BrNO₃S [M+H]⁺ 584.0890 found, 584.0884.

9-(2-Methoxyphenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8g**i): Following the *General Procedure*, to the mixture of

2,2-diphenylpent-4-yn-1-ol (**2g**) (0.1 g, 0.423 mmol) and (*E*)-3-(2-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.126 g, 0.423 mmol) in anhydrous CH_2Cl_2 (2 mL), $Bi(OTf)_3$ (0.027 g, 0.042 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 9-(2-methoxyphenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5] isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8gi**) (0.181 g, 80%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J =7.50 Hz, 1H), 7.71-7.66 (m, 1H), 7.60 (td, J = 7.25, 1.13 Hz, 1H), 7.56- 7.5 (m, 1H), 7.44-7.37 (m, 2H), 7.31-7.27 (m, 5H), 7.23-7.16 (m, 4H), 7.12 (dd, J = 7.63, 1.75 Hz, 1H), 6.88 (td, J = 7.50, 1.13 Hz, 1H), 6.81 (dd, J = 8.25, 0.88 Hz, 1H), 5.80 (dd, J = 2.25, 1.25 Hz, 1H), 4.97 (dd, J = 8.00, 1.25 Hz, 1H), 4.68 (d, J = 9.26 Hz, 1H), 4.43-4.32 (m, 2H), 3.76 (s, 3H), 2.84 (dd, J = 14.13, 1.38 Hz, 1H), 1.86 (qd, J = 12.88, 5.75, 1.38 Hz, 1H), 1.72 (t, J = 11.66Hz, 1H): ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 157.1, 146.3, 133.1, 132.3, 131.9, 131.6, 129.9, 129.6, 128.7, 128.5, 128, 127.9, 127.6, 127.4, 126.8, 126.4, 121.1, 120.9, 120.8, 110.5, 105.7, 95.1, 76.4, 56.1, 55.4, 46.2, 42.6, 30.1; IR (KBr, cm⁻¹): υ 3062, 3008, 2886, 1702, 1665, 1598, 1491, 1443, 1378, 1292, 1221, 1044, 747, 696.

9-(4-Methoxyphenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'H-spiro[benzo[4,5]isothiazolo[2,3a]pyridine-7,2'-furan] 5,5-dioxide (**8gj**): Following the *General Procedure*, to the mixture of

2,2-diphenylpent-4-yn-1-ol (**2g**) (0.1 g, 0.423 mmol) and (*E*)-3-(4-methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5j**) (0.126 g, 0.423mmol) in anhydrous CH_2Cl_2 (2 mL), Bi(OTf)₃ (0.027 g, 0.042 mmol) was added under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography

9-(4-methoxyphenyl)-4',4'-diphenyl-4',5',8,9- $(SiO_2,$ 30% EtOAc/hexanes) afforded tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-*a*]pyridine-7,2'-furan] 5,5-dioxide (**8gj**) (0.189 g, 83%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.83-7.76 (m, 1H), 7.69-7.49 (m, 3H), 7.47-7.38 (m, 2H), 7.34-7.27 (m, 6H), 7.25-7.15 (m, 2H), 7.08-7.01 (m, 2H), 6.85-6.80 (m, 2H), 5.78 (dd, J = 2.38, 1.50 Hz, 1H), 5.01-4.94 (m, 1H), 4.68 (d, J = 9.26 Hz, 1H), 4.42 (d, J = 14.13 Hz, 1H), 3.89 (ddd, J = 12.10, 5.63, 2.38 Hz, 1H), 3.81-3.73 (m, 3H), 2.85 (dd, J = 14.07, 1.3 Hz, 1H), 1.81 (t, J = 12.57 Hz, H), 1.64-1.72 (m, 1H); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 101 MHz): δ 158.6, 146.1, 144.1, 135.5, 133.1, 132.3, 131.5, 130.1, 129.4, 128.7, 128.6, 128.6, 127.5, 127.3, 126.8, 126.7, 121.1, 120.9, 114.3, 105.8, 94.8, 76.3, 56, 55.4, 46.1, 45, 35.8; IR (KBr, cm⁻¹): υ 3064, 3011, 2886, 1745, 1703, 1664, 1604, 1508, 1459, 1305, 1243, 1170, 1028, 831, 746; HRMS (ESI) m/z calcd for C₃₃H₂₉O4NS [M+H]⁺ 536.1890, found 536.1882.

<u>11. Synthetic utility:</u>

8-(3-Hydroxypropyl)-7-methyl-9-phenyl-8,9,10,10a-tetrahydro-7Hbenzo[4,5]isothiazolo[2,3-a]pyridine 5,5-dioxide (**9aa**): To a solution of 12a-methyl-5-

phenyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo [4,5]isothiazolo[2,3*a*]pyrano[3,2-*e*] pyridine 11,11-dioxide (**6aa**) (0.1 g, 0.27 mmol), in anhydrous CH₂Cl₂ (2 mL) was added Et₃SiH (0.062 g, 0.54 mmol) and BF₃.Et₂O (0.042 g, 0.54 mmol) dropwise under argon atmosphere at room temperature (35 °C) and the reaction mixture was stirred for 2 h at rt. Purification of the crude product by

column chromatography (SiO₂, 30% EtOAc/hexanes) afforded 8-(3-hydroxypropyl)-7methyl-9-phenyl-8,9,10,10a-tetrahydro-7*H*-benzo[4,5]isothiazolo[2,3-a]pyridine 5,5-dioxide (**9aa**) (0.088 g, 88%) as an off-white solid. The **9aa** was confirmed by ¹H NMR, ¹³C NMR, DEPT, and 2D NMR analysis;²⁰ TLC: $R_f = 0.80$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.79 (d, J = 7.6 Hz, 1H), 7.58-7.49 (m, 2H), 7.35-7.32 (m, 2H), 7.28 (d, J = 8.2 Hz, 1H), 7.24-7.21 (m, 2H), 4.30 (dd, J = 2.4, 11.9 Hz, 1H), 3.52-3.33 (m, 3H), 2.78 (dt, J = 3.5, 11.8 Hz, 1H), 2.44 (td, J = 3.2, 12.9 Hz, 1H), 1.93-1.86 (m, 1H), 1.80 (d, J = 6.4Hz, 3H), 1.54-1.46 (m, 2H), 1.38-1.32 (m, 1H), 0.90-0.84 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 143.5, 137.4, 136.2, 132.8, 129.3, 129.0, 127.7, 127.2, 122.6, 121.3, 63.0, 60.7, 56.5, 47.0, 46.3, 38.4, 28.2, 24.3, 16.3.

12a-Methyl-5-phenyl-3,4,4a,6,6a,12a-hexahydro-2H,5H-benzo[4,5]isothiazolo[2,3a]pyrano[3,2-e]pyridine 11,11-dioxide (**10aa**): Synthesis of **10**: The 10 mL round bottom

flask charged with 12a-methyl-5-phenyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo [4,5] isothiazolo [2,3-a]pyrano[3,2-e]pyridine 11,11dioxide (**6aa**) (0.1 g, 0.27 mmol), in anhydrous MeOH (2 mL), then 10% Pd/C (5.7 mg, 0.054 mmol) was added under an argon atmosphere. The resulting suspension was hydrogenated for 12 h at

room temperature (35 °C) under the H₂ balloon pressure (1 atm). Then the mixture was filtered through a celite pad, and the filtrate was concentrated to give the crude product, which was purified by silica-gel chromatography (SiO₂, 20% EtOAc/hexanes) to afford 12a-methyl-5-phenyl-3,4,4a,6,6a,12a-hexahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (**10aa**) as a white solid (0.067 g, 67%). TLC: $R_f = 0.40$ (SiO₂, 30% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 7.5 Hz, 1H), 7.64-7.59 (m, 1H),

7.57-7.52 (m, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.38-7.34 (m, 2H), 7.29 (s, 1H), 7.18 (d, J = 7.4 Hz, 2H), 4.63 (dd, J = 2.6, 11.8 Hz, 1H), 4.35-4.24 (m, 1H), 3.91-3.77 (m, 1H), 3.56-3.42 (m, 1H), 2.46-2.34 (m, 1H), 2.24-2.09 (m, 1H), 2.00 (s, 3H), 1.91-1.83 (m, 1H), 1.53 (br. s., 3H), 1.11-1.02 (m, 1H); ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 101 MHz): δ 141.4, 137.2, 136.8, 132.6, 129.4, 128.7, 127.6, 126.9, 122.4, 121.0, 90.8, 63.9, 58.3, 48.1, 42.6, 28.0, 25.3, 23.9, 19.2.

<u>12. Control experiment:</u>

5-(2-Methoxyphenyl)-3,4,4a,12a-tetrahydro-2H,5H-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2e]pyridine 11,11-dioxide (**6Ti**): Following the General Procedure, to the mixture of 3,4-

dihydro-2*H*-pyran (**T**) (0.1 g, 1.18 mmol) and (*E*)-3-(2methoxystyryl)benzo[*d*]isothiazole 1,1-dioxide (**5i**) (0.355 g, 1.18 mmol) in anhydrous CH_2Cl_2 (2 mL) was add $Bi(OTf)_3$ (0.077 g, 0.118 mmol) under argon atmosphere at room temperature (35 °C) and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 30%

EtOAc/hexanes) afforded 5-(2-methoxyphenyl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-*a*]pyrano[3,2-*e*]pyridine 11,11-dioxide (**6Ti**) (0.310 g, 68%) as an off-white solid. TLC: $R_f = 0.60$ (SiO₂, 15% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (d, J = 7.63 Hz, 1H), 7.67-7.60 (m, 2H), 7.58-7.53 (m, 1H), 7.26-7.22 (m, 1H), 7.25-7.21 (m, 1H), 6.96-6.90 (m, 2H), 5.61(d, J = 3.50 Hz, 1H), 5.40 (d, J = 3.00 Hz, 1H), 4.33-4.17 (m, 2H), 3.87 (s, 3H), 3.84-3.76 (m, 1H), 2.16-2.09 (m, 1H), 2.0-1.90 (m, 1H), 1.78-1.68 (m, 2H), 0.93-0.82 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 157.2, 133.1, 132.8, 131.4, 130, 129.6, 129.1, 128.2, 121.4, 121.2, 120.9 110.7, 103.8, 79.3, 55.6, 39.6, 28.8, 25.5; IR (KBr, cm⁻¹): υ 3200, 3144, 3065, 3030, 2929, 2853, 1737, 1661, 1594, 1527, 1457, 1311, 1244, 1166, 1094, 1025, 847, 753, 696; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₁O₄NS [M+H]⁺ 384.1264, found 384.1261.

13. Single crystal X-ray analyses:

SC-XRD: The single crystal X-ray diffraction measurements were performed to determine the crystal structure of compounds 6ab, 6dj, 8gb and 10aa at 100 K using APEX3 (Bruker, 2016; Bruker D8 VENTURE Kappa Duo PHOTON II CPAD) diffractometer having graphite-monochromatized (**6ab**, **6dj** and **8gb** collected with MoK α = 0.71073 Å, while **10aa** using with CuKα source (1.5417 Å)). The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5 θ steps φ/ω . The data were collected with a time frame of 10 sec for both the components by setting the sample to a detector distance fixed at 40 cm. All the data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). The structure was refined by full-matrix least-squares refinement on F^2 with anisotropic displacement parameters for non-H atoms using SHELXL-2013,^{1 2} constrained and fixed isotropic thermal parameters for aliphatic C-H hydrogen atoms following the riding model, localization of N-H hydrogen atoms from the difference Fourier map and free refinement of their positions with fixed isotropic thermal parameters.^{1, 2} The molecular graphics of ORTEP diagrams were performed by Mercury software. The crystal symmetry of the components was cross-checked by running the cif files through PLATON (Spek, 2020) software and notified that no additional symmetry was observed. The Encifer software was used to correct the cif files. The compound **6ab** was crystallized by a slow evaporation method using a solvent system of 30% EtOAc/hexanes. The compound 6dj was crystallized by a slow evaporation method using a solvent system of 30% EtOAc/hexanes. The compound 8gb was crystallized by a slow evaporation method using a solvent system of 40% EtOAc/hexanes. The compound **10aa** was crystallized by a slow evaporation method using a solvent system of 50% EtOAc/hexanes.

Figure 1. ORTEP diagram of compound **6ab**, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 2. ORTEP diagram of compound 6dj, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 3. ORTEP diagram of compound 8gb, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 4. ORTEP diagram of compound 10aa, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Crystal data	6ab	6dj	8gb	10aa	
Chemical formula	$C_{25}H_{23}NO_3S$	$C_{23}H_{25}NO_4S$	$C_{36}H_{29}NO_{3}S$	C ₂₁ H ₂₃ NO ₃ S	
Formula weight (M _r)	417.50	411.50	555.66	369.46	
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	
Temperature T (K)	100	100	100	100	
a (Å)	10.9271 (10)	10.2361 (15)	18.5043 (18)	10.2093 (5)	
b (Å)	16.5749 (17)	18.336 (3)	8.0564 (8)	12.4520 (6)	
c (Å)	10.9904 (10)	10.7234 (18)	18.6190 (19)	14.4031 (6)	
α (°)	90	90	90	90	
β (°)	93.352 (3)	98.878 (7)	103.185 (4)	90	
γ (°)	90	90	90	90	
Ζ	4	4	4	4	
Volume ($Å^3$)	1987.1 (3)	1988.6 (6)	2702.5 (5)	1831.01 (15)	
Source of radiation	ΜοΚα	ΜοΚα	ΜοΚα	CuKa	
D_{calc} (Mg m ⁻³)	1.396	1.375	1.366	1.340	
Crystal size (mm)	0.16×0.12×0.1	0.16×0.09×0.08	0.23×0.12×0.09	0.23×0.12×0.09	
$\mu (mm^{-1})$	0.19	0.19	0.16	1.74	
Data collection					
Diffractometer	Bruker D8	Bruker D8	Bruker D8	Bruker D8	
	VENTURE	VENTURE	VENTURE Kappa	VENTURE	
	Kappa Duo	Kappa Duo	Duo PHOTON II	Kappa Duo	
	PHOTON II	PHOTON II	CPAD	PHOTON II	
	CPAD	CPAD		CPAD	
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan	
correction	(SADABS;	(SADABS;	(SADABS; Bruker,	(SADABS;	
	Bruker, 2016)	Bruker, 2016)	2016)	Bruker, 2016)	
T_{\min}, T_{\max}	0.711, 0.746	0.705, 0.746	0.694, 0.739	0.5105, 0.7543	
No. of measured,	95965, 4321,	107127, 4308,	132550, 5900,	71574, 3884,	
independent and	4113	4173	5062	3878	
observed $[I > 2\sigma(I)]$					
reflections					

Table 1. Crystallographic information details of compounds 6ab, 6dj, 8gb and 10aa.

Theta range (°)	2.46-27.49	2.30-27.49	2.26-28.49	7.11-79.76
R _{int}	0.055	0.043	0.097	0.053
Refinement				
$R[F^{2} > 2\sigma (F^{2})],$	0.046, 0.130	0.034, 0.109	0.043, 0.105	0.034, 0.087
$wR(F^2)$				
GOF on F^2	1.18	1.19	1.06	1.07
No. of independent	4321	4308	5900	3884
reflections				
No. of parameters	273	266	371	237
F_000	880	872	1168	784
No. of restraints	0	0	0	0
H-atom treatment	Constr	Constr	Constr	Constr
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e}{\rm A}^{\circ-3})$	0.63, -0.57	0.51, -0.39	0.49, -0.40	0.47, -0.38
CCDC number	2184885	2184884	2184883	2269306

Table 2. Hydrogen-bond geometry $(A^{\circ}, {}^{\circ})$ of **6ab**, **6dj**, **8gb** and **10aa** components are given below.

Name of the compound	D-H···A	D–H	Н…А	D····A	<i>D</i> –H··· <i>A</i>
6ab	С5-Н5…О3	0.9500	2.5400	3.252(2)	132
	С11-Н11…О1	0.9500	2.4500	3.382(2)	168
	С12-Н12С…О2	0.9800	2.4900	3.061(2)	117
	C15-H15B…O1	0.9900	2.4700	3.202(2)	131
6dj	С10-Н10-О2	1.0000	2.4800	3.3882(17)	151
	С12-Н12А…О2	0.9800	2.4400	3.1143(17)	125
	С12-Н12С…О1	0.9800	2.4900	3.3736(17)	150
	C22-H22…O1	1.0000	2.3800	3.1239(16)	130
	С23-Н23В…О2	0.9800	2.5700	3.4433(18)	149
8gb	С2-Н2…О1	0.9500	2.3500	3.210(2)	150
	С12-Н12В…О2	0.9900	2.5800	3.341(2)	134
	C14–H14A…O1	0.9900	2.4500	3.184(2)	130
10aa	С4-Н4…О2	0.950	2.590	3.2266(2)	124
	С7–Н7…ОЗ	1.000	2.520	2.8634(1)	100
	С9-Н9…О1	1.000	2.530	3.3424(2)	138

C15-H15A…O2	0.980	2.570	3.1892(2)	121
C15-H15B…O1	0.980	2.570	3.0999(2)	114
C18-H18O2	0.950	2.570	3.3661(2)	142
C20-H20····O2	0.950	2.590	3.1930(2)	121

References

1. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. (2015). C71, 3-8.

2. G. M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination, Acta Cryst. (2015). A71, 3–8
14.¹H, ¹³C and 2D NMR Spectra

12a-Methyl-5-phenyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6aa):

12a-Methyl-5-(naphthalen-1-yl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ab):

12a-Methyl-5-(naphthalen-2-yl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ac):

Supporting Information **S40**

5-(Anthracen-9-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ad):

5-([1,1'-Biphenyl]-4-yl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ae):

12a-Methyl-5-(p-tolyl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6af):

5-(2-Bromophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ag):

5-(4-Chloro-2-fluorophenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ah):

5-(2-Methoxyphenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ai):

Supporting Information **S47**

5-(4-Methoxyphenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6aj):

Supporting Information **551**

5-(4-(Benzyloxy)phenyl)-12a-methyl-3,4,4a,12a-tetrahydro-2*H*,5*H*benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6ak):

5-(4-Methoxyphenyl)-12a-methyl-2,3,4a,12a-tetrahydro-5*H*-benzo[4,5]isothiazolo[2,3-a][1,4]dioxino[2,3-e]pyridine 11,11-dioxide (6bj):

3,3,12a-Trimethyl-5-(p-tolyl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6cf):

5-(2-Methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6di):

5-(2-Methoxyphenyl)-2,12a-dimethyl-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6dj):

Supporting Information **S56**

5-(4-Methoxyphenyl)-12a-methyl-1,3a,4,4a,12a,13a-hexahydro-2*H*,5*H*benzo[4,5]isothiazolo[2,3-*a*]furo[2',3':5,6]pyrano[3,2-*e*]pyridin-2-one 11,11-dioxide (6fj):

1a-Methyl-4-phenyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7aa)

4-([1,1'-Biphenyl]-4-yl)-11a-methyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7ae)

4-(2-Methoxyphenyl)-11a-methyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7ai)

NOESY zoomed

Supporting Information **S64**

4-(4-Methoxyphenyl)-2,11a-dimethyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7bj):

Supporting Information **S66**

4-(4-Methoxyphenyl)-2,2,11a-trimethyl-2,3,3a,11a-tetrahydro-4*H*-benzo[4,5]isothiazolo[2,3-a]furo[3,2-e]pyridine 10,10-dioxide (7cf):

9-(Naphthalen-2-yl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclopentane] 5,5-dioxide (8dc)

9-(p-Tolyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclopentane] 5,5-dioxide (8df):

9-(4-Methoxyphenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclopentane] 5,5-dioxide (8dj):

9-(Naphthalen-2-yl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (8ec):

9-(p-Tolyl)-8,9-dihydro-3'H,5'H-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (8ef):

9-(2-Methoxyphenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (8ei):

9-(4-Methoxyphenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (8ej):

9-(4-(Benzyloxy)phenyl)-8,9-dihydro-3'*H*,5'*H*-dispiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan-4',1''-cyclohexane] 5,5-dioxide (8ek):

4',4'-Dimethyl-9-(naphthalen-1-yl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxidedioxide (8fb):

4',4'-Dimethyl-9-(naphthalen-1-yl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxidedioxide (8fb):

4',4'-Dimethyl-9-(p-tolyl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8ff):

9-(2-Bromophenyl)-4',4'-dimethyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8fg):

9-(2-Bromophenyl)-4',4'-dimethyl-4',5',8,9-tetrahydro-3'Hspiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8fg):

Supporting Information **S83**

Me

9-(Naphthalen-1-yl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8gb):

4',4'-Diphenyl-9-(p-tolyl)-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8gf):

9-(2-Bromophenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8gg):

9-(2-Methoxyphenyl)-4',4'-diphenyl-4',5',8,9-tetrahydro-3'*H*-spiro[benzo[4,5]isothiazolo[2,3-a]pyridine-7,2'-furan] 5,5-dioxide (8gi):

8-(3-Hydroxypropyl)-7-methyl-9-phenyl-8,9,10,10a-tetrahydro-7*H*-benzo[4,5]isothiazolo[2,3-a]pyridine 5,5-dioxide (9aa):

8-(3-Hydroxypropyl)-7-methyl-9-phenyl-8,9,10,10a-tetrahydro-7*H*-benzo[4,5]isothiazolo[2,3-a]pyridine 5,5-dioxide (9aa):

NOESY correlation of N-C-H^{*d*}:

"AN-12-174-01 2D AV-400-20220705-123755-11738" 5 1 "V:\Ashwini Nakate"

ŅН

Me

5-(2-Methoxyphenyl)-3,4,4a,12a-tetrahydro-2*H*,5*H*-benzo[4,5]isothiazolo[2,3-a]pyrano[3,2-e]pyridine 11,11-dioxide (6Ti):

THE END