New Antimony Fluorooxoborates with Great Birefringence and Unprecedented Structural Characterisation

Chenhui Hu,^{a,b} Mengfan Wu,^{a,b} Jian Han,^{a,b,*} Zhihua Yang,^{a,b} Shujuan Han^{a,b} and Shilie Pan^{a,b,*}

^a Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,

Beijing 100049, China.

* Corresponding authors: hanjian@ms.xjb.ac.cn and slpan@ms.xjb.ac.cn.

EXPERIMENTAL METHODOLOGY

1. Synthesis.

Crystals of SbB₂O₄F were obtained by a high-temperature solution method in a closed system. The raw materials SbF₃, B₂O₃, and H₃BO₃ at a molar ratio of 3:6:2 were placed in a fused-silica tube (Φ 10 mm × 150 mm) and mixed in sealed quartz tubes under 10⁻³ Pa at a medium temperature of 653 K.

2. Characterizations.

High-quality crystals were picked under an optical microscope (OM) and applied for the measurements of single-crystal X-ray diffraction. The experiments were carried out at room temperature on a Bruker D8 Venture diffractometer with monochromatic Mo K α radiation (λ =0.71073 Å). The diffraction data were integrated using the SAINT program. Meanwhile, multiscan-type absorption corrections were performed using the SADABS program. To determine the space groups, the XPREP program in the SHELXTL package was used.^[1] The crystal structure of SbB₂O₄F was solved by the direct method, and refined using F² full matrix least squares. Then, the structure was checked by the PLATON program.^[2-3] The bond valence sum (BVS) calculations were shown for verifying structural correctness.^[4] Energy Dispersive Xray Spectroscope (EDS) was measured on a SUPRA 55VP field emission scanning electron microscope equipped with a BRUKER X-ray Flash-SDD-5010 energydispersive X-ray spectroscope.

3. Calculations

The theoretical calculations of SbB₂O₄F are performed using the plane wave density functional theory (DFT) package CASTEP.^[5, 6] The exchange-correlation functional was treated by the generalized gradient approximation (GGA) in the formulation of Perdew-Burke-Emzerhoff (PBE) functional, and core-valence interactions were described by norm-conserving pseudopotentials (NCP).^[7, 8] Because GGA usually underestimates the bandgap owing to the discontinuity of exchangecorrelation energy, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional^[9] was chosen to provide more accurate band gap values. Therefore, the bandgap difference between the GGA and experimental value or HSE06 methods was used as the operation of a scissor to calculate optical properties. The cutoff energy of the plane wave was set to 850 eV. Self-consistent field (SCF) calculations were performed with a convergence criterion of 10^{-6} eV/atom on the total energy. The *k*-point separation for each material was set as 0.07 Å⁻¹ in the Brillouin zone, resulting in the corresponding Monkhorst-Pack *k*-point meshes. The linear optical properties were obtained based on the dielectric function: $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$. Where $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ are the real and imaginary parts of the dielectric function respectively. The imaginary part of the dielectric function ε_2 can be calculated based on the electronic structures and the real part is obtained by the Kramers-Kronig transformation, accordingly, the refractive indices and the birefringence (Δn) can be calculated.

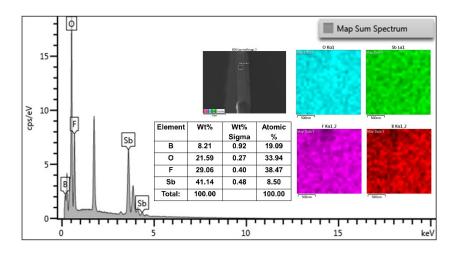


Fig. S1 EDS analysis of SbB₂O₄F.

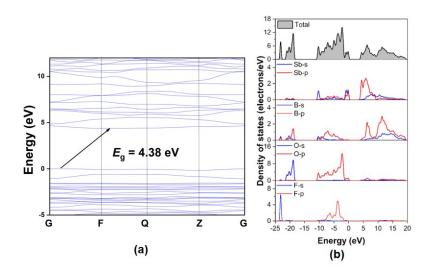


Fig. S2 The band structure(a) and density of states(b) of $SbB_2O_4F.$

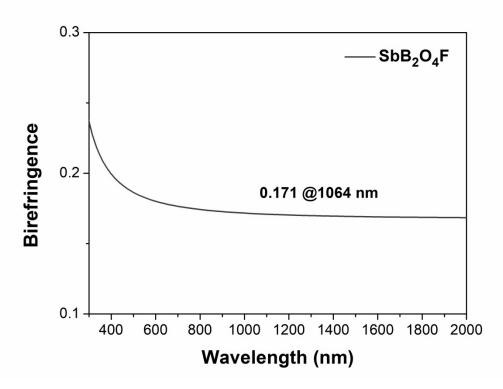


Fig. S3 The calculated birefringence of SbB₂O₄F crystal.

Empirical formula	SbB ₂ O ₄ F
Temperature (K)	300(2)
Wavelength (Å)	0.71073
Crystal system	triclinic
Space group	рĪ
Formula weight	226.37
a (Å)	4.3436(7)
<i>b</i> (Å)	6.3169(10)
c (Å)	7.0009(12)
α (°)	92.888(8)
β (°)	95.126(7)
γ (°)	104.803(7)
Z, Volume (Å ³)	2, 184.44(5)
$ ho_{ m Calcd}$ (g/m ³)	4.076
μ(/mm)	7.390
<i>F</i> (000)	204.0
R(int)	0.0919
Goodness-of-fit on F ²	1.169
Final <i>R</i> indices	$R_1 = 0.0630,$
$[F_0^2 > 2\sigma(F_0^2)]^a$	$wR_2 = 0.1626$
R indices (all data) ^a	$R_1 = 0.0699,$
A muices (an uata)	$wR_2 = 0.1667$
Largest diff. peak and hole (e [.] Å ⁻³)	2.790/-1.827

Table S1. Crystal data and structure refinements for SbB₂O₄F.

^[a] $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum wF_o^4]^{1/2}$ for $F_o^2 > 2\sigma(F_o^2)$.

U(eq) BVS Atom z x у Sb(1) 3818(3) 5996(2) 2930(2) 18(1) 2.99 B(1) 10240(40) -500(30) 2880(30) 10(4)3.03 B(2) 6100(50) 1720(40) 2780(30) 17(4) 3.03 9110(30) O(1) 1300(20) 2930(20) 25(3) 2.00 O(2) 5810(30) 3460(20) 4222(19) 16(3)2.21 9670(20) O(4) 3500(30) 2961(18) 16(3) 2.01 O(3) 8260(30) 7430(20) 2816(19) 23(3) 2.17 F(1) 5370(30) 2490(20) 955(16) 24(3)0.67

Table S2. Fractional atomic Coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for SbB₂O₄F. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Table S3. Bond lengths for SbB_2O_4F .

Atom	Length/Å	
Sb(1)-O(2)	2.204(12)	
Sb(1)-O(2)#1	1.991(13)	
Sb(1)-O(3)	1.920(14)	
Sb(1)-O(4)	2.362(13)	
B(1)-O(1)	1.35(2)	
B(1)-O(4)#2	1.39(2)	
B(1)-O(3)#3	1.37(2)	
B(2)#4-O(4)	1.50(2)	
B(2)-O(1)	1.39(3)	
B(2)-O(2)	1.49(2)	
B(2)-F(1)	1.43(2)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x+1,y-1,z #3 x,y-1,z #4 x,y+1,z #5 x-1,y+1,z

Table S4. Bond angles for SbB₂O₄F.

Atom	Angle/°
O(3)-Sb(1)-O(4)	80.9(5)
O(3)-Sb(1)-O(2)#1	92.7(5)
O(3)-Sb(1)-O(2)	82.6(5)
O(2)#1-Sb(1)-O(4)	83.5(5)
O(2)-Sb(1)-O(4)	149.7(5)
O(2)#1-Sb(1)-O(2)	72.0(5)
O(3)#3-B(1)-O(4)#2	116.9(16)
O(1)-B(1)-O(4)#2	121.1(17)
O(1)-B(1)-O(3)#3	122.0(16)
F(1)-B(2)-O(4)#3	106.4(15)
F(1)-B(2)-O(2)	104.9(16)
O(2)-B(2)-O(4)#3	108.6(14)
O(1)-B(2)-O(4)#3	111.3(17)
O(1)-B(2)-F(1)	111.3(15)
O(1)-B(2)-O(2)	113.8(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x+1,y-1,z #3 x,y-1,z #4 x,y+1,z #5 x-1,y+1,z

Compound	1D Chain Type	Anionic framework	$E_{g}(eV)$	Δn
Li _{0.5} Na _{0.5} AlB ₂ O ₄ F ₂	BO ₃	$[BO_2]_{\infty}$	6.04	≥0.110
Cc-BaBOF ₃	BO_2F_2	$[BOF_2]_{\infty}$	6.42	0.020^{a}
BiB ₂ O ₄ F	BO ₄ +BO ₃ F	$[B_6O_{10}F_2]_\infty$	4.43	0.018 ^a
BaAsBO ₅	BO_4	$[BO_3]_{\infty}$	5.93	0.028
$Li_2B_3O_4F_3$	BO ₃ +BO ₃ F+BO ₂ F ₂	$[B_3O_4F_3]_\infty$	8.43	0.050^{a}
$(Pb_4O)Pb_2B_6O_{14}$	BO_3+BO_4	$[\mathrm{B}_6\mathrm{O}_{14}]_\infty$	2.98	0.054

Table S5. The optical properties of compounds with one-dimensional chains.

^{*a*} The first principles calculation result.

REFERENCES

(1) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112-122.

(2) Haming, L.; Sheldrick, G. M. SADABS: A Program For Exploiting The Redundancy of Area-Detector X-Ray Data. Acta Crystallogr. A **1999**, 55, No. 206.

(3) Spek, A. L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.

(4) Brese, N. E.; O'Keeffe, M. Bond-valence Parameters for Solids. ActaCrystallogr., Sect. B: Struct. Sci. **1991**, 47, 192–197.

(5) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567.

(6) Kohn, W. Nobel Lecture: Electronic Structure of Matterwave Functions and Density Functionals. Rev. Mod. Phys. **1999**, 71, 1253.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. **1996**, 77, 3865.

(8) Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized Pseudopotentials. Phys. Rev. B 1990, 41, 1227.

(9) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem.

Phys. 2003, 118, 8207-8215.