Electronic Supplementary Information (ESI) for

Water-Dispersible Donor-Acceptor-Donor π-Conjugated Bolaamphiphiles Enabling Humidity-Responding Luminescence Color Change

Tomoya Enjou, ${ }^{\text {a }}$ Shimpei Goto, ${ }^{\text {a }}$ Qiming Liu, ${ }^{\mathrm{b}}$ Fumitaka Ishiwari, ${ }^{\text {a,c,de }}$ Akinori Saeki, ${ }^{\text {a,e }}$ Taro Uemtasu, ${ }^{\text {a }}$ Yuka Ikemoto, ${ }^{\mathrm{f}}$ Sora Watanabe, ${ }^{\text {g }}$ Go Matsuba, ${ }^{\mathrm{g}}$ Kouichiro Ishibashi, ${ }^{\text {h }}$ Go Watanabe, ${ }^{\text {h,i,j }}$ Satoshi Minakata, ${ }^{\text {a }}$ Yoshimitsu Sagara ${ }^{\text {b,k }}$ and Youhei Takeda*a

Abstract

${ }^{a}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan; ${ }^{b}$ Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; ${ }^{c}$ Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; ${ }^{d}$ PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; ${ }^{e}$ Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Ymadaoka 1-1, Suita, Osaka 5650871, Japan; ${ }^{f}$ Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Koto, Sayo, Hyogo 679-5198, Japan; ${ }^{g}$ Graduate School of Organic Materials Science, Yamagata University, Yamagata 992-8510, Japan; ${ }^{h}$ Department of Physics, School of Science, Kitasato University, Sagamihara 252-0373, Japan; ${ }^{i}$ Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara 252-0373, Japan; ${ }^{j}$ Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina 243-0435, Japan; ${ }^{k}$ Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.

 e-mail: takeda@chem.eng.osaka-u.ac.jp
Table of Content

General Remarks and Materials S1-S2
Synthetic Procedures and Spectroscopic Data of New Compounds S2-S17
NMR Charts New Compounds S18-S34
Appearance of Aqueous Solutions of 1-4 (Fig. S1) S35
Dynamic Light Scattering (DLS) Experiments (Fig. S2) S35
Electrophoretic Light Scattering (ELS) Experiments (Fig. S3) S35
Transmission Electron Microscopy (TEM) Experiments (Fig. S4) S36
Ultra Small and Small Angle X-ray Scattering (USAXS and SAXS) S37
Measurements (Fig. S5)
Theoretical Calculations (MD Simulations) (Fig. S6) S38
Plausible Explanation for the Formation of Large Hierarchical Assemblies S39
Excitation Spectra of 4 in water (Fg. S7) S39
PL Spectra of $\mathbf{3}$ and 4 in Polar Solvent (Fig. S8) S39
PLQY and Relative PL Intensity of 1@PVA and 2@PVA Against Humidity- S40
Exposure Time (Fig. S9)
Humidity-Variable IR Spectroscopy (Fig. S10) S40-S41
Thermogravimetric Analysis (TGA) (Fig. S11 and S12) S42
References S43

General Remarks. All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. Products were purified by chromatography on silica gel BW-300 or Chromatorex NH (Fuji Silysia Chemical Ltd.). Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Wako silicagel 70 FM TLC plate or Fuji Silysia Chromatorex NH, 0.25 mm thickness). Compounds were visualized with UV lamp. Recycling preparative gel permeation chromatography (GPC) was conducted with a Japan Analytical Industry LaboACE. Lyophilization was performed with a TAITEC Freeze Dryer VD-800R. High performance liquid chromatography (HPLC) analysis was carried out on a system composed of SHIMADZU HPLC system with a GL Sciences Inc. InertSustain AQ-C18 column (ID $=20 \mathrm{~mm}, \mathrm{~L}=250 \mathrm{~mm}$). Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System or Yanaco Micro Melting Point Apparatus. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a JEOL JMTC400/54/SS Spectrometer (${ }^{1} \mathrm{H}$ NMR, 400 MHz ; ${ }^{13} \mathrm{C}$ NMR, 100 MHz) or Bruker AVANCE III 600 Spectrometer (${ }^{13} \mathrm{C}$ NMR, 150 MHz) using tetramethylsilane as an internal standard. Infrared spectra were acquired on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. Mass spectra and High-resolution mass spectra were obtained on a Shimadzu GCMS-QP 5000, JEOL JMS-700, and JEOL JMS-S3000 Mass Spectrometer. The elemental analysis (CHN) was carried out with JM10 (J-SCIENCE LAB CO., Ltd). UV-vis spectra were recorded on a Shimadzu UV-2550 spectrophotometer. Steady-state emission spectra were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere or JASCO Spectrofluorometer FP-8300. Excitation spectra were recorded on JASCO Spectrofluorometer FP-8650. Thermogravimetric analysis (TGA) was performed on a SII Nano Technology Inc. TG/DTA-7200 system. Dynamic Light Scattering (DLS) and Electrophoretic Light Scattering (ELS) experiments were performed with Malvern-Panalytical Zetasizer Lab. TEM image was acquired with HITACHI H-7650. Ultra Small and small angle X-ray scattering (USAXS and SAXS) measurements were carried out using the BL19B2 beamline at Spring-8 at an incident X-ray beam wavelength of $0.068 \mathrm{~nm} .{ }^{\text {S1 }}$ The camera lengths for USAXS and SAXS were set to 40.77 m and 3.04 m , respectively. The 2D SAXS profiles were obtained using a PILATUS-2M two-dimensional detector (Dectris Ltd., Baden, Switzerland). The scattering vector, $q(=4 \pi \sin \theta / \lambda: 2 \theta$ and λ are the scattering angle and wavelength) was recorded between $5 \times 10^{-3} \mathrm{~nm}^{-1}$ and $3.5 \mathrm{~nm}^{-1}$.

Materials. Dehydrated chloroform and DMF for organic synthesis were used as received. Dehydrated 1,4-dioxane, THF, and toluene for organic synthesis were purified by passing through a solvent purification system. Potassium N-Boc-aminomethyltrifuluoroborate (S2) [CAS No. 1314538-55-0] and 3-bromo-10H-phenothiazine (S4) were purchased from chemical company. 3-Bromo-10Hphenoxazine (S1) [CAS No. 832734-15-3], ${ }^{\text {S2 }}$ 3,11-Dibromo-dibenzo $\left[a_{j}\right]$ phenazine (2) [CAS No.

1620543-64-7], ${ }^{\text {S3 }}$ carboxylic acid 7 [CAS No. 1008460-19-2], ${ }^{\text {S4 }}$ and carboxylic acid $\mathbf{8}$ [CAS No. $1577258-66-2]^{\mathrm{S} 5}$ were synthesized according to the reported procedure. ${ }^{\text {S2-S5 }}$ Solvents of fluorescence spectroscopic grade for measurement of UV-vis and emission spectra were purchased from Nacalai Tesque Inc.

Synthetic Procedures and Spectroscopic Data of New Compounds

To install amphiphilic units at the edge of the D-A-D unit, aminomethyl-incorporated compounds 5 and $\mathbf{6}$ were synthesized [Eq. (S1)-(S6)]. Two amphiphilic units having three TEGME tails were readily installed into the D-A-D unit through the condensation of $\mathbf{5}$ and $\mathbf{6}$ with $\mathbf{7}$ to give $\mathbf{1}$ and $\mathbf{2}$ as an orange and reddish brown viscous solid, respectively (Scheme 1). More hydrophilic units were installed into the $\mathrm{D}-\mathrm{A}-\mathrm{D}$ compounds $\mathbf{5}$ and $\mathbf{6}$ through condensation with $\mathbf{8}$ that have dendric polyol silyl ethers to provide 9 and 10, respectively. The silyl groups of 9 and 10 were readily removed by the action of fluoride to give compounds $\mathbf{3}$ and $\mathbf{4}$. Lyophilization of $\mathbf{3}$ and $\mathbf{4}$ gave scarlet and orange fluffy solids, respectively.

Scheme S1 Synthetic route to 1-4.

Preparation of 3-bromo-10H-phenothiazine (S1) [CAS No. 832734-15-3] ${ }^{\text {S2 }}$
The title compound was synthesized according to the procedure in literature, ${ }^{\mathrm{S} 2}$ and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in good agreement with those previously reported. ${ }^{\text {S5 }}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H})$, $6.61-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right) \delta 143.7,142.3,132.0,131.7,126.5,124.4,120.7,117.7,115.2,114.5,113.5,110.2$.

Preparation of tert-butyl((10H-phenoxazin-3-yl)methyl)carbamate (S3)

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, were added $\mathrm{Pd}(\mathrm{Oac})_{2}(16.9 \mathrm{mg}, 0.075 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) and MePhos ($54.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 15 \mathrm{~mol} \%$). The reaction vessel was sealed with a septum and a three-way stopcock, evacuated, and purged with N_{2} gas for 3 times. 1,4-Dioxane was degassed through the freeze-pump-thaw cycling for 3 times, and the degassed solvent $(0.8 \mathrm{~mL})$ was injected to the tube A through the septum. The resulting reaction mixture was stirred at room temperature for 10 min (solution A). To another two-necked reaction tube (10 mL) (tube B) equipped with a stirring bar and a three-way-stopcock, were added 3-bromo-10 H -phenoxazine (S1) ($262.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), potassium N-Boc-aminomethyltrifluoroborate (S2) (497.7 mg, 2.1 mmol , 2.1 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}(829.7 \mathrm{mg}, 6.0 \mathrm{mmol}, 6.0$ equiv), and the reaction vessel was sealed with a septum, evacuated, and purged with N_{2} gas for 3 times. 1,4-Dioxane (2.4 mL) and de-ionized water $(0.8 \mathrm{~mL})$ degassed through the freeze-pump-thaw cycling for 3 times were added to the tube B through the septum. The reaction mixture was stirred at room temperature for 3 min , then solution A was added to the tube B through the septum under the flow of N_{2} gas. The reaction mixture was stirred in a Personal Organic Synthesizer (EYELA, Chemi-Station) equipped with a cooling system under a reflux condition (aluminum block temperature: $100^{\circ} \mathrm{C}$) for 24 h . The reaction mixture was allowed for cooling to room temperature. Saturated $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with water (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product (374.3 mg) as brown solid, which was purified by flash column chromatography on NH silica gel (eluent: n-hexane/ $\mathrm{EtOAc}=9: 1$ to $8: 2$) to give pale yellow solid $(170.4 \mathrm{mg})$ containing $\mathbf{S 3}$. The obtained solid was further purified by reprecipitation from a biphasic solution of n-hexane/EtOAc $(v / v=9: 1)$ to give pure product $\mathbf{S 3}$ as white solid ($145.1 \mathrm{mg}, 0.47 \mathrm{mmol}$, 47%). Mp $158{ }^{\circ} \mathrm{C}$ (dec.); T_{d} ($5 \mathrm{wt} \%$) $215{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $211{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.25$ (n hexane/EtOAc = 1:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-$ $6.68(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 155.7,142.7,142.6,132.52$, 132.46, 131.0, 123.9, 122.4, 120.2, 115.1, 114.1, 113.3, 112.9, 77.7, 42.7, 28.3; IR (ATR): v 3368, 3308, 3065, 3040, 3011, 2984, 2972, 2922, 2868, 2847, 1684, 1605, 1514, 1501, 1456, 1445, 1429,
$1410,1395,1366,1319,1304,1289,1277,1265,1244,1196,1163,1125,1101,1045,1030,968,936$, 926, 916, 885, 870, 853, 847, 816, 789, 768, 748, $718 \mathrm{~cm}^{-1}$; MS ($\mathrm{FAB}^{+}, \mathrm{NBA}$): m / z (relative intensity, \%): 313 ([M+1] $\left.{ }^{+}, 6\right), 312\left([\mathrm{M}]^{+}, 17\right), 256\left(\left[\mathrm{M}-{ }^{t} \mathrm{Bu}+1\right]^{+}, 5\right), 255\left(\left[\mathrm{M}-{ }^{\imath} \mathrm{Bu}\right]^{+}, 4\right), 196([\mathrm{M}-$ NHBoc $]^{+}$, 5); HRMS (FAB^{+}, NBA): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (M) 312.1474, found 312.1472; Elemental analysis (\%) calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 69.21, H 6.45, N 8.97, found: C 69.04, H 6.50, N 8.89 .

Preparation of tert-butyl((10H-phenothiazin-3-yl)methyl)carbamate (S5)

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, were added $\operatorname{Pd}(\mathrm{Oac})_{2}(16.8 \mathrm{mg}, 0.075 \mathrm{mmol}, 7.5 \mathrm{~mol} \%)$ and MePhos ($54.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 15 \mathrm{~mol} \%$). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. 1,4-Dioxane was degassed through the freeze-pump-thaw cycling for 3 times, and the degassed solvent $(0.8 \mathrm{~mL})$ was injected to the tube A through the septum. The resulting reaction mixture was stirred at room temperature for $10 \mathrm{~min}($ solution $A)$. To another two-necked reaction tube $(10 \mathrm{~mL})$ (tube B) equipped with a stirring bar and a three-way-stopcock, were added 3-bromo-10 H phenothiazine ($\mathbf{S 4} 4)(278.2 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), potassium N -Boc-aminomethyltrifluoroborate (S2) (497.8 mg, 2.1 mmol , 2.1 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}(829.2 \mathrm{mg}, 6.0 \mathrm{mmol}, 6.0$ equiv), and the reaction vessel was sealed with a septum and evacuated and purged with N_{2} gas for 3 times. 1,4-Dioxane (2.4 mL) and de-ionized water (0.8 mL) degassed through the freeze-pump-thaw cycling for 3 times were added to the tube B through the septum. The reaction mixture was stirred at room temperature for 3 \min, then solution A was added to the tube B through the septum under the flow of N_{2} gas. The reaction mixture was stirred in a Personal Organic Synthesizer (EYELA, Chemi-Station) equipped with a cooling system under a reflux condition (aluminum block temperature: $100^{\circ} \mathrm{C}$) for 24 h . The reaction mixture was allowed for cooling to room temperature. Saturated $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product as dark green solid, which was purified by flash column chromatography on NH silica gel (eluent: n-hexane/ethyl acetate $=7: 3$) to give white solid $(256.3 \mathrm{mg})$ containing S5. The obtained solid was further purified by reprecipitation from a biphasic solution of n-hexane/EtOAc (v / v
$=9: 1$) to give pure $\mathbf{S 5}$ as white solid ($211.6 \mathrm{mg}, 0.64 \mathrm{mmol}, 64 \%$). $\mathrm{Mp} 163{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ; T_{\mathrm{d}}(5 \mathrm{wt} \%)$ $217{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $217{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.08$ (n-hexane/EtOAc $=8: 2$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=7.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 155.7, 142.1, 140.7, 133.7, 127.6, 126.4, 126.2, 124.96, 124.90, 121.6, 116.1, 114.4, 114.2, 77.7, 42.6, 28.2; IR (ATR): v3387, 3289, 2999, 2978, 1682, 1607, 1580, 1520, 1464, 1429, 1391, 1368, 1300, 1283, 1256, 1236, 1209, 1171, 1128, 1080, 1045, 1031, 972, 933, 879, 856, 841, 810, $748 \mathrm{~cm}^{-1}$; MS $\left(\mathrm{EI}^{+}\right): ~ m / z$ (relative intensity, \%): $330\left([\mathrm{M}+2]^{+}, 6\right), 329\left([\mathrm{M}+1]^{+}, 18\right), 328\left([\mathrm{M}]^{+}, 81\right), 273\left(\left[\mathrm{M}-{ }^{-} \mathrm{Bu}+2\right]^{+}\right.$, 19), $272\left(\left[\mathrm{M}-{ }^{t} \mathrm{Bu}+1\right]^{+}, 100\right), 271\left(\left[\mathrm{M}-{ }^{t} \mathrm{Bu}\right]^{+}, 28\right), 254\left(\left[\mathrm{M}-{ }^{-} \mathrm{BuO}-\mathrm{H}\right]^{+}, 59\right), 228\left([\mathrm{M}-\mathrm{Boc}+1]^{+}, 34\right), 227$ ([M-Boc $\left.]^{+}, 23\right), 212\left([\mathrm{M}-\mathrm{NHBoc}]^{+}, 94\right), 200\left(\left[\mathrm{M}-\mathrm{BocNHCH}_{2}+2\right]^{+}, 6\right), 199\left(\left[\mathrm{M}-\mathrm{BocNHCH}_{2}+1\right]^{+}, 14\right)$, 198 ([M-BocNHCH $\left.{ }_{2}\right]^{+}$, 12); HRMS (FAB ${ }^{+}$, NBA:PFK): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (M) 328.1245, found 328.1247; Elemental analysis (\%) calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C 65.83, H 6.14, N 8.53; found: C 65.74, H 6.08, N 8.43.

Preparation of di-tert-butyl ((dibenzo[a,j]phenazine-3,11-diylbis(10H-phenoxazine-10,2diyl))bis(methylene))dicarbamate (S7)

A two-necked reaction tube (10 mL) equipped with a stirring bar was flame-dried. To the tube, were added dibromodibenzophenazine $\mathbf{S 6}(43.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and phenoxazine S6$ ($68.6 \mathrm{mg}, 0.21 \mathrm{mmol}, 2.1$ equiv). The tube was transferred into a glovebox, where $\operatorname{Pd}\left[\mathrm{P}(t-\mathrm{Bu})_{3}\right]_{2}(2.6$ $\mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{NaOt}-\mathrm{Bu}(23.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.4$ equiv) were added to the vessel. The reaction tube was sealed with two rubber septum and taken from the glovebox. Toluene (2.0 mL) was added to the vessel. The mixture was stirred in a Personal Organic Synthesizer (EYELA, ChemiStation) equipped with a cooling system under a reflux condition (aluminum block temperature: $105{ }^{\circ} \mathrm{C}$) for 24 h . The reaction mixture was allowed to cool down to room temperature. NaHCO_{3} aq. (2 mL) was added to the reaction mixture, and the organic layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3$). The combined organic extracts were washed with water (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated under vacuum to give crude product (105.3 mg) as dark red solid, which was purified by flash column chromatography on NH silica gel (eluent: n-hexane/EtOAc $=8: 2$ to $7: 3$, and to EtOAc only) to give product $\mathbf{S} 7(80.9 \mathrm{mg})$, which were then further purified by reprecipitation
from n-hexane $/ \mathrm{CHCl}_{3}(v / v=9: 1)$ to afford pure $\mathbf{S} 7$ as orange solid ($\left.52.9 \mathrm{mg}, 58.7 \mu \mathrm{~mol}, 59 \%\right) . \mathrm{Mp}$ $157{ }^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}(5 \mathrm{wt} \%) 232{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $231^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.38$ (n-hexane/EtOAc 5:5); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, 2 H), 8.02 ($\mathrm{d}, ~ J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.84(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 4 \mathrm{H})$, 6.63-6.59 (m, 2H), 6.51 (dd, $J=1.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.04 (dd, $J=1.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.98 (d, $J=8.4 \mathrm{~Hz}$, 2 H), 4.76 (br, 2H), 4.13 (d, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,144.1$, $143.9,143.2,140.4,140.1,135.5,134.1,133.4,132.6,132.2,131.0,130.3,130.1,128.6,128.0,123.4$, $122.2,121.8,115.7,114.9,113.38,113.32,79.5,43.9,28.4$; IR (ATR): v 3422, 3345, 3063, 2974, 2930, 1699, 1607, 1597, 1489, 1476, 1460, 1431, 1391, 1356, 1329, 1314, 1275, 1248, 1233, 1206, $1159,1119,1101,1042,1020,997,976,928,885,868,855,799,787,741,727 \mathrm{~cm}^{-1}$; MS (FAB ${ }^{+}$, NBA): m / z (relative intensity, \%): 901 ([M+1] ${ }^{+}, 3$), $900\left(\mathrm{M}^{+}, 4\right)$; HRMS ($\mathrm{FAB}^{+}, \mathrm{NBA}: \mathrm{PFK}$): m / z calcd for $\mathrm{C}_{56} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{6}(\mathrm{M}) 900.3635$, found 900.3637 .

Preparation of di-tert-butyl ((dibenzo[a,j]phenazine-3,11-diylbis(10H-phenothiazine-10,2diyl))bis(methylene))dicarbamate (S8)

A two-necked reaction tube (10 mL) equipped with a stirring bar was flame-dried. To the tube, were added dibromodibenzophenazine $\mathbf{S 6}(87.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and phenothiazine $\mathbf{S 5}\left(155.6 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.2\right.$ equiv). The tube was transferred into a glovebox, where $\operatorname{Pd}\left[\mathrm{P}(t-\mathrm{Bu})_{3}\right]_{2}$ ($5.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{NaOt}-\mathrm{Bu}(48.6 \mathrm{mg}, 0.49 \mathrm{mmol}, 2.4$ equiv) were added to the vessel. The tube was sealed with two rubber septum and taken from the glovebox. Toluene (4.0 mL) was added to the vessel. The mixture was stirred in a Personal Organic Synthesizer (EYELA, ChemiStation) equipped with a cooling system under a reflux condition (aluminum block temperature: $105^{\circ} \mathrm{C}$) for 24 h . Water (8.0 mL) was added to the reaction mixture, and the organic layer was extracted with $\mathrm{CHCl}_{3}(25 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the filtrate was concentrated under vacuum to give crude product (200.6 mg) as dark red solid, which was purified by flash column chromatography on NH silica gel (eluent: n-hexane/EtOAc $=7: 3$) to give orange solid containing product $\mathbf{S 8}(145.5 \mathrm{mg})$. The obtained solid was then further purified by recrystallization from n-hexane $/ \mathrm{CHCl}_{3}(v / v=9: 1)$ to afford pure $\mathbf{S 8}$ as orange solid ($105.3 \mathrm{mg}, 0.11$ mmol, 57%). Mp $161{ }^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}(5 \mathrm{wt} \%) 232{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $232{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.53$ ($n-$ hexane/EtOAc 5 : 5); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$,
8.08 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ (dd, $J=1.6,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (dd, $J=2.2,7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.85(\mathrm{~m}, 6 \mathrm{H}), 6.53(\mathrm{dd}, J=1.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.80(\mathrm{br}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8$, $143.6,142.9,142.8,140.5,135.3,134.2,132.2,129.7,127.9,127.8,127.3,127.1,126.3,126.2,123.4$, 123.3, 122.7, 122.6, 118.3, 118.2, 114.4, 79.6, 43.7, 28.4 (1 C was not detected in the aromatic region, probably due to the overlap of signals); IR (ATR): v3420, 3345, 3057, 2974, 2930, 2868, 1699, 1614, 1599, 1578, 1543, 1495, 1466, 1439, 1410, 1391, 1354, 1321, 1304, 1242, 1163, 1146, 1109, 1076, 1044, 1026, 1020, 997, 972, 932, 855, 814, 797, 783, 745, $720 \mathrm{~cm}^{-1}$; MS ($\mathrm{FAB}^{+}, \mathrm{NBA}$): m / z (relative intensity, \%): $934\left([\mathrm{M}+2]^{+}, 13\right), 933\left([\mathrm{M}+1]^{+}, 23\right), 932\left(\mathrm{M}^{+}, 24\right), 818\left(\left[\mathrm{M}-2^{t} \mathrm{Bu}\right]^{+}, 7\right), 702$ ($[\mathrm{M}-$ 2NHBoc $]^{+}, 8$), 328 (26); HRMS ($\mathrm{FAB}^{+}, \mathrm{TG}+\mathrm{NBA}$): m / z calcd for $\mathrm{C}_{56} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$ (M) 932.3178 , found 932.3187; Elemental analysis (\%) calcd. For $\mathrm{C}_{56} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 72.08, H 5.18, N 9.01, found: C 71.87, H 5.14, N 8.75.

Preparation of di-tert-butyl (dibenzo[a,j]phenazine-3,11-diylbis(10H-phenoxazine-10,2diyl))dimethanamine (5)

To a two-necked flask (100 mL) equipped with a magnetic stir bar, was added $\mathbf{S 7}(26.9 \mathrm{mg}$, $0.030 \mathrm{mmol})$. The flask was sealed with a three-way-stopcock and a septum, evacuated, and refilled with N_{2} gas for three times. $\mathrm{CHCl}_{3}(6 \mathrm{~mL}$, super dehydrated grade) was added to the flask. To the solution, trifluoroacetic acid ($0.60 \mathrm{~mL}, 7.8 \mathrm{mmol}, 260$ equiv) was added dropwise. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ (aluminum block temperature) for 4 h .2 M NaOH aq. (10 mL) was added to the reaction mixture. The organic layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$ and washed with water $(30 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the filtrate was concentrated under vacuum to give crude product (19.9 mg) as red solid. The obtained crude product was purified by reprecipitation from n-hexane $/ \mathrm{CHCl}_{3}(v / v=9: 1)$ to afford pure 5 as orange solid (13.1 $\mathrm{mg}, 0.019 \mathrm{mmol}, 63 \%$). Mp $183{ }^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}(5 \mathrm{wt} \%) 376{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $394{ }^{\circ} \mathrm{C}$ (under air); R_{f} $0.75\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.75(\mathrm{~m}$, $4 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=1.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,143.9,143.2,140.4,140.2$,
$137.3,135.5,134.2,133.0,132.2,131.0,130.3,130.2,128.6,128.0,123.4,121.7,121.6,115.7,114.6$, 113.4, 45.7 (1C was not detected in the aromatic region, probably due to the overlap of signals); IR (ATR): v3374, 3057, 2914, 2851, 1611, 1595, 1545, 1508, 1489, 1476, 1460, 1429, 1383, 1354, 1327, 1312, 1273, 1231, 1204, 1144, 1121, 1101, 1042, 1018, 995, 976, 922, 885, 868, 853, 799, 779, 741, $727 \mathrm{~cm}^{-1}$; MS (FAB^{+}, NBA): m/z (relative intensity, \%): 701 ([M+1] $\left.{ }^{+}, 1\right), 700\left(\mathrm{M}^{+}, 1\right), 685$ ([M$\left.\left.\mathrm{NH}_{2}+1\right]^{+}, 1\right), 684$ ([M-NH2] ${ }^{+}, 1$); HRMS (MALDI): m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2}$ (M) 700.2587, found 700.25813.

Preparation of di-tert-butyl (dibenzo[a,j]phenazine-3,11-diylbis(10H-phenothiazine-10,2diyl))dimethanamine (6)

To a two-necked flask (50 mL) equipped with a magnetic stir bar, was added $\mathbf{S 8}(28.0 \mathrm{mg}, 0.030$ mmol). The flask was sealed with a three-way-stopcock and a septum, evacuated, and refilled with N_{2} gas for three times. $\mathrm{CHCl}_{3}(6.0 \mathrm{~mL}$, super dehydrated grade) was added to the flask. To the solution, trifluoroacetic acid ($0.60 \mathrm{~mL}, 7.8 \mathrm{mmol}, 260$ equiv) was added dropwise, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ (aluminum block temperature) for 4 h .2 M NaOH aq. (10 mL) was added to the reaction mixture, and the organic layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 6)$ and washed with water ($30 \mathrm{~mL} \times 2$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the filtrate was concentrated under vacuum to give crude product (20.7 mg) as dark brown solid, which was purified by recrystallization from n-hexane $/ \mathrm{CHCl}_{3}(v / v=9: 1)$ to afford pure $\mathbf{6}$ as orange solid ($19.9 \mathrm{mg}, 0.027 \mathrm{mmol}, 91 \%$). Mp $177^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}\left(5 \mathrm{wt} \%\right.$) $307{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $323{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.75\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.13 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ (dd, $J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (dd, $J=2.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.58(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7$, 143.3, 142.8, $142.4,140.5,138.8,135.3,132.1,129.5,127.9,127.7,127.4,127.0,126.1,126.0,125.8,123.8$, $123.49,123.46,118.8,118.7,45.6$ (1 C was not detected in the aromatic region, probably due to the overlap of signals); IR (ATR): v3368, 3055, 2916, 2853, 1614, 1595, 1576, 1545, 1489, 1466, 1439, 1410, 1379, 1354, 1304, 1256, 1244, 1146, 1130, 1107, 1076, 1063, 1044, 1018, 997, 972, 932, 885, 855, 814, 797, 745, 720, $704 \mathrm{~cm}^{-1}$; MS (FAB ${ }^{+}$, NBA): m / z (relative intensity, \%): $733\left([\mathrm{M}+1]^{+}, 1\right)$,
$732\left(\mathrm{M}^{+}, 1\right), 716\left(\left[\mathrm{M}_{-} \mathrm{NH}_{2}\right]^{+}, 1\right)$; HRMS (FAB ${ }^{+}$, TG: PEG+NaI): m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{~S}_{2}(\mathrm{M})$ 732.2130, found 732.2143.

Synthesis of N,N’-((dibenzo[a,j]phenazine-3,11-diylbis(10H-phenoxazine-10,2-diyl))bis(methylene))bis(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzamide) (1)

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) ($31.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and carboxylic acid 7 ($122.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv) and CHCl_{3} (2.8 mL , super dehydrated grade) were added, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}($ solution $A)$. To another two-necked reaction tube (3 mL) (tube B) equipped with a stirring bar, was added 1-hydroxybenzotriazole (HOBt) ($27.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}$, super dehydrated grade) was added to the tube. Solution A was added to tube B at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at room temperature for 5 min (solution B). To a two-necked reaction tube (10 mL) (tube C) equipped with a stirring bar, was added compound 5 ($35.0 \mathrm{mg}, 0.050 \mathrm{mmol}$). The reaction vessel was sealed with a septum and a three-waystopcock, evacuated, and purged with N_{2} gas for 3 times. To tube C, CHCl_{3} (3.0 mL , super dehydrated grade) was added to dissolve compound 5. Solution B was injected to tube C through septum, and the resulting solution was stirred at room temperature for 24 h . Water $(4.0 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was washed with 1 M HCl aq. (50 mL), 1 M NaOH aq. (100 mL), brine (100 mL), and water ($100 \mathrm{~mL} \times 2$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product (94.7 mg) as red solid, which was purified by flash column chromatography on NH silica gel (eluent: EtOAc only to $\mathrm{EtOAc} / \mathrm{MeOH}=95: 5$ to $9: 1$) to give red solid $(70.9 \mathrm{mg})$ containing 1 . The obtained solid was further purified with GPC $\left(\mathrm{CHCl}_{3}\right)$ to give product $(43.2 \mathrm{mg})$, which was then further purified by reprecipitation from a biphasic solution of n-hexane/ $\mathrm{CHCl}_{3}(v / v=9: 1)$. Supernatant was removed, and
the residue solid was dried in a vacuum oven at $80^{\circ} \mathrm{C}$ to give product $\mathbf{1}$ as orange solid (39.6 mg , $0.021 \mathrm{mmol}, 42 \%$). Mp $194{ }^{\circ} \mathrm{C}$ (dec.); T_{d} ($5 \mathrm{wt} \%$); $368{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $335{ }^{\circ} \mathrm{C}$ (under air); R_{f} 0.93 (chloroform : $\mathrm{MeOH}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.19 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=1.6,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ ($\mathrm{s}, 4 \mathrm{H}$), 6.78-6.74 (m, 4H), 6.71-6.67 (m, 2H), 6.63-6.58 (m, 4H), 6.03 (dd, $J=1.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.00$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.42 (d, $J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.21-4.18(\mathrm{~m}, 12 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 12 \mathrm{H}), 3.72-3.69(\mathrm{~m}$, 12 H), 3.65-3.61 (m, 24H), 3.53-3.51 (m, 12H), 3.37 ($\mathrm{s}, 6 \mathrm{H}$), 3.34 ($\mathrm{s}, 12 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,152.4,144.1,143.9,143.3,141.6,140.4,140.0,135.5,134.1,133.6,132.2,132.1$, $131.0,130.3,130.1,129.6,128.6,128.0,123.4,122.8,121.8,115.7,115.3,113.4,107.5,72.3,71.9$, $70.67,70.65,70.62,70.5,70.4,69.7,69.1,59.01,59.00,43.4$ (3C of TEG groups in the aliphatic region and 1 C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v $3526,3308,3063,2916,2874,2818,1628,1614,1578,1541,1512,1489,1476,1460,1425,1352$, 1327, 1294, 1277, 1236, 1223, 1120, 1098, 1040, 1018, 997, 976, 885, 855, 818, 804, 785, 745, 729, $712 \mathrm{~cm}^{-1}$; HRMS (MALDI): m / z calcd for $\mathrm{C}_{102} \mathrm{H}_{124} \mathrm{~N}_{6} \mathrm{O}_{28} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 1903.8361, found 1903.83558 ($\mathrm{M}+\mathrm{Na}$).

Synthesis of \quad,N'-((dibenzo[a,j]phenazine-3,11-diylbis(10H-phenoxazine-10,2-diyl))bis(methylene))bis(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzamide) (2)

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) ($32.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and carboxylic acid 7 ($123.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{CHCl}_{3}\left(2.8 \mathrm{~mL}\right.$, super dehydrated grade) were added, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}($ solution $A)$. To another two-necked reaction tube (3 mL) (tube B) equipped with a stirring bar, was added 1-hydroxybenzotriazole (HOBt) ($27.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The
vessel was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}$, super dehydrated grade) was added to the tube. Solution A was added to tube B at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at room temperature for 5 min (solution B). To a two-necked reaction tube (10 mL) (tube C) equipped with a stirring bar, was added compound $\mathbf{6}$ ($36.7 \mathrm{mg}, 0.050 \mathrm{mmol}$). The reaction vessel was sealed with a septum and a three-waystopcock, evacuated, and purged with N_{2} gas for 3 times. To tube C, CHCl_{3} (3.0 mL , super dehydrated grade) was added to dissolve compound 6. Solution B was injected to tube C through septum, and the resulting solution was stirred at room temperature for 24 h . Water $(4.0 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was washed with 1 M HCl aq. (50 mL), 1 M NaOH aq. (100 mL), brine (100 mL), and water ($100 \mathrm{~mL} \times 2$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product (105.9 mg) as reddish brown viscous solid, which was purified by flash column chromatography on NH silica gel (eluent: $\mathrm{EtOAc} / \mathrm{MeOH}=99: 1$ to $9: 1$) to give reddish brown viscous solid (95.4 mg) containing 2. The obtained solid was further purified with GPC $\left(\mathrm{CHCl}_{3}\right)$ to give product $(52.1 \mathrm{mg})$, which was then further purified by reprecipitation from a biphasic solution of n-hexane $/ \mathrm{CHCl}_{3}(v / v=9: 1)$. Supernatant was removed, and the residue solid was dried in a vacuum oven at $80^{\circ} \mathrm{C}$ to give product $\mathbf{2}$ as reddish brown viscous solid ($46.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 49 \%$). Mp $127^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}\left(5 \mathrm{wt} \%\right.$); $380{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $356{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.93$ (chloroform : $\mathrm{MeOH}=9: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=1.2,8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.72(\mathrm{br}, 2 \mathrm{H}), 6.52-6.48(\mathrm{~m}, 4 \mathrm{H}), 4.48$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.20-4.18(\mathrm{~m}, 12 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 12 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 12 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 24 \mathrm{H})$, $3.53-3.50(\mathrm{~m}, 12 \mathrm{H}), 3.36(\mathrm{~s}, 6 \mathrm{H}), 3.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,152.4,143.6$, $143.0,142.89,142.85,141.6,140.5,135.3,133.8,132.1,129.7,129.4,127.9,127.8,127.3,127.1$, $126.78,126.75,126.6,123.5,122.8,118.34,118.28,107.6,72.3,71.92,71.89,70.7,70.6,70.53,70.50$, $70.4,69.7,69.1,59.00,58.95,43.2$ (2 C of TEG groups in the aliphatic region and 2 C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v3340, 3323, 3304, 3057, 2870, 2823, 2631, 2604, 2587, 1653, 1638, 1578, 1541, 1491, 1466, 1439, 1423, 1352, 1329, 1300, 1240, 1200, 1094, 1042, 1026, 997, 974, 932, 851, 818, 799, $748 \mathrm{~cm}^{-1}$; HRMS (MALDI): m/z calcd for $\mathrm{C}_{102} \mathrm{H}_{124} \mathrm{~N}_{6} \mathrm{O}_{26} \mathrm{~S}_{2}$ (M) 1912.8007, found 1912.8001; Elemental analysis (\%) calcd. For $\mathrm{C}_{102} \mathrm{H}_{124} \mathrm{~N}_{6} \mathrm{O}_{26} \mathrm{~S}_{2}$: C 64.00, H 6.53, N 4.31, found: C 63.63, H 6.62, N 4.31 .

Preparation of 9

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) ($31.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and carboxylic acid 8 ($615.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{CHCl}_{3}\left(2.0 \mathrm{~mL}\right.$, super dehydrated grade) were added, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}($ solution $A)$. To another two-necked reaction tube (3 mL) (tube B) equipped with a stirring bar, was added 1-hydroxybenzotriazole (HOBt) ($27.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}$, super dehydrated grade) was added to the tube. Solution A was added to tube B at $0{ }^{\circ} \mathrm{C}$, and the resulting solution was stirred at room temperature for 5 min (solution B). To a two-necked reaction tube $(10 \mathrm{~mL})$ (tube C) equipped with a stirring bar, was added compound 5 ($35.0 \mathrm{mg}, 0.050 \mathrm{mmol}$). The reaction vessel was sealed with a septum and a three-waystopcock, evacuated, and purged with N_{2} gas for 3 times. To tube C, CHCl_{3} (1.8 mL , super dehydrated grade) was added to dissolve compound 5. Solution B was injected to tube C through septum, and the resulting solution was stirred at room temperature for 24 h . Water $(4.0 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was washed with 1 M NaOH aq. (50 mL), brine (50 mL), and water (50 $\mathrm{mL} \times 2$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product $(618.4 \mathrm{mg})$ as reddish brown viscous solid, which
was purified by flash column chromatography on NH silica gel (eluent: n-hexane/EtOAc $=9: 1$ to $8: 2$, and to $7: 3$) to give red viscous solid (304.0 mg) containing 9 . The obtained solid was further purified with GPC $\left(\mathrm{CHCl}_{3}\right)$ to give product $\mathbf{9}$ as orange viscous solid ($202.1 \mathrm{mg}, 0.030 \mathrm{mmol}, 59 \%$). $\mathrm{Mp} 84^{\circ} \mathrm{C}$; $T_{\mathrm{d}}\left(5 \mathrm{wt} \%\right.$); $337{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $328{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.95$ (n-hexane : AcOEt = $5: 5$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.14$ (d, $\left.J=9.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.03$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=1.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.07 (s, 4H), $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 8 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.58(\mathrm{~m}, 4 \mathrm{H}), 6.14$ (t, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.04-6.01(\mathrm{~m}, 4 \mathrm{H}), 5.03-5.02(\mathrm{~m}, 12 \mathrm{H}), 4.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.05(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 8 \mathrm{H}), 4.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 72 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 12 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 6 \mathrm{H}), 1.11-$ 1.01 (m, 504H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,159.2,153.0,144.3,144.3,143.8,143.3,141.5$, $140.4,140.0,135.5,134.0,133.8,132.1,131.8,131.0,130.2,130.0,129.4,129.2,129.0,128.6,128.5$, $128.1,123.4,122.9,121.9,115.8,115.3,114.5,114.1,113.4,113.3,107.4,82.1,82.0,74.5,71.5,69.0$, $66.2,66.1,63.4,43.5,40.87,40.85,18.0,11.9$ (2C in the aliphatic region and 2 C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v3343, 2941, 2889, 2864, 2756, $2725,1651,1613,1586,1549,1514,1493,1462,1431,1383,1366,1360,1329,1292,1277,1246$, 1173, 1098, 1067, 1013, 995, 918, 882, 855, 793, 743, $729 \mathrm{~cm}^{-1}$; HRMS (MALDI): m / z calcd for $\mathrm{C}_{378} \mathrm{H}_{676} \mathrm{~N}_{6} \mathrm{O}_{52} \mathrm{Si}_{24} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 6827.4797$, found $6827.4482(\mathrm{M}+\mathrm{Na})$; Elemental analysis (\%) calcd. For $\mathrm{C}_{378} \mathrm{H}_{676} \mathrm{~N}_{6} \mathrm{O}_{52} \mathrm{Si}_{24}$: C 66.65, H 10.00, N 1.23, found: C 66.34, H 10.20, N 1.32 .

Preparation of 10

To a two-necked reaction tube (tube A) (3 mL) equipped with a stirring bar, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) ($30.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and carboxylic acid $\mathbf{8}(612.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{CHCl}_{3}\left(2.0 \mathrm{~mL}\right.$, super dehydrated grade) were added, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}($ solution $A)$. To another two-necked reaction tube (3 mL) (tube B) equipped with a stirring bar, was added 1-hydroxybenzotriazole (HOBr) ($26.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). The reaction vessel was sealed with a septum and a three-way-stopcock, evacuated, and purged with N_{2} gas for 3 times. The vessel was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}$, super dehydrated grade) was added to the tube. Solution A was added to tube B at $0{ }^{\circ} \mathrm{C}$, and the resulting solution was stirred at room temperature for 5 min (solution B). To a two-necked reaction tube $(10 \mathrm{~mL})$ (tube C) equipped with a stirring bar, was added compound $\mathbf{6}(36.7 \mathrm{mg}, 0.050 \mathrm{mmol})$. The reaction vessel was sealed with a septum and a three-waystopcock, evacuated, and purged with N_{2} gas for 3 times. To tube C, CHCl_{3} (1.8 mL , super dehydrated grade) was added to dissolve compound $\mathbf{6}$. Solution B was injected to tube C through septum, and the resulting solution was stirred at room temperature for 24 h . Water $(4.0 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was washed with 1 M NaOH aq. (30 mL), brine (30 mL), and water (50 $\mathrm{mL} \times 2$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvents were evaporated from the filtrate in vacuo to give the crude product (555.1 mg) as reddish brown viscous solid, which
was purified by flash column chromatography on NH silica gel (eluent: n-hexane/EtOAc $=7: 3$ to EtOAc, and EtOAc : $\mathrm{MeOH}=$ to $99: 1$) to give orange viscous solid (261.1 mg) containing 10. The obtained solid was further purified with GPC $\left(\mathrm{CHCl}_{3}\right)$ to give product 10 as red viscous solid (200.1 $\mathrm{mg}, 0.029 \mathrm{mmol}, 58 \%$). $\mathrm{Mp} 82{ }^{\circ} \mathrm{C}$; $T_{\mathrm{d}}\left(5 \mathrm{wt} \%\right.$); $330{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $328{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.95$ (n-hexane : $\mathrm{AcOEt}=5: 5$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.09$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96$ (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=$ $8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~s}, 4 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 6 \mathrm{H}), 6.88$ (d, J $=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.52-6.49(\mathrm{~m}, 4 \mathrm{H}), 6.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03-5.02(\mathrm{~m}$, $12 \mathrm{H}), 4.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 8 \mathrm{H}), 4.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 48 \mathrm{H})$, $3.71-3.67(\mathrm{~m}, 24 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 12 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 6 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 504 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,159.2,153.0,143.6,143.2,143.0,142.8,141.6,140.5,135.4,133.4,132.1$, $130.0,129.9,129.3,129.2,129.02,128.97,128.5,128.0,127.9,127.3,127.1,126.9,126.8,126.7$, $123.6,123.5,122.6,118.2,114.5,114.1,107.4,82.1,82.0,74.5,71.5,69.0,66.2,66.1,63.39,63.37$, $43.4,40.87,40.85,18.0,11.9$ (1 C in the aliphatic region and 2 C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v 3327, 2941, 2889, 2864, 2764, 2725, $1634,1614,1584,1537,1514,1489,1464,1429,1383,1366,1356,1329,1302,1246,1173,1098$, 1067, 1013, 995, 918, 882, 793, 745, $721 \mathrm{~cm}^{-1}$; HRMS (MALDI): m / z calcd for $\mathrm{C}_{378} \mathrm{H}_{676} \mathrm{~N}_{6} \mathrm{O}_{50} \mathrm{~S}_{2} \mathrm{Si}_{24} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 6859.4340$, found $6859.4023(\mathrm{M}+\mathrm{Na})$; Elemental analysis (\%) calcd. For $\mathrm{C}_{378} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{50} \mathrm{~S}_{2} \mathrm{Si}_{24}$: C 66.34, H 9.96, N 1.23, found: C 66.44, H 10.17, N 1.22.

Synthesis of 3

A 1.0 M solution of tetrabutylammonium fluoride (TBAF) in THF ($1.45 \mathrm{~mL}, 1.45 \mathrm{mmol}, 50$ equiv) was added dropwise to a solution of $9(202.1 \mathrm{mg}, 0.030 \mathrm{mmol})$ in a mixture of THF/DMF (v / v $=4: 1,10 \mathrm{~mL}$) at room temperature. The mixture was stirred for 2 h at room temperature, quenched by a mixture of $\mathrm{H}_{2} \mathrm{O}(27.0 \mathrm{mg}, 1.50 \mathrm{mmol})$ and acetic acid ($45.0 \mathrm{mg}, 0.75 \mathrm{mmol}$), and evaporated. The crude product was purified by GPC (eluent: THF/MeOH $=4: 1 \mathrm{v} / \mathrm{v}$) and by HPLC (eluent: gradient from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=3: 1$ to MeOH only) to afford $\mathbf{3}(52.0 \mathrm{mg}, 0.017 \mathrm{mmol}, 57 \%)$ as a scarlet cottony solid after lyophilization of the aqueous solution. M.p. $125^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}(5 \mathrm{wt} \%) ; 319{ }^{\circ} \mathrm{C}$ (under N_{2}
gas); $311^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.40\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.78$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.85$ (br, 2H), 8.36 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.29$ (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.17$ (d, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.91 (d, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.16$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.91$ (d, $J=$ $8.0 \mathrm{~Hz}, 8 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 8 \mathrm{H}), 6.68-6.59(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.94(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~s}, 8 \mathrm{H}), 4.82(\mathrm{~s}, 4 \mathrm{H})$, $4.47-4.40(\mathrm{~m}, 24 \mathrm{H}), 4.23(\mathrm{br}, 4 \mathrm{H}), 3.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 8 \mathrm{H}), 3.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.56-3.55(\mathrm{~m}$, 24H), 3.38-3.28 (m, 48H), 3.17-3.15 (m, 12H), 2.17-2.12 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) δ $165.4,158.60,158.55,152.0,143.13,143.07,142.9,139.8,139.6,139.5,139.2,135.3,133.7,133.6$, $132.6,132.5,130.4,130.2,130.1,129.9,129.4,129.3,129.2,128.7,128.3,127.6,124.9,123.9,122.7$, $121.8,114.4,114.1,106.5,81.9,81.8,73.6,70.1,67.6,66.13,66.07,60.8,42.0,40.3,40.1$ (2C in the aliphatic region and 2C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v3314, 3078, 2926, 2874, 1632, 1611, 1584, 1543, 1514, 1491, 1476, 1462, 1422, 1356, 1329, 1302, 1277, 1242, 1175, 1101, 1038, 997, 974, 928, 853, 822, 801, 743, $727 \mathrm{~cm}^{-1}$; HRMS (MALDI): m / z calcd for $\mathrm{C}_{162} \mathrm{H}_{196} \mathrm{~N}_{6} \mathrm{O}_{52} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 3080.2775$, found $3080.2769(\mathrm{M}+\mathrm{Na})$.

Synthesis of 4

A 1.0 M solution of tetrabutylammonium fluoride (TBAF) in THF ($1.45 \mathrm{~mL}, 1.45 \mathrm{mmol}, 50$ equiv) was added dropwise to a solution of $\mathbf{1 0}(200 \mathrm{mg}, 0.029 \mathrm{mmol})$ in a mixture of THF/DMF (v / v $=4: 1,15 \mathrm{~mL}$) at room temperature. The mixture was stirred for 2 h at room temperature, quenched by a mixture of $\mathrm{H}_{2} \mathrm{O}(52 \mathrm{mg}, 2.9 \mathrm{mmol})$ and acetic acid ($87 \mathrm{mg}, 1.5 \mathrm{mmol}$), and evaporated. The crude product was purified by GPC (eluent: $\mathrm{THF} / \mathrm{MeOH}=4: 1$) and by HPLC (eluent: gradient from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=3: 1$ to MeOH only) to afford $4(42.0 \mathrm{mg}, 0.014 \mathrm{mmol}, 48 \%)$ as an orange cottony solid after lyophilization of the aqueous solution. Mp $123{ }^{\circ} \mathrm{C}$ (dec.); $T_{\mathrm{d}}(5 \mathrm{wt} \%) ; 307{ }^{\circ} \mathrm{C}$ (under N_{2} gas); $272{ }^{\circ} \mathrm{C}$ (under air); $R_{\mathrm{f}} 0.30\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.72(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.93 (br, 2H), 8.34 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.18-8.15$ (m, 4H), 7.88 (dd, $J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.33(\mathrm{~s}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H})$, 6.83 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 6.60 (dd, $J=3.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 5.04 ($\mathrm{s}, 8 \mathrm{H}$), 4.87 ($\mathrm{s}, 4 \mathrm{H}), 4.48$ (br, 24H), 4.36 (br, 4H), 4.02 (d, $J=5.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 24 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 48 \mathrm{H})$, 3.32-3.20 (m, 12H), 2.24-2.18 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) $\delta 165.4,158.59,158.56$,
$152.1,143.0,142.6,142.5,141.8,139.7,139.5,135.3,135.1,129.9,129.4,129.3,129.2,128.83$, $128.78,128.7,127.6,127.5,127.2,126.8,126.3,126.2,123.7,122.3,122.2,118.5,114.4,114.1,106.5$, $81.9,81.8,73.6,70.1,67.6,66.13,66.07,60.8,41.9,40.3,40.1$ (2C in the aliphatic region and 3C in the aromatic region were not detected, probably due to the overlap of signals); IR (ATR): v3323 (br), 2928, 2874, 1632, 1613, 1582, 1543, 1514, 1489, 1466, 1439, 1420, 1354, 1329, 1302, 1240, 1177, 1101, 1032, 997, 972, 932, 905, 851, 820, 799, 745, $718 \mathrm{~cm}^{-1}$; HRMS (MALDI): m / z calcd for $\mathrm{C}_{162} \mathrm{H}_{196} \mathrm{~N}_{6} \mathrm{O}_{50} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 3112.2318$, found $3112.2312(\mathrm{M}+\mathrm{Na})$.

NMR Charts of New Compounds

 $\begin{array}{llllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0\end{array}$

 $\begin{array}{llllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

 $\begin{array}{lllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right)$

 $\begin{array}{lllllllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{Mhz}, \mathrm{CDCl}_{3}$)

 $\begin{array}{llllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400{ }^{5} \mathrm{Mhz}, \mathrm{CDCl}_{3}\right)$

 $\begin{array}{llllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{Mhz}, \mathrm{CDCl}_{3}$)

 $\begin{array}{llllllllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

200.0	190.0	180.0	170.0	160.0	150.0	140.0	130.0	120.0	110.0	100.0	90.0	80.0	70.0	60.0	50.0	40.0	30.0	20.0	10.0

$V \xrightarrow{L L L L L L L L U N}$

$$
\begin{array}{c|c|c|c|c}
\hline 1 & 1 & 1 & 1 \\
4.1 & 4.0
\end{array}
$$

enlarged part of aromatic region of ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3}$

Appearance of Aqueous Solutions of 1-4

a)

b)

c)

d)

Fig. S1 Appearance of solutions of a) $\mathbf{1}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right), \mathbf{2}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in THF/ $\left.\mathrm{H}_{2} \mathrm{O}=5 / 95\right)$, b) $\mathbf{3}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and c) $\mathbf{4}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ after filtration.

Dynamic Light Scattering (DLS) and Electrophoretic Light Scattering (ELS) Experiments

Compound ($1.04 \mu \mathrm{~mol}$) was dissolved in deaerated THF $(0.05 \mathrm{~mL})$. To this solution, deaerated pure water $(0.95 \mathrm{~mL})$ was added, and the resulting mixture was sonicated over 3 h . This solution was filtered through a membrane filter (pore size: $50 \mu \mathrm{~m}$). The filtrate was injected into a Zetasizer cell, and the Zeta potential was measured with a Zetasizer at $25^{\circ} \mathrm{C}$. DLS experiment was conducted with the same apparatus to acquire diffusion coefficient from the auto correlation function. The particle sizes were calculated from the Stokes-Einstein equation.

Fig. S2 Particle size distribution histograms of dynamic light scattering for a) $\mathbf{1}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right)$, b) $\mathbf{2}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right)$, c) $\mathbf{3}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and d $)$ $4\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$.

Fig. S3 Zeta potential of a) $\mathbf{1}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right)$, b) $\mathbf{2}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right)$, c) $\mathbf{3}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and d) $\mathbf{4}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$.

Transmission Electron Microscopy (TEM) Experiments

Each compound ($1.04 \mu \mathrm{~mol}$) was dissolved in deaerated THF $(0.05 \mathrm{~mL})$. To this solution, deaerated pure water (0.95 mL) was added, and the resulting mixture was sonicated over 3 h . This solution was filtered through a membrane filter (pore size: $50 \mu \mathrm{~m}$). A $5 \mu \mathrm{~L}$ of the solution was dropped onto a carbon film grid (HRC-C10, Okenshoji Co., Ltd.) and left for 5 min . Eexcess solution was removed with a filter paper, and then an aqueous solution containing ammonium molybdate ($0.5 \mathrm{wt} \%, 0.5 \mu \mathrm{~L}$) was dropped for negative staining. The staining solution was left for 1 min before being removed with a filter paper. The grid substrate was observed with a TEM (Hitachi H-7650) operated at 100 kV .

Fig. S4 TEM images of a) 1, b) and c) 2, d) 3, and e) 4 on a carbon film grid. Compounds were negatively stained with ammonium molybdate.

Ultra Small and Small Angle X-ray Scattering (USAXS and SAXS) Measurements

The USAXS and SAXS profiles of $\mathbf{1 , 2 , 3}$, and $\mathbf{4}$ were obtained in a 1.0 -mm-thick sample cell sandwiched between poly(ether-ether-ketone) (0.025 mm -thick) films. We observed $q^{-2.4}$ in all samples in ultra-small angle region below $q=0.1 \mathrm{~nm}^{-1}$. This is typical for mass fractal of highly branched objects with high surface-to-volume ratio of the very large structures above 100 nm with the DLS and TEM measurements. ${ }^{\text {S7 }}$ Furthermore, we focused on the nanometer-scale micelle structures formed by all samples in the region above $q=0.1 \mathrm{~nm}^{-1}$ (Fig. S5b): weak scattering due to weak micelle formation ability for $\mathbf{1}$ and $\mathbf{2}$, but very distinct nanometer-scale structure origin for $\mathbf{3}$ and $\mathbf{4}$. The radii of gyration, $R \mathrm{~g}$, were derived using Guinier's formula: 10 nm for $\mathbf{1}, 3.5 \mathrm{~nm}$ for $\mathbf{2}, 5.0 \mathrm{~nm}$ for $\mathbf{3}$, and 4.8 nm for $\mathbf{4}$.

$$
I(q)=I(0) \exp \left(-\frac{1}{3} R_{g}^{2} q^{2}\right)
$$

We focused on micelles of $\mathbf{3}$ and $\mathbf{4}$, which have strong micelle-forming ability. The micelles were assumed to be rod-shaped and each parameter was derived. In the lower concentration, the scattering from micelles becomes weaker.

Fig. S5 a) Ultra-small and small angle X-ray scattering profiles for $\mathbf{1}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in THF/ $\mathrm{H}_{2} \mathrm{O}=$ $5 / 95), \mathbf{2}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right), \mathbf{3}\left(c=5.0 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and $\mathbf{4}\left(c=5.0 \times 10^{-4} \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}$). b) Small angle X-ray scattering profiles for $\mathbf{1}\left(c=2.6 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=5 / 95\right), \mathbf{2}(c=$ $2.6 \times 10^{-4} \mathrm{M}$ in THF/ $\left.\mathrm{H}_{2} \mathrm{O}=5 / 95\right), \mathbf{3}\left(c=5.0 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and $\mathbf{4}\left(c=5.0 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and each fitting curve from Guinier formula.

Theoretical Calculations (MD simulations)

All-atom MD simulations were performed by using MD program GROMACS 2016.3. In the initial structure, 12 molecules for each of axial-axial and equatorial-equatorial conformers of 2 were randomly placed in the MD cell and the rest of the space was filled with water molecules. The number of water molecules were 14491. The partial atomic charges of $\mathbf{2}$ were calculated using the restrained electrostatic potential (RESP) ${ }^{\text {S8 }}$ methodology based on DFT calculations (B3LYP/6-31G(d,p)) using the GAUSSIAN 16 revision C01 program package. The generalized Amber force field ${ }^{\mathrm{S} 9}$ parameters were basically used for compound $\mathbf{2}$ and TIP4P-EW model was set for water molecules. To realize the axial and equatorial conformers, the force field parameters related to the proper dihedral angle interactions between atoms including the linkage of D and A (Fig. S6) were modified. The proper dihedral angle potential function is expressed as follows:

$$
\begin{gathered}
V_{d}\left(\phi_{i j k l}\right)=k_{\phi}\left(1+\cos \left(n \phi-\phi_{s}\right)\right) \\
(n=2)
\end{gathered}
$$

The values of k_{ϕ} set for the axial and equatorial conformers were 6.16788 and 125.520 , respectively. Also, the values of ϕ_{s} set for the axial and equatorial conformers were 180° and 0°, respectively. Before performing the equilibration run, the pre-equilibration run was carried out for 5 ns after the steepest descent energy minimization. The temperature and pressure were maintained at 300 K and 1 bar using the Berendsen thermostat and barostat ${ }^{510}$ with relaxation times of 0.2 ps and 2.0 ps , respectively. The equilibration run was performed for 200 ns at 300 K and 1 bar using the Nosé-Hoover thermostat ${ }^{\text {S11 }}$ and Parrinello-Rahman barostat ${ }^{\mathrm{S} 12}$ with relaxation times of 1.0 and 5.0 ps , respectively. The time step was set to 2 fs since all bonds connected to hydrogen atoms were constrained with LINCS ${ }^{\text {S13 }}$ algorithm. The long-range Coulomb interactions were calculated with the smooth particle mesh Ewald ${ }^{\text {S14 }}$ method with a grid spacing of 0.30 nm . The real space cut-off for both the Coulomb and van der Waals interactions was 1.2 nm .

Fig. S6 Chemical structure of the core center part of $\mathbf{2}$ and eight combinations of proper dihedral angles consisting of four atoms including the linkage of D and A .

Plausible Explanation for the Formation of Large Hierarchical Assemblies of the Compounds: The molecules were simply designed with the combination of a twisted donor-acceptor-donor hydrophobic π-conjugated core and amphiphilic side chains at both ends, and a specific assembly structure was not intended. Therefore, the molecules did not form micelles and became a subunit consisting with spherical amorphous assembly with no anisotropy. In fact, MD simulations (Figure 3b) of the subunit suggests that the orientation of the molecules is almost random. Furthermore, the hydrophobic domains consisting of π-conjugated cores that happen to locate at the surface of the subunit cause further hydrophobic aggregation with the hydrophobic sites of other subunits, resulting in an assembly with a size of several hundred nm .

Excitation Spectra of 4 in water

Fig. S7 Excitation spectra of 4 monitored at a) 553 nm and b) 647 nm in water $\left(c=10^{-4} \mathrm{M}, \lambda_{\mathrm{ex}}=365\right.$ $\mathrm{nm})$.

PL Spectra of 3 and 4 in Polar Solvent

Fig. S8 PL spectra of a) $\mathbf{3}$ and b) $\mathbf{4}$ in DMF and DMSO $\left(c=10^{-4} \mathrm{M}, \lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$. Under cut-off filter $\left(\lambda_{\mathrm{me}}=500 \mathrm{~nm}\right)$ is applied to exclude the excitation light spectrum.

PLQY and Relative PL Intensity of 1@PVA and 2@PVA Against Humidity-Exposure Time

Fig. S9 Time-course profile of PLQY and PL relative intensity of a) $\mathbf{1} @ P V A$ and b) 2@PVA.

Humidity-Variable IR Spectroscopy.

Transmittance measurements were performed with a synchrotron FTIR at an infrared beamline BL43IR, SPring-8 synchrotron facility (Hyogo, Japan). At the beamline, an FTIR microspectrometer (BRUKER model HYPERION infrared microscope with model VERTEX70 FTIR spectrometer) was used with the infrared synchrotron radiation. The transmittance spectra in the range from 800 to 4000 cm^{-1} were collected at $25^{\circ} \mathrm{C}$ with a resolution of $3 \mathrm{~cm}^{-1}$. A few mg of powder D-A-D compound $\mathbf{2}$ in PVA (saponification degree $78-82 \mathrm{~mol} \%$, average molecular weight $2000,1 \mathrm{wt} \%$) and PVA was put on a BaF_{2} substrate and inserted into the humidity control cell. The cell has a BaF_{2} window to pass infrared light. The atmosphere in the cell was controlled by a mixing device (RIGAKU model HUM1E), which mixes N_{2} gas $(99.99 \%$, generated by a KOFLOC model MNT- 0.8SI nitrogen gas generator) and water vapor at the specified ratio. The water used in the mixing device was purified through a Millipore model Elix advantage-3 water purifier. The humidity in the cell was monitored by the humidity sensor (Sensirion model HYT271) that is put near the sample.

Procedure for preparation of 2@PVA: PVA (99.6 mg) was dissolved in deaerated pure water (1.9 mL), and the solution was further dearerated by passing N_{2} gas through the aqueous solution. To compound $\mathbf{2}(0.998 \mathrm{mg})$, deaerated THF $(0.1 \mathrm{~mL})$ was added, and the compound was dissolved. The THF solution was injected into PVA aqueous solution, and the resulting solution was sonicated over 3 h , which was then filtered through a membrane filter (pore size: $50 \mu \mathrm{~m}$). A quartz substrate ($20 \mathrm{~mm} \times 20 \mathrm{~mm}$) was washed with anhydrous acetone, and cleaned under $\mathrm{UV} / \mathrm{O}_{3}$ over 4 min . The filtered solution was dropped onto the substrate, and the solution was dried under ambient conditions to make film.

Fig. S10 Humidity-variable difference IR spectra of a) $\mathbf{2}$ in PVA ($1 \mathrm{wt} \%$) and b) PVA. The IR spectra were obtained by subtracting the IR spectrum at a $2 \% \mathrm{RH}$ from the IR spectrum at each RH.

Thermogravimetric Analysis (TGA)

The TGA profiles of $\mathbf{1}$ were obtained using a Pt pan under the air or the N_{2} gas flow ($200 \mathrm{~mL} / \mathrm{min}$), starting from $40^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ at the ramp rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S11. TGA profiles of a) S3, b) S5, c) S7, d) S8, e) 5, f) 6, g) 1, h) 2, i) 9, j) 10, k) 3, and 1) 4 under air.

Figure S12. TGA profiles of a) S3, b) S5, c) S7, d) S8, e) 5, f) 6, g) 1, h) 2, i) 9, j) 10, k) 3, and 1) $\mathbf{4}$ under N_{2} flow.

References.

S1) K. Osaka, T. Matsumoto, Y. Taniguchi, D. Inoue, M. Sato, N. Sano, Q. Shen, C. Nelson, AIP Conf. Proc. 2016, 1741, 030003.

S2) M. Jahanfar, K. Suwa, K. Tsuchiya, K. Ogino, Open J. Org. Polym. Mater. 2013, 3, 46.
S3) Y. Takeda, M. Okazaki, S. Minakata, Chem. Commun. 2014, 50, 10291.
S4) R. Barman, P. Rajdev, T. Mondal, P. Dey, S. Ghosh, ACS Appl. Polym. Mater. 2022, 4, 5261.
S5) Y. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato, T. Nagano, J. Am. Chem. Soc. 2014, 136, 4273.

S6) K. Anchan, N. H. Puttappa, B. Poongavanam, S. K. Sarkar, Synth. Commun. 2021, 51, 635.
S7) P.W. Schmidt, J. Appl. Crystallogr. 1991, 24, 414.
S8) C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269.
S9) J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
S10) H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.

S11) S. Nosé, Mol. Phys. 1984, 52, 255.
S12) M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
S13) B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18, 1463.
S14) T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.

