Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Contents

General procedures	
General synthesis procedure of Schiff base ligands	
Salen	
3,5-di-tert-butyl-salen	6
3,5-di-tert-butyl-salophen	
General synthesis procedure of dichloro-complexes	
[Sn(Salen)Cl ₂]	
[Sn(^t Bu ₂ Salen)Cl ₂]	
[Sn(^t Bu ₂ Salophen)Cl ₂]	
[Sn(Salophen)Cl ₂]	
General synthesis procedure of triflate containing complexes	
[Sn(^t Bu ₂ Salen)(OTf) ₂]	
[Sn(^t Bu ₂ Salen)Cl(OTf)]	
Gutmann-Beckett acidity measurements	
Activation of HD gas	
Catalyst screening	
Example of Reproducibility results using [Sn(Salen)Cl ₂]	
Solvent screening	
Reproducibility test of [Sn(Salen)Cl ₂] in toluene	
Temperature screening	
Screening of the catalyst 2-Cl ₂ with /without the added product(N-benzyl-2-methylpropan-2-amine)	
Substrate scope	
N-benzyl-2-methylpropan-2-amine	
2. N-(4-chlorobenzyl)-2-methylpropan-2-amine	
3. 2-methyl-N-(4-(trifluoromethyl)benzyl)propan-2-amine	39
4. 2-methyl-N-(4-nitrobenzyl)propan-2-amine	41
5.N-(3,4-dimethoxybenzyl)-2-methylpropan-2-amine	41
6. 2-methyl-N-(2-methylbenzyl)propan-2-amine	
7. N-benzyl-1-phenylethan-1-amine	
8. N-benzylcyclohexanamine	
9. N-benzylhexan-1-amine	
10.(E)-N-(tert-butyl)-3-phenylprop-2-en-1-amine	

11.2-methyl-N-(pyridin-3-ylmethyl)propan-2-amine	
12. N-benzylpropan-2-amine	54
13 N-benzylaniline	55
14 2 N-benzyl-2,6-diisopropylaniline	59
15 N,2,6-triisopropylaniline	61
Crystal structure of [Sn(Salen)Cl ₂] and [Sn('Bu ₂ Salophen)Cl ₂] complexes	
Computational Details	
References	

General procedures

Solvents and chemicals were purchased from commercial suppliers (Abcr. Merck, TCI, Lach:ner, Acros). Unless otherwise specified, solvents were dried using automatic drying system PureSolv MD5, or by storing upon activated molecular sieves and degassed by freeze-pump-thaw before use. Glassware was dried and stored in an oven heated up to 180 °C overnight. NMR spectra were measured on Bruker AVANCE-III (400 MHz) at 25 °C. Chemical shifts for ¹H are given in δ relative to tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CDCl₃: $\delta = 7.26$ ppm, DMSO-d6: $\delta = 2.50$). Chemical shifts for ¹³C are given in δ relative to TMS and are referenced to the carbon resonances in the solvent (CDCl₃: $\delta = 77.0$ ppm, DMSO-d6: $\delta = 39.5$). Peaks of ¹¹⁹Sn NMR spectra are referenced to the external standard peak of tetramethyl-Sn (0 ppm). Peaks of ¹⁹F NMR spectra are referenced to the external standard peak of trifluoacetic acid (0 ppm). Mass spectrometry measurements were provided by Service centrum of Mass spectrometry at the Department of Chemistry, Charles University. Ionization method used was ESI positive and the spectra were measured in MeOH. Optimization of catalysts was performed at least in duplicate but generally in triplicate and analyzed by NMR with dibromomethane as the internal standard and structures confirmed by ESI-MS. For determination of total carbon, total nitrogen and total hydrogen were samples weighed into tin capsules (Elemental Microanalysis, 8×5 mm) and analysed on elementar analyser with thermal conductivity detector (Flash Smart, Thermo Fisher Scientific, Bremen, Germany).

General synthesis procedure of Schiff base ligands

The general procedure followed synthesis of the ligands according to literature¹. One equivalent (eq) of the relevant diamine and 2 eq of the relevant salicylaldehyde were dissolved in EtOH. The reaction mixture was refluxed and followed by TLC (hexane : ethyl acetate, 7 : 3). After consumption of the starting materials, the reaction was left to cool down and was placed in a fridge. Solid product was filtrated, washed with ice-cold EtOH and dried in air.

Salen

50 mmol (3.34 mL) of ethylenediamine were used together with 100 mmol (10.52 mL) salicylaldehyde and 210 mL of EtOH. The mixture was refluxed for 90 min. The product was obtained in the form of yellow crystals in 95 % (12.78 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 13.20 (s, 2H), 8.36 (s, 2H), 7.29 (ddd, *J* = 8.3, 7.3, 1.7 Hz, 2H), 7.23 (dd, *J* = 7.7, 1.7 Hz, 2H), 6.94 (dd, *J* = 8.4, 1.1 Hz, 2H), 6.86 (td, *J* = 7.5, 1.1 Hz, 2H), 3.95 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 167, 161, 132, 131, 119, 117, 60. ESI + (*m*/*z*) for C₁₆H₁₆N₂O₂⁺ 269.1, calculated 269.3.

Figure 2: ¹³C NMR of salen in CDCl₃

Figure 3: ESI-MS of salen

3,5-di-tert-butyl-salen

25 mmol (1.67 mL) of ethylenediamine was used together with 50 mmol (11.72 g) 3,5-di-tert-butylsalicylaldehyde and 210 mL of EtOH. The mixture was refluxed for 120 min. The product was obtained in the form of yellow powder in 98 % (12.03 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 13.63 (s, 1H), 8.38 (s, 2H), 7.36 (d, J = 2.5 Hz, 2H), 7.06 (d, J = 2.4 Hz, 2H), 3.92 (s, 4H), 1.43 (s, 18H), 1.28 (s, 19H). ¹³C NMR (101 MHz, CDCl₃) δ 168, 158, 140, 137, 127, 126, 118, 60, 35, 34, 32, 30. ESI + (*m/z*) for C₃₂H₄₈N₂O₂⁺ 493.4, calculated 493.8.

Figure 4: ¹H NMR of 3,5-di-tert-butyl-salen in CDCl₃

Figure 6: ESI-MS of ¹H NMR of 3,5-di-tert-butyl-salen

3,5-di-tert-butyl-salophen

12.5 mmol (1.35 g) of phenylenediamine was used together with 25 mmol (5.86 g) 3,5-di-tert-butylsalicylaldehyde and 105 mL of EtOH. The mixture was refluxed overnight. The product was obtained in the form of orange powder in 52 % (3.51 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 13.53 (s, 2H), 8.66 (s, 2H), 7.44 (d, *J* = 2.5 Hz, 2H), 7.31 (dd, *J* = 5.9, 3.4 Hz, 2H), 7.23 (dd, *J* = 5.9, 3.4 Hz, 2H), 7.21 (d, *J* = 2.4 Hz, 2H), 1.43 (s, 18H), 1.32 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 165, 159, 143, 140, 137, 128, 127, 127, 120, 119, 35, 34, 32, 30. ESI + (*m*/*z*) 563.5 for C₃₆H₄₈N₂O₂Na⁺ and 541.5 for C₃₆H₄₉N₂O₂⁺, calculated 563.4 for C₃₆H₄₈N₂O₂Na⁺ and 541.4 for C₃₆H₄₉N₂O₂⁺.

Figure 9: ESI-MS of 3,5-di-tert-butyl-salophen

General synthesis procedure of dichloro-complexes

Complexes $[Sn(Salen)Cl_2]$ and $[Sn(Bu_2Salen)Cl_2]$ were prepared according to procedures reported in the literature².Complexes $[Sn(Bu_2Salophen)Cl_2]$ and $[Sn(Salophen)Cl_2]$ were prepared according to a modified protocol reported for $[Sn(Salen)Cl_2]$.

Reactions were performed in an inert atmosphere of N_2 using Schlenk line apparatus and techniques. Solvents and glassware were dried according to the general procedures. One eq of initial ligand was dissolved in DCM. One eq of SnCl₄ was added to the stirring mixture followed by 2 eq of triethylamine. Reactions were followed by NMR and the reaction mixture was left to react at RT until full conversion of the starting materials occured. Reaction work-up was performed in air and is described separately for each complex.

 $[Sn(Salen)Cl_2]$

6 mmol, (1.61 g) of salen ligand was used together with 6 mmol (0.70 mL) of SnCl₄, 12 mmol (1.67 mL) of Et₃N and 50 mL of DCM. The reaction was stirring for 1h. Product precipitated out of the reaction mixture and was filtrated of. The solid was washed with cold DCM and dried in vacuo. The filtrate was placed in the freezer to crash out the Et3N salt, which was filtered off. The filtrate was overlaid with pentane. Crystallised solid was washed with H₂O, DCM and dried in vacuo. The solid fractions were combined to provide product as a pale-yellow powder in 54 % (1.48 g) yield. (1.12 g) yield. ¹H NMR (400 MHz, DMSO-d6) δ 8.79 (s, 2H, *J*(H-Sn) = 88.9), 7.53 (dd, *J* = 8.5, 6.5 Hz, 4H), 7.01 – 6.88 (m, 4H), 4.19 (s, 4H, *J*(H-Sn) = 35.9). ¹³C NMR (101 MHz, DMSO-d6) δ 172, 165, 137, 136, 122, 119, 118, 51. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ –603. ESI + (*m*/*z*) for C₁₆H₁₄ClN₂O₂Sn⁺ 421.0, calculated 420.9 for C₁₆H₁₄ClN₂O₂Sn⁺. IR 1625 cm⁻¹ v(C=N), 1598, 1544, 1436 cm⁻¹ v(C=C)_{arom}, 1270 cm⁻¹ v(C-O), 670 cm⁻¹ v(Sn-O), 447 cm⁻¹ v(Sn-N). Elemental. analysis: measured C 41.98%, N 6.16%, H 3.19%; calculated C 42.15%, N 6.14%, H 3.10%

Figure 11: ¹³C NMR of [Sn(Salen)Cl₂]

Figure 12: ¹¹⁹Sn NMR of [Sn(Salen)Cl₂]

Figure 13: ESI-MS of [Sn(Salen)Cl₂] after loss of chloride during ionization

7 mmol (3.45 g) of 3,5-di-tert-butyl-salen was used together with 7 mmol (0.78 mL) of SnCl₄, 14 mmol (1.95 mL) of Et₃N and 40 mL of DCM. The reaction was stirring for 3 hours. The reaction mixture was washed three times with 50 mL of water. The aqueous phase was further washed three times extracted with 15 mL of DCM. Organic phases were combined, dried over MgSO₄, filtrated and evaporated. Obtained solid was

washed with cold heptane, redissolved in CDCl₃ and dried in vacuo. The product was obtained in the form of yellow powder in 90 % (4.27 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 2H, *J*(H-Sn) = 90.0), 7.61 (d, *J* = 2.6 Hz, 2H), 7.03 (d, *J* = 2.5 Hz, 2H), 4.19 (s, 4H, *J*(H-Sn) = 35.6), 1.51 (s, 17H), 1.30 (s, 18H). ¹³C NMR (101 MHz, DMSO-d6) δ 172, 162, 141, 140, 131, 118, 51, 35, 34, 31, 29. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ -594. ESI + (*m*/*z*) for C₃₃H₄₉N₂O₃Sn⁺ 641.2 and for C₃₂H₄₇N₂O₃Sn⁺ 627.4, calculated 641.3 for C₃₃H₄₉N₂O₃Sn⁺ after loss of chlorides and attachment of methoxide from MeOH in the measurement and 627.3 for C₃₂H₄₇N₂O₃Sn⁺ after loss of chlorides and attachment of hydroxide from water in the measurement. IR 1625 cm⁻¹ v(C=N), 1556, 1540, 1436 cm⁻¹ v(C=C)_{arom}, 1247 cm⁻¹ v(C-O), 545 cm⁻¹ v(Sn-O), 468 cm⁻¹ v(Sn-N).

1 mmol (0.54 g) of 3,5-di-tert-butyl-salophen ligand was used together with 1 mmol of SnCl₄ (0.11 mL), 2 mmol (0.28 mL) of Et₃N and 10 mL of DCM. The reaction was stirring for 90 min. The reaction mixture was washed three times with 15 mL of water. The aqueous phase was further washed three times extracted with 30 mL of DCM. Organic phase was dried over MgSO₄, filtrated and evaporated. Obtained solid was washed with cold heptane, redissolved in CDCl₃ and dried in vacuo. The product was obtained in the form of orange powder in 78 % (0.56 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 2H, *J*(H-Sn) = 80.0), 7.78 (dd, *J* = 6.2, 3.4 Hz, 2H), 7.74 – 7.68 (m, 2H), 7.52 (dd, *J* = 6.2, 3.4 Hz, 2H), 7.19 (d, *J* = 2.5 Hz, 2H), 1.55 (s, 18H), 1.33 (s, 19H). ¹³C NMR (101 MHz, DMSO-d6) δ 166, 164, 142, 141, 134, 133, 133, 130, 118, 118, 36, 34, 31, 30. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ –589. ESI + (*m*/*z*) for C₃₇H₄₉N₂O₃Sn⁺ 689.3, calculated 689.3 for C₃₇H₄₉N₂O₃Sn⁺ after loss of chlorides and attachment of methoxide from methanol in the measurement. IR 1602 cm⁻¹ v(C=N), 1581, 1538, 1461 cm⁻¹ v(C=C)_{arom}, 1180 cm⁻¹ v(C-O), 543 cm⁻¹ v(Sn-O), 493 cm⁻¹ v(Sn-N).

Figure 18: ¹H NMR of [Sn(^tBu₂Salophen)Cl₂] in CDCl₃

Figure 20: ¹¹⁹Sn NMR of NMR of [Sn(^tBu₂Salophen)Cl₂] in CDCl₃

Figure 21: ESI-MS of [Sn(^tBu₂Salophen)Cl₂]

1 mmol (0.32 g) of salophen ligand was used together with 1 mmol of SnCl₄ (0.11 mL), 2 mmol (0.28 mL) of Et₃N and 10 mL of DCM. The reaction was stirring for 2 hours. Product precipitated out of the reaction mixture and was filtrated off. The filtrate was washed with DCM and dried in vacuo. The product was obtained in the form of orange powder in 93 % (0.47 g) yield. ¹H NMR (400 MHz, DMSO-d6) δ 9.50 (s, 2H, *J*(H-Sn) = 85.5), 8.31 – 8.23 (m, 2H), 7.80 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.73 – 7.62 (m, 4H), 7.12 – 7.00 (m, 4H). ¹³C NMR (101 MHz, DMSO-d6) δ 166, 166, 139, 139, 133, 131, 123, 120, 119, 118. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ –592. ESI + (*m*/*z*) for C₂₁H₁₇N₂O₃Sn⁺ 465.0, calculated 465.0 for C₂₁H₁₇N₂O₃Sn⁺ after loss of chlorides and attachment of methoxide from methanol in the measurement. IR 1598 cm⁻¹ v(C=N), 1573. 1535, 1461, v(C=C)_{arom}, 1186 cm⁻¹ v(C-O), 538 cm⁻¹ v(Sn-O), 485 cm⁻¹ v(Sn-N).

Figure 23: ¹³C NMR of [Sn(Salophen)Cl₂] in DMSO-d6

Figure 25: ESI-MS of [Sn(Salophen)Cl₂], additional peak at 519.0 represents loss of both chlorides, attachment of two methoxides and ionization via additional sodium ion.

General synthesis procedure of triflate containing complexes

 $[Sn(^tBu_2Salen)(OTf)_2]$ was prepared according to procedures reported in the literature³. $[Sn(^tBu_2Salen)Cl(OTf)]$ complex was prepared by adjustment of the stoichiometry in the preparative procedure of $[Sn(^tBu_2Salen)(OTf)_2]$ complex .

Reactions were performed in an inert atmosphere of N_2 using Schlenk line apparatus and techniques. Solvents and glassware were dried according to the general procedure mentioned above. The starting complex was dried in vacuo before use, AgOTf was heated up by heat gun under vacuum for 5 min before use. 1 eq of [Sn(^tBu₂Salen)Cl₂] was dissolved in DCM. For the synthesis if [Sn(^tBu₂Salen)Cl(OTf)] and [Sn(^tBu₂Salen)(OTf)₂] 1 eq and 2 eq of AgOTf were added respectively against flow of nitrogen gas to the stirring solution. Reaction flasks were wrapped in aluminum foil. Reactions were followed by NMR and the reaction mixture was left to react at RT until full conversion of starting material. Reaction mixtures were separated from formatted solid waste by filtration via canula. The solid fractions were washed with DCM. The solvent was evaporated, and the solid products were dried in vacuo. Products were stored and manipulated under an inert atmosphere.

1 mmol (0.68 g) of [Sn(¹Bu₂Salen)Cl₂] was used together with 2 mmol (0.51 g) AgOTf and 125 mL of DCM. The reaction was stirred overnight. The reaction mixture was filtered via cannula and the precipitated waste was washed two times with 8 mL of DCM. After evaporation of the solvent the product was obtained in the form of yellow powder in 76 % (0.69 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 2H, *J*(H-Sn) = 110.5), 7.73 (d, *J* = 2.6 Hz, 2H), 7.13 (d, *J* = 2.6 Hz, 2H), 4.35 (s, 4H, *J*(H-Sn) = 40.4), 1.48 (s, 18H), 1.33 (s, 18H). ¹³C NMR (101 MHz, DMSO-d6) δ 177, 162, 142, 141, 132, 132, 117, 51, 35, 34, 31, 30. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ –622. ¹⁹F NMR (376 MHz, DMSO-d6) δ –77.75. ESI + (*m*/*z*) for C₃₃H₄₉N₂O₃Sn⁺ 641.3, calculated 641.3 for C₃₃H₄₉N₂O₃Sn⁺ after loss of triflate ligands and attachment of methoxide from the measurement. IR 1608 cm⁻¹ v(C=N), 1542. 1438, 1346, v(C=C)_{arom}, 1176 cm⁻¹ v(C-O), 630 cm⁻¹ v(Sn-O), 512 cm⁻¹ v(Sn-N).

Figure 26: ¹H NMR of [Sn(^tBu₂Salen)(OTf)₂] in CDCl₃.

Figure 28: ¹¹⁹Sn NMR of [Sn('Bu₂Salen)(OTf)₂] in CDCl₃.

0.5 mmol (0.34 g) of $[Sn(^{t}Bu_{2}Salen)Cl_{2}]$ was used together with 0.5 mmol (0.13 g) AgOTf and 40 mL of DCM. The reaction was stirred for 5 days. The reaction mixture was filtered via cannula and the precipitated waste was washed three times with 2 mL of DCM. After evaporation of the solvent, the product was obtained

in the form of yellow powder in 99 % (0.39 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 2H, J(H-Sn) = 95.4), 7.71 – 7.61 (m, 2H), 7.10 (d, J = 2.5 Hz, 2H), 4.47 – 4.25 (m, 2H), 4.24 – 4.00 (m, 2H), 1.48 (s, 18H), 1.31 (s, 20H). ¹³C NMR (101 MHz, DMSO-d6) δ 175, 162, 141, 141, 132, 131, 118, 51, 35, 34, 31, 30. ¹¹⁹Sn NMR (149 MHz, DMSO-d6) δ –595. ¹⁹F NMR (376 MHz, DMSO-d6) δ –77.76. ESI + (m/z) for C₃₂H₄₆ClN₂O₂Sn⁺ and C₃₃H₄₉N₂O₃Sn⁺ 641.3, calculated 641.3 for C₃₃H₄₉N₂O₃Sn⁺ after loss of the triflate and chloride ligands and attachment of methoxide from the measurement. IR 1610 cm⁻¹ v(C=N), 1540. 1461, 1440, v(C=C)_{arom}, 1240 cm⁻¹ v(C-O), 626 cm⁻¹ v(Sn-O), 547 cm⁻¹ v(Sn-N).

Figure 31: ¹H NMR of [Sn(^tBu₂Salen)Cl(OTf)] in CDCl₃

Figure 33: 119Sn NMR of [Sn('Bu₂Salen)Cl(OTf)] in CDCl₃

Figure 34: ¹⁹F NMR of [Sn(^tBu₂Salen)Cl(OTf)] in CDCl₃

Figure 35: ESI-MS of [Sn(^tBu₂Salen)Cl(OTf)]

Gutmann-Beckett acidity measurements

The ³¹P NMR experiments were performed under inert atmosphere in dry CDCl₃. A stock solution of Et₃PO (c = 0.13 M, 0.1 mL) was added to a solution of complex with each measurement. The measurements were repeated with increasing quantity of the measured complex until the ppm of ³¹P signal of Et₃PO stopped shifting. The acceptance numbers (ANs) were calculated according to Equation 1. Experimental data and calculated values are displayed in **Error! Reference source not found.**

$$AN = 2.21 \cdot (\delta_{\text{sample}} - 41) \tag{1}$$

Table 1:NMR shifts and calculated values for Gutmann-Beckett acidity measurements.

Complex	δ [ppm]	AN
[Sn(^t Bu ₂ Salen)(OTf) ₂]	78.8	83.6
[Sn(^t Bu ₂ Salen)Cl(OTf)]	73.5	71.8

Activation of HD gas

Activation of HD gas was performed in high pressure sapphire NMR tubes. The desired complex [Sn(¹Bu₂Salen)(OTf)₂], [Sn(¹Bu₂Salen)Cl(OTf)] or [Sn(¹Bu₂Salen)Cl₂] (0.01mmol) was dissolved in THF-d8 or CDCl3 (0.4 mL) and the NMR tube was pressurized with HD gas (10 bar). ¹H NMR and ²D NMR were measured immediately then again after 4 hours and 17 hours. Activation of HD was observed with [Sn(¹Bu₂Salen)(OTf)₂] and [Sn(¹Bu₂Salen)Cl(OTf)] in THF-d₈ but not in CDCl₃ confirming the necessity of the basic solvent, which acts as the FLP partner of the complex.

Figure 36: ¹H NMR of [Sn(^tBu₂Salen)(OTf)₂] in THF-d8 with HD gas at time 0 hrs

Figure 37: ¹H NMR of [Sn('Bu₂Salen)(OTf)₂] in THF-d₈ with HD gas after 17 hrs at 25°C

Figure 38: ¹H NMR of [Sn(^tBu₂Salen)(OTf)₂] in CDCl₃ with HD gas at time 0 hrs

Figure 39: ¹H NMR of [Sn(¹Bu₂Salen)(OTf)₂] in CDCl₃ with HD gas after 17 hrs at 25°C

Catalyst screening

In glove box, Salen-Sn compounds (0.5 mmol) and imine (1 mmol) were dissolved in sulfolane (4 mL) in a steel autoclave. The autoclave was then sealed and purged 3 times with the 50 bar H₂. The temperature and stirring rate were set using the Spec view program on Parr 5000 series multi reactor system. T = 0 was defined as the time the heating starts. The heating was turned off 2 hours before the end of the stated reaction time and allowed to cool down under pressure over the course of the remaining 2 hours of the test i.e., for a reaction time of 17 hours the heating was turned off after 16 hours and the reaction was depressurized after the 17-hour mark. Dibromomethane (1 mmol) or in earlier tests dichloromethane was added to the reactor, stirred and an aliquot was taken for ¹H NMR analysis in CDCl₃. The conversion of imine and the yield of product were quantified by ¹H NMR analysis with the added Dibromo methane as the internal standard. Other reaction products were quantified by their respective CH₂ signal in ¹H NMR and structures confirmed by ESI spectra.

ENTRY	CATALYST	SOLVENT	TEMPERATURE	YIELD
				(cycle 1, 2, 3)
1	[Sn(Salen)Cl ₂]	sulfolane	180	50, 54, 56
	(2-Cl2)			
2	[Sn(^t Bu ₂ Salen) Cl ₂]	sulfolane	180	25, 30, 31
	(1-Cl2)			
3	[Sn(^t Bu ₂ Salen)Cl(OTf)]	sulfolane	180	47, 50, 50
	(1-Cl(OTf)			
4	[Sn(^t Bu ₂ Salen)(OTf) ₂] ([1-(OTf)2)	sulfolane	180	9, 10, 11
5	[Sn(^t Bu ₂ Salophen)Cl ₂]	sulfolane	180	30, 24, 31
	(4-Cl2)			
6	[Sn(Salophen)Cl ₂]	sulfolane	180	41, 45, 41
	(3-Cl2)			

Example of Reproducibility results using [Sn(Salen)Cl₂]

Figure 40: ¹H NMR of catalytic test 1 with [Sn(Salen)Cl₂] with CH₂Br₂ as internal standard

Figure 42: ¹H NMR of catalytic test 3 with [Sn(Salen)Cl₂] with DCM as internal standard

Solvent screening

To determine the effect of different solvents, catalytic reduction of imine was carried out at 50 bar H_2 with toluene and 2,4,6-trimethylpyridine and the corresponding reproducible values are reported here.

Table 3: Solvent screening

CATALYST	SOLVENT	TEMPERATURE	YIELD
[Sn(Salen)Cl ₂]	sulfolane	180	50,54,56
(2-C12)			
[Sn(Salen)Cl ₂]	toluene	180	98,98,99
(2-Cl2)			
[Sn(Salen)Cl ₂] (2-Cl2)	2,4,6-trimethylpyridine	180	83,85,87
[Sn(^t Bu ₂ Salen)Cl ₂] (1-Cl2)	toluene	180	80,85,86
[Sn(^t Bu ₂ Salen)Cl(OTf)] (1-Cl(OTf)	toluene	180	85,86,87
[Sn(^t Bu ₂ Salen)(OTf) ₂] ([1-(OTf)2)	toluene	180	27,30,32

Reproducibility test of [Sn(Salen)Cl₂] in toluene

Figure 43: ¹H NMR of catalytic test-1 of [Sn(Salen)Cl₂] in toluene, measured in CDCl₃

Figure 44: ¹H NMR of catalytic test-2 of [Sn(Salen)Cl₂] in toluene, measured in CDCl₃

Figure 45: ¹H NMR of catalytic test-3 of [Sn(Salen)Cl₂] in toluene, measured in CDCl₃

Temperature screening

Table 4: Temperature screening

CATALYST	SOLVENT	TEMPERATURE	YIELD
[Sn(Salen)Cl ₂]	Toluene	180	98,98,99
(2-Cl2)			
[Sn(Salen)Cl ₂]	Toluene	150	25,26,30
(2-Cl2)			
[Sn(Salen)Cl ₂]	2,4,6-trimethylpyridine	180	83,85,87
(2-Cl2)			
[Sn(Salen)Cl ₂]	2,4,6-trimethylpyridine	150	25,25,28
(2-Cl2)			
[Sn(^t Bu ₂ Salen)Cl ₂]	toluene	180	80,85,86
(1-Cl2)			
[Sn(^t Bu ₂ Salen)Cl ₂]	toluene	150	NR
(1-Cl2)			
[Sn(^t Bu ₂ Salen)Cl(OTf)]	toluene	150	NR
(1-Cl(OTf)			

Figure 46: Test with 1mmole of added product using dibromo methane as internal standard

Figure 47: Test without the added product using dibromo methane as internal standard
Substrate scope

General procedure for imine synthesis^{4–8}

Different substituted Benzaldehydes were added to a Schlenk flask. 2eq of the respective amine was added dropwise under N_2 atmosphere in the presence of molecular sieves. the reaction was kept stirring overnight at room temperature. Next day the excess amine was evaporated under reduced pressure. It was then kept under vacuum overnight to obtain analytically pure imine.

N-benzyl-2-methylpropan-2-amine

The corresponding imine was synthesized according to the reported procedures from literature.⁴ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (s, 1H), 7.91 – 7.77 (m, 2H), 7.57 – 7.40 (m, 3H), 1.37 (S,9H).

¹H NMR (400MHz, CDCl₃): Product peak at 3.78 ppm All other product peaks were obscured by reaction solvent. ESI(+H): expected 163.3 (M+H), found 162.0

Figure 48:ESI-MS of N-benzyl-2-methylpropan-2-amine

Figure 49:1H NMR IN CDCl3 FOR N-benzyl-2-methylpropan-2-amine using CH2Br2 as internal standard

2. N-(4-chlorobenzyl)-2-methylpropan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁴ Imine characterization: ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (s, 1H), 7.73 – 7.67 (m, 2H), 7.41 – 7.36 (m, 2H), 1.31(s,9H)

¹H NMR (400MHz, CDCl₃): product peak 3.75ppm (-CH2 peak). All other product peaks were obscured by reaction solvent. ESI(+H): expected 198.09, found 198.1(M+H)

Figure 50: ESI-MS of N-(4-chlorobenzyl)-2-methylpropan-2-amine

Figure 51:NMR of N-(4-chlorobenzyl)-2-methylpropan-2-amine with CH2Br2 as internal standard

3. 2-methyl-N-(4-(trifluoromethyl)benzyl)propan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁴ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (s, 1H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 2H), 1.32 (s, 9H).

¹H NMR (400MHz,CDCl₃) Product peak at 3.83 ppm. All other product peaks were obscured by reaction solvent. ESI(+H): Expected 232.12, found 232.1(M+H)

Figure 52:ESI-MS of 2-methyl-N-(4-(trifluoromethyl)benzyl)propan-2-amine

Figure 53: NMR of-2-methyl-N-(4-(trifluoromethyl)benzyl)propan-2-amine with CH₂Br₂ as internal standard

 $\label{eq:Figure 54:NMR of -2-methyl-N-(4-(trifluoromethyl)benzyl) propan-2-amine with CH_2Br_2 as internal standard at 75 bar H_2 pressure$

4. 2-methyl-N-(4-nitrobenzyl)propan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁵ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 8.30 – 8.25 (m, 2H), 7.97 – 7.89 (m, 2H), 1.34 (s, 9H). Reduction of the imine was not observed.

5.N-(3,4-dimethoxybenzyl)-2-methylpropan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁴ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 1.7 Hz, 1H), 7.49 – 7.39 (m, 1H), 7.15 (dt, *J* = 8.2, 1.8 Hz, 1H), 6.85 (dd, *J* = 8.2, 1.6 Hz, 1H), 3.95 – 3.91 (m, 4H), 3.88 (d, *J* = 2.0 Hz, 3H), 1.27 (d, *J* = 1.9 Hz, 9H).

 1 H NMR(400MHz,CDCl₃): product peak at 3.72ppm. All other product peaks were obscured by reaction solvent. ESI(+H): expected 224.15 found 224.2 (M+H)

Figure 55: ESI-MS of N-(3,4-dimethoxybenzyl)-2-methylpropan-2-amine

Figure 56: ¹H NMR of-N-(3,4-dimethoxybenzyl)-2-methylpropan-2-amine with CH₂Br₂ as internal standard

6. 2-methyl-N-(2-methylbenzyl)propan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁴ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 7.85 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.33 – 7.23 (m, 2H), 7.17 (ddt, *J* = 7.6, 1.6, 0.7 Hz, 1H), 2.50 (s, 3H), 1.32 (s, 9H).

¹H NMR (400MHz, CDCl₃): Product peak at 3.77ppm. All other product peaks were obscured by reaction solvent. ESI(+H): Expected 177.15, found 177.

Figure 57: ESI-MS of 2-methyl-N-(2-methylbenzyl)propan-2-amine

Figure 58: NMR of-2-methyl-N-(2-methylbenzyl)propan-2-aminewith CH2Br2 as internal standard

7. N-benzyl-1-phenylethan-1-amine

The corresponding imine was synthesized according to the modified reported procedure.⁹ Reaction was performed in an inert atmosphere of N_2 using Schlenk line apparatus and techniques. Solvents and glassware were dried according to the general procedure mentioned above. Molecular sieves (3A) were activated in vacuo by heating up to 300 °C for 5 minutes with a heat gun and leaving to cool down, the cycle was repeated three times.

To the activated molecular sieves was added toluene (10 mL) followed by 1 eq of acetophenone (20 mmol, 2.33 mL) and 1.2 eq of benzylamine (24 mmol, 2.62 mL). The reaction was stirred at RT and followed by NMR. After 44 h only approx. 33 % conversion was observed. The reaction mixture was heated up to 70 °C and stirred for 4 days. The molecular sieves were filtered off and washed with toluene (3 x 2 mL). The solvent was evaporated in vacuo. Resulting pale yellow liquid was mixed with pentane, overlaid with diethylether and placed in a freezer to crystallise. Crystals were filtered off, washed with diethylether, redissolved in chloroform and dried in vacuo. The filtrate was mixed with water and placed in a fridge to provide a second fraction of crystals. These crystals were filtered off, washed with water and dried in vacuo. The fractions were combined to provide product as yellow solid in 56 % (2.34 g) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.46 – 7.15 (m, 10H), 4.75 (s, 2H), 2.34 (s, 3H). ESI + (*m*/*z*) for C₁₅H₁₅N⁺ 210.1.

¹H NMR(400MHz,CDCl₃): product peak at 1.38ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 16.9 -17.0 minutes; EI (m/z) 211.

Figure 59 :GC-MS spectra of N-benzyl-1-phenylethan-1-amine

Figure 60: ¹H NMR of N-benzyl-1-phenylethan-1-amine using CH₂Br₂ as internal standard

8. N-benzylcyclohexanamine

The corresponding imine was synthesized according to the reported procedure.⁶ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.79 – 7.70 (m, 2H), 7.40 (ddt, *J* = 5.7, 3.9, 2.0 Hz, 3H), 3.20 (tt, *J* = 10.5, 4.1 Hz, 1H), 1.87-1.81(m,2H), 1.77 – 1.67 (m, 3H), 1.59 (dd, *J* = 7.0, 5.1 Hz, 2H), 1.41 – 1.31 (m, 2H), 1.30 – 1.22 (m, 1H).

¹H NMR(400MHz,CDCl₃): product peak at 3.86 ppm. All other product peaks were obscured by reaction solvent.

ESI(+H): expected 190.15, found 190(M+H)

Figure 62: NMR of- N-benzylcyclohexanamine with CH₂Br₂ as internal standard

9. N-benzylhexan-1-amine

The corresponding imine was synthesized according to the reported procedure.⁶

Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 – 8.14 (m, 1H), 7.65 (dp, J = 9.6, 3.6, 2.9 Hz, 2H), 7.35 (ddt, J = 6.7, 4.1, 2.1 Hz, 3H), 3.53 (tt, J = 7.0, 3.6 Hz, 2H), 1.63 (ddd, J = 9.9, 6.9, 3.5 Hz, 2H), 1.30 – 1.21 (m, 6H), 0.82 (dt, J = 7.9, 4.4 Hz, 3H).

¹H NMR(400MHz,CDCl₃): product peak at 3.86 ppm. All other product peaks were obscured by reaction solvent. ESI(+H): expected 192.16, found 192 (M+H)

Figure 64: NMR of-N-benzylhexan-1-aminewith CH₂Br₂ as internal standard

¹H NMR(400MHz,CDCl₃): product peak at 3.86 ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 13.5-13.6 minutes; EI (m/z) 191.

Figure 65:NMR of-N-benzylhexan-1-amine with CH2Br2 as internal standard, 48h test

Figure 66: GC-MS spectra of N-benzylhexan-1-amine, 48 h test

10% mol of catalyst test

¹H NMR(400MHz,CDCl₃): product peak at 3.83 ppm. All other product peaks were obscured by reaction solvent. ESI(+H) expected: 192.2; found 192.1 (M+H).

Figure 67: NMR of-N-benzylhexan-1-amine with CH₂Br₂ as internal standard, 10% mmol of catalyst

Figure 68: ESI-MS spectra of N-benzylhexan-1-amine, 10 % mmol of catalyst

2,5% mol of catalyst test

¹H NMR(400MHz,CDCl₃): product peak at 3.84 ppm. All other product peaks were obscured by reaction solvent. ESI(+H) expected: 192.2; found 192.0 (M+H).

Figure 69: NMR of-N-benzylhexan-1-amine with CH₂Br₂ as internal standard, 2.5 % mmol of catalyst

Figure 70 :ESI-MS spectra of N-benzylhexan-1-amine, 2.5 % mmol of catalyst.

10.(E)-N-(tert-butyl)-3-phenylprop-2-en-1-amine

The co rresponding imine was synthesized according to the reported procedure.⁸ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 4.1 Hz, 1H), 7.50 – 7.40 (m, 2H), 7.40 – 7.22 (m, 3H), 6.92 (d, *J* = 4.1 Hz, 2H), 2.47 – 2.24 (m, 2H), 1.24 (s, 9H).

¹H NMR(400MHz,CDCl₃): Product peak at 3.77ppm. All other product peaks were obscured by reaction solvent. ESI(+H): expected 190.15, found 190(M+H)

Figure 72: NMR of-(E)-N-(tert-butyl)-3-phenylprop-2-en-1-aminewith CH₂Br₂ as internal standard

11.2-methyl-N-(pyridin-3-ylmethyl)propan-2-amine

The corresponding imine was synthesized according to the reported procedure.⁷ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (t, *J* = 2.2 Hz, 1H), 8.50 (ddd, *J* = 4.7, 3.0, 1.4 Hz, 1H), 8.26 - 8.16 (m, 1H), 8.04 (dp, *J* = 7.9, 2.0 Hz, 1H), 1.33 - 1.16 (m, 9H).

¹H NMR(400MHz,CDCl₃): product peak at 3.79ppm. All other product peaks were obscured by reaction solvent. ESI(+H): expected 165. Found 165 (M+H)

Figure 73: ESI-MS of 2-methyl-N-(pyridin-3-ylmethyl)propan-2-amine

Figure 74: NMR of 2-methyl-N-(pyridin-3-ylmethyl)propan-2-amine with CH₂Br₂ as internal standard

12. N-benzylpropan-2-amine

The corresponding imine was synthesized according to the reported procedure.¹⁰ Imine characterization: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.72 – 7.75 (m, 2H), 7.39-7.41 (m, 3H), 3.51-3.59 (m,1H),1.24-1.31 (d,6H).

¹H NMR(400MHz,CDCl₃): product peak at 3.84ppm. All other product peaks were obscured by reaction solvent. GC-MS(+H): 149

Figure 75: NMR of N-benzylpropan-2-amine with CH2Br2 as internal standard

Figure 76: GC-MS of N-benzylpropan-2-amine

13 N-benzylaniline

The corresponding imine was synthesized according to the following synthesis. 10 mmol (1.02 mL) of benzaldehyde was dissolved in 50 mL of toluene. To the stirring solution was added 12 mmol (1.09 mL) of aniline. The mixture was refluxed in Dean-Stark apparatus overnight. After evaporation of the solvent, the crude mixture was heated to 80 °C in vacuum for 30 minutes. The product was obtained as a brown solid (94 % yield) NMR corresponds with literature.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.99 – 7.85 (m, 2H), 7.53 – 7.44 (m, 3H), 7.44 – 7.35 (m, 2H), 7.25 – 7.20 (m, 3H). GC-MS retention time was 17.8-18 minutes; EI (*m/z*) 181.

¹H NMR(400MHz,CDCl₃): product peak at 4.40 ppm, 6.70-6.78 ppm, 6.80-6.85 ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 19.5 -19.7 minutes; EI (m/z) 183.

Figure 77: NMR of-N-benzylaniline with CH2Br2 as internal standard

48h catalytic test

¹H NMR(400MHz,CDCl₃): product peak at 4.38 ppm, 6.68-6.74 ppm, 6.76-6.82 ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 19.6 -19.7 minutes; EI (m/z) 183.

Figure 79: NMR of-N-benzylaniline with CH2Br2 as internal standard, 48h test

Figure 80:GC-MS spectra of N-benyzlaniline, 48 h test

10 % mol of catalyst test

¹H NMR(400MHz,CDCl₃): product peak at 4.39 ppm, 6.60-6.75 ppm, 6.78-6.83 ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 19.6 -19.8 minutes; EI (m/z) 183.

Figure 81: NMR of-N-benzylaniline with CH2Br2 as internal standard, 10 % mmol catalyst test

Figure 82: GC-MS spectra of N-benyzlaniline, 10% mmol catalyst test

2,5 % mol of catalyst test

¹H NMR(400MHz,CDCl₃): product peak at 4.38 ppm, 6.68-6.74 ppm, 6.76-6.82 ppm. All other product peaks were obscured by reaction solvent. GC-MS retention time was 19.7 -19.8 minutes; EI (m/z) 183.

Figure 83: NMR of-N-benzylaniline with CH₂Br₂ as internal standard, 2.5 % mmol catalyst test.

Figure 84:GC-MS spectra of N-benyzlaniline, 2.5 % mmol catalyst test

142 N-benzyl-2,6-diisopropylaniline

The corresponding imine was synthesized according to the following synthesis. 12 mmol of 2,4,diisopropylaniline (2.26 mL) was added to the stirring solution of 10 mmol of benzaldehyde (1,02 mL). The mixture was refluxed in a Dean-Stark apparatus for 4 days. After evaporation of the solvent, the crude product was purified by distilling out the remaining starting material from reaction mixture. Product was obtained as brown oil, 2.42 g, 91 % yield. NMR corresponds with literature.¹² ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (s, 1H), 7.96 – 7.87 (m, 2H), 7.57 – 7.45 (m, 3H), 7.19 – 7.09 (m, 3H), 2.98 (hept, J = 6.9 Hz, 2H), 1.17 (d, J = 6.9 Hz, 12H). GC-MS retention time was 17.8-17.9 minutes; EI (m/z) 265.

¹H NMR(400MHz,CDCl₃): product peak at 4.10 ppm, 1.30 (d, J = 8 Hz). All other product peaks were obscured by reaction solvent. GC-MS retention time was 17.4-17.5 minutes; EI (m/z) 267.

Figure 85:NMR of N-benzyl-2,6-diisopropylaniline with CH₂Br₂ as internal standard

Figure 86: GC-MS spectra of N-benzyl-2,6-diisopropylaniline

15 N,2,6-triisopropylaniline

The corresponding imine was synthesized according to the modified reported procedure.¹³ 10 mmol of 2,4diisopropylaniline (1.89 mL) was refluxed in 50 mL of acetone over 5 g of 3A molecular sieves for six days. Crude product was purified by distillation (120 °C, 100 mbar) to obtain colorless oil, 0.27 g, 12 % yield. ¹H NMR (300 MHz, CDCl₃) δ 7.11-7.02 (m, 3H), 2.93 (hept, *J* = 6.8 Hz, 23H), 1.29 (s, 6H), 1.26 (d, J = 2.1 Hz, 12H). GC-MS retention time was 11.5-11.6 minutes; EI (m/z) 217.

¹H NMR(400MHz,CDCl₃): product peak at 1.29 ppm (d, J = 8 Hz). All other product peaks were obscured by reaction solvent. GC-MS retention time was 11.0-11.1 minutes; EI (m/z) 219.

Figure 87: NMR of N,2,6-triisopropylaniline with CH₂Br₂ as internal standard

Figure 88: GC-MS spectra of N,2,6-triisopropylaniline

Crystal structure of [Sn(Salen)Cl₂] and [Sn(^tBu₂Salophen)Cl₂] complexes

The crystals of [Sn(Salen)Cl₂] were obtained by evaporation of its dichloromethane solution under reduced pressure and the crystals of partially solvated [Sn('Bu₂Salophen)Cl₂] were prepared by diffusion of hexane vapors into its dichloromethane solution. The selected crystals were mounted onto goniometer heads of a Bruker D8 VENTURE Kappa Duo diffractometer with a PHOTON100 detector and an I μ S microfocus sealed tube source, equipped with Cryostream Cooler (Oxford Cryostreams). Full-set diffraction data ($\pm h$, $\pm k$, $\pm l$, $2\theta \le 55^{\circ}$) were collected at 120(2) K using monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) and reduced using the software of the diffractometer (SAINT^[14]). The data were corrected for absorption using methods incorporated in the diffractometer software (SADABS^[15]).

The structures were solved by direct methods with SHEXT-2018^[16] and refined by weighted full-matrix least-squares against F² using SHELXL-2019.^[17] All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were located on the difference electron density maps and refined as riding atoms with their U_{iso}(H) fixed to a 1.2 multiple of U_{eq} of their bond partners with the exception of the hydrogen atoms of the tert-butyl groups in the structure of partially solvated [Sn(¹Bu₂Salophen)Cl₂] which were placed in the theoretical positions and refined as riding atoms C21 – C24 and C25 – C28) in the structure of partially solvated [Sn(¹Bu₂Salophen)Cl₂] were refined disordered over two positions mutually rotated around the pivotal bond to their quaternary carbon atoms (C21 and C25, respectively). The positions were restrained to be equivalent with relative occupancy ratios refined as 3:1 and 1:1, respectively. Additionally, rigid-bond restraints had to be applied to the anisotropic displacement parameters of the carbon atoms of the disordered tert-butyl groups to prevent them from becoming negative.

In the structure of partially solvated $[Sn({}^{Bu_2}Salophen)Cl_2]$, a disordered dichloromethane molecule could not be satisfactorily modeled with full occupancy and was removed from the refinement using the PLATON SQUEEZE^[18] routine which removed electron density amounting to a total of 21 electrons from a solvent accessible void of the potential volume of 262 Å³ per unit cell. After the final cycle of refinement of the structure of $[Sn({}^{Bu_2}Salophen)Cl_2]$, the residual difference electron density map maximum of 1.84 e·Å⁻³ was located in the vicinity of the tin atom and the residual difference electron density map minimum of -1.30 e·Å⁻³ was located in the vicinity of one of the disordered tert-butyl groups.

Selected structure solution parameters are listed in Table 5. All geometric calculations and graphics were calculated and plotted using PLATON^[19] software. Displacement ellipsoid ORTEP^[20] plots are contained in the Figure 89. The complex [Sn(Salen)Cl₂] crystallized in monoclinic system with space group Cc and 4 formula units in the unit cell (Figure 90). The partially solvated complex [Sn('Bu₂Salophen)Cl₂] crystallized in triclinic system with space group P-1 and 2 formula units in the unit cell (Figure 91). The respective selected valence parameters in the structures of [Sn(Salen)Cl₂] and [Sn(¹Bu₂Salophen)Cl₂] are listed in Table 6 and Table 7. The values related to the atoms in refined positions are rounded with respect to their estimated standard deviations that are provided with one decimal place. The corresponding crystallographic information files for [Sn(Salen)Cl₂] and [Sn(¹Bu₂Salophen)Cl₂] can be accessed in Cambridge Crystallographic Data Centre at <u>https://www.ccdc.cam.ac.uk/structures/</u> under submission codes CCDC-2330171 and CCDC-2333521, respectively.

Structure code	[Sn(Salen)Cl ₂]	[Sn(^t Bu ₂ Salophen)Cl ₂] (solvated)	
Empirical formula	$C_{16}H_{14}Cl_2N_2O_2Sn$	$C_{36}H_{46}Cl_2N_2O_2Sn$	
Formula weight [g·mol ⁻¹]	455.90	728.34	
Crystal system	monoclinic	triclinic	
Space group	Cc	<i>P</i> -1	
<i>a</i> [Å]	10.7059(4)	11.2684(8)	
<i>b</i> [Å]	14.2716(4)	13.0888(9)	
<i>c</i> [Å]	10.8582(3)	13.536(1)	
α [°]		75.089(3)	
β [°]	101.977(1)	75.968(3)	
γ [°]		88.152(3)	
V [Å ³]	1622.91(9)	1870.6(2)	
Ζ	4	2	
<i>F</i> (000)	896	752	
Calculated density [g·cm ³]	1.866	1.293	
μ (Mo K α) [mm ⁻¹]	1.913	0.857	
crystal size [mm]	0.032 x 0.032 x 0.134	0.054 x 0.078 x 0.162	
θ range [°]	2.412-27.481	1.864–28.426	
Collected diffractions	17662	124490	
Independent diffractions	3720	9370	
Observed ^a diffractions	3687	8716	
$R_{\rm int}^{\rm b}$ [%]	3.11	5.26	
Number of parameters	208	462	
<i>R</i> , wR^c (observed) [%]	1.47, 3.09	4.53, 10.46	
R, wR^{c} (all data) [%]	1.48, 3.09	4.93, 10.66	
Goodness of fit ^d	1.071	1.149	
$\Delta \rho_{max}$ and $\Delta \rho_{min} (e \cdot \mathring{A}^{-3})$	-0.379, 0.288	-1.296, 1.841	
Flack parameter	-0.013(9)		
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP];$ where $P = (F_o^2 + 2F_c^2)/3.$		
	a = 0.0089	a = 0.0296	
	b = 0.3295	b = 5.4616	

Table 5: Basic crystallographic data and structure refinement details for the crystals of [Sn(Salen)Cl2] and [Sn([†]Bu₂Salophen)Cl₂]. ____

 $\alpha | > 2\sigma(|)$

 $\sum_{i=1}^{b} \frac{1}{2} \sum_{i=1}^{b} \frac{1}{2} \sum_{$ ^d $S = [\Sigma(w(F_o^2 - F_c^2)^2)/(N_{diffrms} - N_{par})]^{\frac{1}{2}}$

Table 6: List of selected bond lengths and angles in [Sn(Salen)Cl₂].

bond	value [Å]	angle	value [°]	torsion	value [°]
Sn1-O1	2.012(2)	O1-Sn1-O2	102.17(8)	C3-N1-C1-C2	144.6(3)
Sn1-O2	2.013(2)	O1-Sn1-N1	91.15(8)	Sn1-N1-C1-C2	-31.7(3)
Sn1-N1	2.142(2)	O2-Sn1-N1	166.34(8)	C4-N2-C2-C1	144.9(3)
Sn1-N2	2.145(2)	O1-Sn1-N2	169.11(9)	Sn1-N2-C2-C1	-34.1(3)
Sn1-Cl2	2.4190(8)	O2-Sn1-N2	88.69(9)	N1-C1-C2-N2	42.2(3)
Sn1-Cl1	2.4237(8)	N1-Sn1-N2	78.05(9)	C1-N1-C3-C6	177.1(3)
O1-C5	1.345(3)	O1-Sn1-Cl2	89.33(7)	Sn1-N1-C3-C6	-6.9(5)
O2-C11	1.345(3)	O2-Sn1-Cl2	92.54(7)	C2-N2-C4-C12	177.7(3)
N1-C3	1.277(4)	N1-Sn1-Cl2	90.60(7)	Sn1-N2-C4-C12	-3.5(4)
N1-C1	1.466(4)	N2-Sn1-Cl2	89.35(7)	Sn1-O1-C5-C10	-167.5(2)
N2-C4	1.285(4)	O1-Sn1-Cl1	89.43(6)	Sn1-O1-C5-C6	14.7(4)
N2-C2	1.464(4)	O2-Sn1-Cl1	90.68(7)	01-C5-C6-C7	179.2(3)
C1-C2	1.529(4)	N1-Sn1-Cl1	86.39(7)	01-C5-C6-C3	1.5(5)
C3-C6	1.446(4)	N2-Sn1-Cl1	91.29(7)	N1-C3-C6-C7	176.8(3)
C4-C12	1.440(4)	Cl2-Sn1-Cl1	176.72(3)	N1-C3-C6-C5	-5.4(5)
C5-C10	1.398(4)	C5-O1-Sn1	124.5(2)	Sn1-O2-C11-C16	-156.0(2)
C5-C6	1.418(4)	C11-O2-Sn1	124.7(2)	Sn1-O2-C11-C12	26.9(4)
C6-C7	1.412(4)	C3-N1-C1	122.8(3)	O2-C11-C12-C4	-2.8(5)
C7-C8	1.371(4)	C3-N1-Sn1	122.8(2)	N2-C4-C12-C13	171.5(3)
C8-C9	1.394(4)	C1-N1-Sn1	114.3(2)	N2-C4-C12-C11	-9.4(5)
C9-C10	1.379(4)	C4-N2-C2	122.0(2)		
C11-C16	1.395(4)	C4-N2-Sn1	124.1(2)		
C11-C12	1.419(4)	C2-N2-Sn1	113.9(2)		
C12-C13	1.408(4)	N1-C1-C2	109.7(2)		
C13-C14	1.377(5)	N2-C2-C1	109.5(2)		
C14-C15	1.391(5)	N1-C3-C6	126.5(3)		
C15-C16	1.377(4)	N2-C4-C12	125.9(3)		

Table 7: List of selected bond lengths and angles in [Sn(^tBu₂Salophen)Cl₂].

bond	value [Å]	angle	value [°]	torsion	value [°]
Sn1-O1	1.996(2)	O1-Sn1-O2	104.20(9)	C3-N1-C1-C20	-14.1(5)
Sn1-O2	1.999(2)	O1-Sn1-N2	166.13(9)	Sn1-N1-C1-C20	178.7(3)
Sn1-N2	2.146(3)	O2-Sn1-N2	89.19(9)	C3-N1-C1-C2	166.8(3)
Sn1-N1	2.150(3)	O1-Sn1-N1	89.4(1)	Sn1-N1-C1-C2	-0.4(4)
Sn1-Cl1	2.4136(9)	O2-Sn1-N1	166.1(1)	N1-C1-C2-C17	-178.4(3)
Sn1-Cl2	2.4287(9)	N2-Sn1-N1	77.4(1)	C20-C1-C2-N2	-177.9(3)
O1-C5	1.338(4)	O1-Sn1-Cl1	91.08(8)	N1-C1-C2-N2	1.2(4)
O2-C11	1.337(4)	O2-Sn1-Cl1	89.54(7)	C4-N2-C2-C17	-14.9(5)
N1-C3	1.305(4)	N2-Sn1-Cl1	92.65(7)	Sn1-N2-C2-C1	178.1(3)
N1-C1	1.416(4)	N1-Sn1-Cl1	87.21(8)	C4-N2-C2-C	165.5(3)
N2-C4	1.301(4)	O1-Sn1-Cl2	89.24(8)	Sn1-N2-C2-C1	-1.4(4)
N2-C2	1.420(4)	O2-Sn1-Cl2	90.25(7)	C1-N1-C3-C6	-174.1(3)
C1-C20	1.399(5)	N2-Sn1-Cl2	87.06(7)	Sn1-N1-C3-C6	-7.8(5)
C1-C2	1.411(4)	N1-Sn1-Cl2	92.93(8)	C2-N2-C4-C12	-172.6(3)
C2-C17	1.390(5)	Cl1-Sn1-Cl2	179.65(3)	Sn1-N2-C4-C12	-6.6(4)
C3-C6	1.421(5)	C5-O1-Sn1	127.5(2)	Sn1-O1-C5-C10	-157.8(2)
C4-C12	1.432(4)	C11-O2-Sn1	126.0(2)	Sn1-O1-C5-C6	24.8(4)
C5-C10	1.406(5)	C3-N1-C1	122.8(3)	N1-C3-C6-C7	176.8(3)
C5-C6	1.422(5)	C3-N1-Sn1	121.4(2)	N1-C3-C6-C5	-1.5(6)
C6-C7	1.421(4)	C1-N1-Sn1	114.5(2)	01-C5-C6-C7	175.2(3)
C7-C8	1.361(6)	C4-N2-C2	122.1(3)	O1-C5-C6-C3	-6.5(5)
C8-C9	1.399(5)	C4-N2-Sn1	122.0(2)	O1-C5-C10-C9	-175.3(3)
C8-C21	1.548(5)	C2-N2-Sn1	114.6(2)	O1-C5-C10-C29	5.5(5)
C9-C10	1.396(5)	C20-C1-N1	124.1(3)	Sn1-O2-C11-C12	30.0(4)
C10-C29	1.547(5)	C2-C1-N1	116.8(3)	Sn1-O2-C11-C16	-153.8(2)
C11-C12	1.415(5)	C17-C2-N2	124.0(3)	O2-C11-C12-C13	172.6(3)
C11-C16	1.416(4)	C1-C2-N2	116.7(3)	O2-C11-C12-C4	-9.0(5)
C12-C13	1.416(4)	N1-C3-C6	127.9(3)	N2-C4-C12-C11	-2.7(5)
C13-C14	1.373(5)	N2-C4-C12	127.1(3)	N2-C4-C12-C13	175.9(3)
C14-C15	1.400(5)	O1-C5-C10	118.4(3)	O2-C11-C16-C15	-173.6(3)
C14-C25	1.538(5)	O1-C5-C6	122.1(3)	O2-C11-C16-C33	6.2(4)
C15-C16	1.393(5)	O2-C11-C12	122.4(3)	N2-C2-C17-C18	178.7(3)
C16-C33	1.546(5)	O2-C11-C16	118.3(3)	N1-C1-C20-C19	179.5(3)
C17-C18	1.375(5)				
C18-C19	1.389(6)				
C19-C20	1.369(6)				

Figure 89: a) View of the molecular structure of [Sn(Salen)Cl₂]. b) View of the molecular structure of [Sn('Bu₂Salophen)Cl₂]. Thermal displacement elipsoids are plotted at the 30 % probability level. Applied colors: C – black, H – black contour, Cl – green, N – blue, O – red, Sn – yellow.

Figure 90: Crystal packing of [Sn(Salen)Cl₂] viewed along the axis *b*. The unit cell is outlined by the solid line. Applied colors: C – black, H – black contour, Cl – green, N – blue, O – red, Sn – yellow.

Figure 91: Crystal packing of [Sn(^tBu₂Salophen)Cl₂] viewed along the axis *b*. The unit cell is outlined by the solid line. Applied colors: C – black, H – black contour, Cl – green, N – blue, O – red, Sn – yellow.

Computational Details

The HIA values were calculated following a protocol validated by Greb et al²⁰ as follows.

Structure optimization of all involved LAs and the corresponding [LA-H] counterpart (see Figure 91) was performed at the threefold-corrected PBEh-3c/def2-mSVP level of theory as implemented in ORCA 5.0 software. Considering that the sixth ligand should be released to have a vacant active site, the calculations were carried out using the corresponding cations of the LAs. In the case of the LA with the two triflate ligands (1-OTf2), those ligands were not considered since the interaction with the Tin center is weak. In all cases, the structures were confirmed as local minima through normal analysis using frequency calculations. Zero-point energies and thermal corrections at 298 K were obtained at the same level of theory and subsequently used.

Previously optimized geometries were utilized for single-point calculations at the DSD-PBEP86-D3BJ / def2-QZVP level of theory which has been demonstrated to be suitable for HIA²⁰. In all DFT calculations, the "resolution-of identity" and "chain of spheres" approximation in the form of RIJCOSX was used in combination with auxiliary basis sets (autoaux). In particular, the def2/C auxiliary basis set was applied. These electronic energies were combined with ZPE/Thermal corrections from the previous step, to obtain the total enthalpies of the Lewis acids and their hydride adducts.

The HIA values were calculated with isodesmic anchoring to the CCSD(T)/CBS values of the trimethylsilylium (TMS) system (924 kJ/mol). The isodesmic reaction corresponds to the calculation of the reaction enthalpy $LA(+) + TMS-H\rightarrow LA-H + TMS(+)$ and subtracting the CCSD(T)/CBS value of TMS-H \rightarrow TMS(+) + H-. By doing so, a final absolute HIA is obtained.

Figure 92:Chemical struture of LAs considered in the HIA analysis. 1-Cl(OTf) and 1-Cl2 were considered as the same structure since both of them result in the same LA (cation).

To analyze the preorientation of the catalyst for the most active LA (2-Cl2), the frustrated Lewis Pair arising from the interaction between the model Imine and 2-Cl2 was optimized.

Different structures were considered as initial guesses, and only the lowest energy structure was selected for the final Lewis pair shown in Figure 93. As can be noted, in the absence of t-Bu group Tin center can interact with the imine nitrogen (R_{Sn-N} = 2.33 A)

R Sn(LA)-N(LB)= 2.31 A

Figure 93:Optimized structure corresponding to imine 2-Cl2 FLP.

Cartesian Coordinates for optimized structures corresponding to LAs and LAHs

1-OTf2	2		
83			
FINAL	HEAT OF FC	RMATION = -1716	.682832
С	-0.020962	0.541833	0.072488
С	0.032333	0.368341	1.459036
С	1.261519	0.012721	2.098304
С	2.431302	-0.151135	1.318881
С	2.416270	0.009432	-0.046311
С	1.178664	0.347048	-0.618060
0	-1.094349	0.548688	2.164175
Sn	-1.461707	0.246645	4.033208
С	1.437090	-0.170659	3.484664
Ν	0.526184	-0.117997	4.430298
С	0.804897	-0.230782	5.856914
С	-0.137300	0.707083	6.624762
Ν	-1.477479	0.599223	6.061123
С	-2.587773	0.613696	6.764144
С	-3.908946	0.424917	6.310440
С	-4.289800	0.120867	4.965442
С	-5.636045	-0.064503	4.634455
С	-6.549882	0.065096	5.683891
С	-6.236928	0.355697	7.021903
С	-4.904534	0.527423	7.311210
0	-3.376299	0.014170	3.989189
Н	1.846354	0.039367	6.071573
Н	0.660395	-1.271663	6.183481
Н	-0.138849	0.437487	7.688309
Н	0.212453	1.747457	6.549501
Н	2.462935	-0.371852	3.817038
Н	-2.469819	0.781934	7.841682
Η	3.356683	-0.413440	1.831892
----------	-----------	-----------	-----------
С	3.691956	-0.163009	-0.869208
Н	1.150006	0.470831	-1.695469
С	-1.310712	0.915116	-0.676243
н	-4.586586	0.749216	8.329867
C	-7 296723	0 445629	8 117348
	7 500505	0.445029	5 111101
п С	-7.590505	-0.071104	3.441194
C	-6.114168	-0.3/1441	3.205943
С	-/.6396/6	-0.513059	3.15/023
С	-5.739272	0.784123	2.262930
С	-5.520791	-1.700865	2.711546
Η	-6.160175	0.598102	1.267564
Η	-6.156368	1.735547	2.614815
Η	-4.661130	0.912751	2.129855
Н	-7.949313	-0.727689	2.128751
Н	-8.011275	-1.339560	3.775029
н	-8.159385	0.405329	3.455790
н	-5.943326	-1.946265	1,730285
и Ц	-4 433881	-1 678335	2 591246
11 TT	5 772207	2 527012	2.391240
п С	-3.773397	-2.327013	J.J009/J
C	-8./13060	0.425507	/.54152/
С	-/.118842	-0./61882	9.049411
С	-7.110227	1.748328	8.906352
Η	-7.878757	1.832943	9.683126
Η	-6.143274	1.800521	9.421365
Η	-7.197268	2.630782	8.261004
Η	-7.870111	-0.744532	9.847897
Н	-7.233271	-1.709465	8.509304
Н	-6.134646	-0.771551	9.534403
н	-9.442956	0.539369	8.349995
Н	-8.888453	1 247477	6.836047
и П	-8 952725	_0 519161	7 037658
C	-1 057145	1 032126	-2 193606
C C	-1.03/143	1.032120	-2.103000
C	-2.3/5822	-0.1//1/1	-0.481889
С	-1.830303	2.281216	-0.199168
Η	-2.707136	2.569252	-0.791224
Η	-2.141161	2.290471	0.849320
Η	-1.076388	3.065286	-0.339262
Η	-1.990765	1.307693	-2.685424
Н	-0.326026	1.810991	-2.431308
Н	-0.726398	0.088464	-2.634859
Н	-3.255272	0.057677	-1.092617
н	-2.006755	-1.156514	-0.809879
н	-2.725568	-0.270883	0.550407
C	3 433220	0 019757	-2 364688
C	1 713638	0.019797	-0 111663
C	4.713030	0.009595	-0.414005
	4.255560	-1.572546	-0.633678
H	5.6381/4	0./98011	-0.996601
H	4.335153	1.908704	-0.55/224
Η	4.991427	0.779970	0.641066
Η	4.369551	-0.104004	-2.919233
Η	2.729409	-0.720759	-2.765258
Η	3.057259	1.021555	-2.606648
Н	5.157407	-1.725796	-1.234159
Н	4.537277	-1.745479	0.411620
Н	3.533182	-2.348757	-0.918862

1H-OTf2

FINAL	HEAT OF 1	FORMATION	V = -1717	7.675836
С	-0.10358	5 0.5	540632	0.012609
С	-0.04044	7 0.6	589204	1.417478
С	1.19082	5 0.4	125524	2.083193
С	2.32580	4 0.0	09493	1.351821
C	2.29262	4 -0.1	126782	-0.012927
C	1 06178	6 0 1	150744	-0 634748
0	-1 11325	8 1 (131734	2 086633
Sn	_1 3/808	2 1 9	371618	3 887537
M	0 51746		20160	1 201115
	1 24025		102620	4.504415
C	1.34923	8 U.4	+03020	3.491000
0	-3.19/63		L49348	3.944901
C	-4.13851		228154	4.8653/3
С	-3.82249	1 1.4	412031	6.239389
С	-4.843570	0 1.4	445941	7.208646
С	-6.169792	2 1.3	339041	6.863360
С	-6.44289	0 1.1	L57691	5.498672
С	-5.49100	9 1.0)85363	4.486972
С	-2.490972	2 1.5	526794	6.735018
Ν	-1.41230	7 1.6	574104	6.042200
С	-0.08750	9 1.7	712843	6.610144
С	0.79781	4 0.7	767548	5.802085
Н	-0.08233	5 1.4	125156	7.670321
Н	0.30622	4 2.7	740687	6.554217
Н	1.85692	9 0.9	959625	6.022838
Н	0.58416	3 -0.2	270880	6.098042
Н	-2.38571	9 1.4	189316	7.828556
Н	2.30420	6 0.0)90704	3.867581
Н	-4.55181	7 1.5	570161	8.252327
C	-7 26134	2 13	390886	7 931777
н	-7 48325	7 1 (162948	5 207707
C	-5 90647	, <u>1</u> ,0	352992	3 026708
ц	3 24076		03103	1 906200
п	2 52602	2 0 1	501562	1.900200
	1 01604	-0.)91302	-0.707323
п	1 20615		01140	-1.713210
C	-1.39013	J 0.0		-0.774147
C	-1.18506	/ 0.3	08206/	-2.2/6161
C	-2.49917.	1 -0.1		-0.325346
C	-1.852/9	8 2.2	25/503	-0.590904
H	-2.125040	0 0.	//1233	-2.806475
H	-0.43/25	/ 1.2	262218	-2.703880
H	-0.88861	9 -0.4	446271	-2.514228
H	-3.401192	2 -0.0)14999	-0.930809
Н	-2.187622	2 -1.2	212385	-0.466535
Н	-2.78582	8 -0.0	041679	0.721258
Н	-2.71933	6 2.4	461500	-1.232134
Н	-2.15562	1 2.4	185524	0.434300
Н	-1.06225	9 2.9	961815	-0.878629
С	-7.431593	1 0.7	786962	2.887947
С	-5.42722	4 2.0	03834	2.126360
С	-5.34638	7 -0.4	189069	2.530554
Н	-5.67131	9 -0.6	569471	1.498083
Н	-4.25390	7 -0.5	526247	2.540185
Н	-5.71938	4 -1.3	321091	3.140507
Н	-5.838393	3 1.8	380280	1.116719
Н	-5.77539	2 2	974288	2.501778
H	-4.34046	2 2 0)45486	2.019544
H	-7.69483	9 0 6	513982	1.838407
H	-7 87326	8 _ 0 . 0)35426	3,463700
H	-7 92200	g 1 -	720078	3 190869
± ±	, , , , , , , , , , , , , , , , , , , ,	~ <u> </u>	/ / / /	J. IJ0009

С	3.299726	-0.558700	-2.299509
С	4.715304	0.320977	-0.459906
С	3.853736	-2.033184	-0.373819
Н	4.729856	-2.402861	-0.921006
Н	4.081379	-2.114466	0.696286
Н	3.018618	-2.712097	-0.585595
Н	4.209855	-0.880957	-2.817987
Н	2.497659	-1.235202	-2.618817
Н	3.061810	0.448355	-2.664874
Н	5.605362	0.006615	-1.018605
Н	4.507269	1.364244	-0.726714
Н	4.984944	0.297262	0.603025
С	-8.662509	1.369812	7.320696
С	-7.108197	0.170950	8.850240
С	-7.111404	2.679801	8.750482
Н	-9.416285	1.447335	8.112279
Н	-8.829326	2.209591	6.634711
Н	-8.869082	0.439798	6.776613
Н	-7.891445	2.743711	9.519135
Н	-6.148332	2.735348	9.272006
Н	-7.196276	3.570503	8.116074
Н	-7.882783	0.166651	9.627381
Н	-7.196266	-0.765996	8.286961
Н	-6.137942	0.156807	9.361914
Н	-1.212404	3.536632	3.656810

84			
FINAL	HEAT OF FC	RMATION = -2176	5.834085
С	-0.091713	0.555175	0.016238
С	-0.025777	0.691010	1.419305
С	1.200759	0.417199	2.089187
С	2.328720	-0.016414	1.357236
С	2.288655	-0.165234	-0.006443
С	1.065077	0.136362	-0.629988
0	-1.106274	1.030370	2.085594
Sn	-1.341444	1.801187	3.893754
Ν	0.538852	0.939842	4.388650
С	1.374657	0.501807	3.494321
0	-3.214530	1.189949	3.923166
С	-4.149472	1.260374	4.853727
С	-3.824916	1.452936	6.224936
С	-4.842258	1.471120	7.200582
С	-6.167371	1.328987	6.864491
С	-6.445560	1.146479	5.500970
С	-5.500054	1.098265	4.481664
С	-2.496352	1.597005	6.715963
Ν	-1.410623	1.703138	6.022219
С	-0.083995	1.797598	6.584908
С	0.829434	0.846656	5.811002
Cl	-1.082427	4.074155	3.608428
Н	-0.072989	1.545841	7.653687
Н	0.276089	2.833886	6.488643
Н	1.881247	1.086310	6.017383
Н	0.652700	-0.185683	6.149383
Н	-2.393353	1.618965	7.809516
Н	2.344702	0.145267	3.866437
Н	-4.547580	1.605989	8.241905
С	-7.253951	1.340609	7.939198
Н	-7.485622	1.029583	5.217137
С	-5.922508	0.863992	3.023739

Н	3.243029	-0.235006	1.909983
С	3.510749	-0.662525	-0.777899
Н	1.017326	0.029700	-1.708190
С	-1.373452	0.862631	-0.771214
С	-1.165765	0.644554	-2.273834
C	-2.514765	-0.069599	-0.333718
C	-1 772341	2 334996	-0 579801
U U	-2 005033	0 874788	-2 804761
и П	-0.300677	1 207251	-2 604503
п	-0.390077	1.29/201	-2.094303
H	-0.910011	-0.393878	-2.51/940
Н	-3.401035	0.1150//	-0.953599
Н	-2.238279	-1.122881	-0.466525
Н	-2.815040	0.073731	0.706945
H	-2.647160	2.568520	-1.199376
Н	-2.037359	2.580952	0.451597
Н	-0.964020	3.008426	-0.890371
С	-7.447710	0.777401	2.895854
С	-5.464939	2.024754	2.125049
С	-5.349804	-0.470388	2.520400
Н	-5.682423	-0.652342	1.490783
Н	-4.256932	-0.495275	2.518077
Н	-5.707003	-1.308209	3.131929
н	-5.867410	1.889340	1,113473
н	-5 839468	2 986209	2 497667
и П	-1 379170	2.006881	2.437607
ц	-7 715562	2.090001	1 9/6019
п II	7.074005	0.000333	1.040910
н	-7.874085	-0.055415	3.408206
H	-7.949453	1./01685	3.208379
C	3.281/31	-0.639601	-2.289603
С	4./18619	0.228913	-0.460001
С	3.807836	-2.106721	-0.350136
H	4.675389	-2.499711	-0.894418
Η	4.034784	-2.183058	0.720499
Н	2.958227	-2.769481	-0.555282
Н	4.183307	-0.986837	-2.806733
Н	2.464119	-1.301447	-2.600090
Н	3.065417	0.368874	-2.664147
Н	5.600482	-0.107045	-1.018872
Н	4.530196	1.274039	-0.733658
Н	4.990778	0.207297	0.602320
С	-8.658145	1.305158	7.334719
С	-7.072796	0.104097	8.830290
C	-7 124484	2 614262	8 784430
н	-9 408280	1 353545	8 131935
и П	-8 844573	2 154401	6 665670
11 TT	0.044373	2.134401	6 775065
11	0.001209	0.JOLJUZ	0.110000
п	-1.903862	2.04/0/2	y.JJJJZ8
H	-0.101952	2.0/604/	9.306114
Н	-1.2268/9	3.51641/	8.169301
Н	-7.843254	0.069006	9.610799
Η	-7.147034	-0.822416	8.247961
Н	-6.099692	0.097158	9.336734

85			
FINAL	HEAT OF FOR	MATION = -2177	.630033
С	0.018980	-0.178883	0.032139
С	0.012002	-0.143782	1.458404
С	1.218280	0.006966	2.179130
С	2.428114	0.144683	1.553483
С	2,409961	0.100063	0.142475

С	1.282180	-0.067611	-0.633304
Ċ	_1 156934	_0 3/7979	2 260963
C	-1.130834	-0.347879	2.200003
N	-2.383313	-0.388709	1.885471
С	-3.460420	-0.712100	2.784789
C	4 670072	0 157474	2 110200
C	-4.070072	0.13/4/4	2.449309
N	-4.905927	0.112037	1.028269
Sn	-3.046426	0.039877	-0.183274
0	1 040144	0 227520	0 660125
0	-1.049144	-0.33/539	-0.008125
С	3.751298	0.327360	2.291667
С	4 352979	1 689139	1 918819
c	1 266117	0 142002	2 162162
C	1.30011/	-0.142002	=2.103103
С	2.814988	-0.021117	-2.646915
C	-6 079137	-0 048702	0 534300
C C	6.079107	0.040702	0.001000
C	-6.465409	-0.141/30	-0.842085
С	-7.837580	-0.375938	-1.056569
C	-8 376527	-0 492416	-2 314305
<u> </u>	0.370327	0.452410	2.514505
С	-7.469493	-0.400828	-3.384044
С	-6.109017	-0.175137	-3.258101
C	-5 573427	0 000463	_1 0/837/
C	5.575427	0.000403	1.940374
С	-9.877972	-0.713411	-2.506155
С	-10.270600	-0.730958	-3.984195
	-1 329136	0 320754	_1 7072/1
0	-4.529450	0.320734	-1./9/241
С	-5.201414	-0.120368	-4.493456
С	-5.992451	-0.368312	-5.782791
CI	-3 306953	-2 300703	_0 /79565
CT	-3.390033	-2.309783	-0.476363
С	-10.283002	-2.055896	-1.882816
С	-10.652662	0.423064	-1.823920
C	1 1 2 0 4 9 2	1 210152	
C	-4.129485	-1.219155	-4.408551
С	-4.546912	1.264041	-4.629179
С	4.723098	-0.790957	1.890775
ä	0.026300	1 407205	2.000770
C	0.836388	-1.49/385	-2.0005/0
С	0.580536	1.011177	-2.809030
Н	-2.726722	1 713924	-0.126877
11	2 2 2 2 2 2 2 2	0.000007	0.270104
Н	3.363820	0.200627	-0.3/0104
Н	-0.956162	-0.492927	3.334235
н	-3 170966	-0 575068	3 838263
11	2.70000	1 771007	0.000200
Н	-3./285/8	-1.//126/	2.64/924
Н	-5.549120	-0.177819	3.021066
н	-4 464832	1 197669	2 750003
11	1.101052	1.197009	1 046505
Н	-6.914066	-0.140764	1.246525
Η	-8.477693	-0.458684	-0.176158
н	-7 865598	-0 515627	-4 387263
	1 1 5 1 0 0 6	0.011705	1.007200
Н	1.151896	0.011/05	3.266448
С	3.566603	0.277727	3.808013
н	-11 735025	0 291241	-1 953857
	10 100020	0.400015	2.300007
Н	=10.460727	0.468915	=0.745112
Η	-10.380576	1.397878	-2.246844
н	-10 008588	0 206223	-4 490450
		1 552070	1.190190
Н	-9./96161	-1.553970	-4.532684
Η	-11.354976	-0.861742	-4.083166
н	-9 742914	-2 888735	-2 349213
11 TT			
Н	-10.0/242/	-2.09205/	-0.800910
Η	-11.358341	-2.238379	-2.010370
ц	-5 308149	2 050851	-4 708557
	0.00149 0.00149	2.0000JI	
H	-3.895265	1.508613	-3./87754
Н	-3.939739	1.302307	-5.543492
IJ	-6 / 80212	-1 251116	-5 70/760
п	0.400313	T.JJTTTO	5.794700
Н	-6.761091	0.395047	-5.958000
Н	-5.310815	-0.339244	-6.641069
IJ	-3 166770	-1 108557	-3 517611
п	-3.400//9	-T.TOODJ/	-3.54/044
Н	-4.591928	-2.211743	-4.340596
Н	-3.506106	-1.204336	-5.312179

Н	-0.491497	0.960358	-2.606235
Н	0.947649	1.983570	-2.456618
Н	0.708325	0.986393	-3.899381
Н	3.270687	0.938909	-2.373056
Н	3.452980	-0.824846	-2.258465
Н	2.844077	-0.089582	-3.740723
Н	1.414804	-2.324148	-2.228828
Н	-0.215018	-1.660214	-2.413115
Н	0.937556	-1.561213	-3.752225
Н	3.678540	2.508391	2.196283
Н	5.309885	1.852204	2.432183
Н	4.544377	1.773708	0.842268
Н	4.316081	-1.778586	2.140188
Н	4.940447	-0.787774	0.816254
Н	5.681783	-0.681242	2.414473
Н	4.534226	0.390119	4.311956
Н	2.919330	1.084531	4.174459
Н	3.138397	-0.676776	4.138543

36			
FINAL	HEAT OF FO	DRMATION = -1549	.534518
С	-0.072075	0.258713	0.007665
С	-0.035349	0.317858	1.406166
С	1.194582	0.034441	2.064210
С	2.333494	-0.302944	1.292807
С	2.278835	-0.341747	-0.074708
С	1.061703	-0.057406	-0.710441
0	-1.147079	0.597455	2.045406
Sn	-1.361693	1.357222	3.868084
Ν	0.477614	0.381010	4.367275
С	1.343523	0.009120	3.475228
0	-3.295999	0.951114	3.864365
С	-4.191012	1.117565	4.817016
С	-3.865592	1.249179	6.195174
С	-4.906264	1.380773	7.144069
С	-6.221436	1.405651	6.759570
С	-6.528078	1.281960	5.398654
С	-5.539949	1.134718	4.446861
С	-2.535476	1.231843	6.699706
Ν	-1.446200	1.216168	6.004771
С	-0.122703	1.180209	6.585089
С	0.720186	0.189312	5.787264
Cl	-0.942799	3.606529	3.634386
Η	-0.151081	0.886556	7.642677
Η	0.322894	2.186054	6.535143
Η	1.783633	0.318223	6.030006
Н	0.441153	-0.838631	6.064424
Η	-2.433982	1.235638	7.793761
Η	2.303565	-0.375363	3.846499
Н	-4.646185	1.471816	8.199031
Η	-7.013126	1.518053	7.496451
Η	-7.569135	1.302086	5.078563
Η	-5.789735	1.035413	3.392206
Н	3.267225	-0.531144	1.807364
Н	3.160406	-0.594696	-0.658651
Н	1.005363	-0.086645	-1.797995
Н	-1.012845	0.473416	-0.495775

37			
FINAL	HEAT OF FOR	RMATION = -1550	.335286
С	0.126272	-0.025364	-0.066292
С	0.065344	-0.109025	1.343592
С	1.286194	0.086067	2.060488
С	2.477657	0.341306	1.348287
С	2.504442	0.420160	-0.020570
С	1.305767	0.231126	-0.723018
0	-1.064028	-0.399273	1.896478
Sn	-1.701660	0.025816	3.827792
Ν	0.462690	-0.128395	4.341420
С	1.407256	0.010699	3.486661
0	-3.737390	0.455526	3.952341
С	-4.434174	0.978339	4.898151
С	-3.935044	1.306406	6.198114
С	-4.814718	1.849631	7.162360
С	-6.141492	2.069829	6.900413
С	-6.628110	1.754716	5.622521
С	-5.805884	1.234415	4.653933
С	-2.567648	1.184417	6.606656
N	-1.576655	0.697005	5.953202
С	-0.224129	0.838964	6.444516
С	0.688460	-0.175211	5.761083
Cl	-1.321212	2.342902	3.324245
Н	-0.172961	0.716313	7.537229
Н	0.133259	1.853044	6.206571
Н	1.738423	0.030839	6.020154
Н	0.455669	-1.187543	6.128333
Н	-2.358968	1.588491	7.609814
Н	2.437226	0.085314	3.870112
Н	-4.411738	2.100595	8.144810
Н	-6.798938	2.485928	7.660130
Н	-7.678355	1.928250	5.388585
Н	-6.190874	0.996566	3.663771
Н	3.399663	0.480537	1.914966
Н	3.432975	0.622421	-0.549396
Н	1.304595	0.288189	-1.811405
Н	-0.800343	-0.171060	-0.618800
Н	-2.011660	-1.616341	4.145359

40			
FINAL	HEAT OF FOI	RMATION = -1701	.525111
С	-0.001057	-0.019616	0.006302
С	-0.000926	-0.036486	1.397815
С	1.220542	-0.026903	2.095633
С	2.418867	0.002112	1.388572
С	2.404741	0.050987	0.004871
С	1.197318	0.039525	-0.684711
Ν	-1.159513	-0.099724	2.187662
С	-2.334250	0.290495	1.784702
С	-3.548173	0.269472	2.513188
С	-3.652536	-0.123141	3.877001
С	-4.909180	-0.068359	4.493738
С	-6.016961	0.356010	3.791509
С	-5.928715	0.750680	2.448378

С	-4.709422	0.709266	1.828548
0	-2.629162	-0.506200	4.600830
Sn	-0.748925	-0.917805	4.130747
Cl	-0.509928	-3.172960	3.800776
Ν	1.128060	-0.086261	3.494904
С	2.070414	0.298979	4.305736
С	2.056083	0.272081	5.721950
С	0.931770	-0.116923	6.503198
С	1.037121	-0.068676	7.899050
С	2.207460	0.342839	8.499457
С	3.323086	0.731665	7.743223
С	3.238103	0.699939	6.377796
0	-0.213452	-0.493548	5.988767
Н	-2.401578	0.703028	0.771281
Н	2.981315	0.707581	3.852682
Н	-4.618278	1.015522	0.786257
Н	-6.981503	0.387096	4.296960
Н	4.091884	1.004933	5.772513
Н	2.261368	0.367799	9.587167
Н	3.373001	-0.034945	1.910850
Н	3.345320	0.072998	-0.541538
Н	1.189564	0.052017	-1.772688
Н	-0.934382	-0.074857	-0.551017
Н	4.236269	1.057073	8.235323
Н	0.174257	-0.362335	8.493676
Н	-4.988084	-0.365231	5.537831
Н	-6.813350	1.086508	1.912848

41			
FINAL	HEAT OF FO	RMATION = -1702	2.329125
С	-0.037692	-0.365327	-0.018766
С	0.035127	-0.334351	1.393082
С	1.180083	0.294818	1.976350
С	2.174093	0.846777	1.135701
С	2.071987	0.806011	-0.229596
С	0.947794	0.187235	-0.799713
0	-0.894047	-0.900337	2.081388
Sn	-1.559805	-0.355415	3.991127
Ν	0.616236	0.057432	4.337422
С	1.416507	0.389862	3.378597
0	-3.609223	-0.249375	4.409844
С	-4.222058	0.690494	5.042748
С	-3.631561	1.437234	6.110650
С	-4.400547	2.410934	6.788481
С	-5.700241	2.673834	6.444931
С	-6.276210	1.943873	5.392976
С	-5.565442	0.983898	4.714202
С	-2.293516	1.261928	6.569072
Ν	-1.369431	0.527192	6.043924
С	-0.093400	0.401497	6.589604
С	0.959524	0.153463	5.684624
Cl	-1.743335	1.876006	3.142713
С	2.254129	-0.018066	6.170877
Н	-2.030744	1.851028	7.459001
Н	2.389430	0.820222	3.654718
Н	-3.933946	2.967965	7.602427
Н	-7.308799	2.141041	5.105117
Н	3.040866	1.319632	1.599647
Н	0.850699	0.144675	-1.884437
С	2.514001	0.082847	7.528748

Η	3.063808	-0.257609	5.483363
Н	3.529277	-0.057123	7.895016
С	1.476727	0.327175	8.420223
С	0.179174	0.470649	7.954507
Η	1.673797	0.380100	9.489274
Η	-0.634945	0.614134	8.663354
Η	2.844617	1.240945	-0.859410
Η	-0.908327	-0.839572	-0.468280
Η	-6.019229	0.423868	3.898500
Η	-6.274603	3.431104	6.973523
Н	-1.544933	-1.980156	4.465761

88			
FINAL	HEAT OF F	ORMATION = -2328	.824669
С	-0.100197	0.270705	0.047094
С	0.024969	0.476810	1.436235
С	1.299835	0.322201	2.050791
С	2.419805	-0.058682	1.279199
С	2.326686	-0.263050	-0.074558
С	1.054708	-0.081540	-0.644035
0	-1.046120	0.757954	2.150196
Sn	-1.236772	1.661202	3.896346
Ν	0.726411	0.929590	4.348548
С	1.543945	0.487831	3.436263
0	-3.176757	1.278192	3.858170
С	-4.096694	1.293401	4.797206
С	-3.748022	1.161019	6.171280
С	-4.757879	1.074377	7.155916
С	-6.088657	1.148471	6.831548
С	-6.387682	1.322362	5.468534
С	-5.457278	1.400135	4.438679
С	-2.420531	1.109806	6.657484
Ν	-1.308586	1.267210	5.994667
С	-0.034672	1.247644	6.583045
С	1.051266	1.064475	5.706208
Cl	-0.949972	3.930281	3.654037
С	2.348920	1.057025	6.212041
Н	-2.330200	0.919674	7.732541
Н	2.548890	0.200816	3.764812
Н	-4.446830	0.959158	8.194837
С	-7.162804	1.069780	7.915616
Н	-7.434417	1.402253	5.196053
С	-5.902288	1.602775	2.983772
Η	3.374664	-0.180170	1.791767
С	3.556048	-0.659284	-0.891786
Η	0.963428	-0.236105	-1.713517
С	-1.447017	0.399588	-0.678472
С	-1.282221	0.202876	-2.189338
С	-2.410546	-0.688014	-0.177843
С	-2.058119	1.796141	-0.471260
H	-2.258173	0.300419	-2.677333
H	-0.622271	0.953067	-2.642921
H	-0.900256	-0.792125	-2.447563
H	-3.369335	-0.612358	-0./05948
H	-2.009132	-1.690311	-0.3/14/1
H	-2.621518	-0.609906	0.891896
H	-2.934201	1.913902	-1.120291
H	-2.396208	1.9/3195	0.552551
H	-1.34/468	2.588014	-0./3/9/4
C	-1.42/049	1./1/115	2.0012/2

С	-5.317170	2.911477	2.428200
С	-5.477779	0.406304	2.118887
Н	-5.850544	0.537169	1.095171
Н	-4.394128	0.285155	2.056330
Н	-5.903298	-0.529072	2.503139
Н	-5.684302	3.078362	1.408057
Н	-5.630439	3.772081	3.032067
Н	-4.225420	2.915843	2.378852
Н	-7.710438	1.873601	1.834461
Н	-7.941996	0.808198	3.216275
Н	-7.825785	2.567382	3.448276
С	3.208696	-0.922036	-2.357265
С	4.585040	0.477924	-0.827900
С	4.165743	-1.939497	-0.304531
Н	5.043793	-2.247839	-0.885218
Н	4.501348	-1.809384	0.731650
Н	3.449595	-2.770051	-0.318981
Н	4.108668	-1.225549	-2.903930
Н	2.476643	-1.731109	-2.473073
Н	2.816397	-0.031053	-2.863059
Н	5.480308	0.219851	-1.406554
Н	4.179423	1.410477	-1.238429
Н	4.912198	0.683707	0.198696
С	-8.573317	1.075695	7.326165
С	-6.979487	-0.225286	8.717651
С	-7.014578	2.282504	8.844607
Н	-9.313047	0.979936	8.128850
Н	-8.802199	2.007674	6.794455
Н	-8.739300	0.239475	6.635716
Н	-7.780798	2.268056	9.629654
Н	-6.039437	2.303304	9.346556
Н	-7.120699	3.224156	8.292519
Н	-7.746031	-0.307924	9.497877
Н	-7.062077	-1.110692	8.075671
Н	-6.007334	-0.272171	9.223075
С	2.568265	1.208508	7.569950
Н	3.204995	0.948953	5.549459
Н	3.586038	1.200448	7.954437
С	1.495820	1.397835	8.434763
С	0.202795	1.431413	7.943155
Н	1.669916	1.541421	9.499128
Н	-0.618236	1.622404	8.631264

41			
FINAL	HEAT OF FO	ORMATION = -1702	.329125
С	-0.037692	-0.365327	-0.018766
С	0.035127	-0.334351	1.393082
С	1.180083	0.294818	1.976350
С	2.174093	0.846777	1.135701
С	2.071987	0.806011	-0.229596
С	0.947794	0.187235	-0.799713
0	-0.894047	-0.900337	2.081388
Sn	-1.559805	-0.355415	3.991127
Ν	0.616236	0.057432	4.337422
С	1.416507	0.389862	3.378597
0	-3.609223	-0.249375	4.409844
С	-4.222058	0.690494	5.042748
С	-3.631561	1.437234	6.110650
С	-4.400547	2.410934	6.788481
С	-5.700241	2.673834	6.444931

С	-6.276210	1.943873	5.392976
С	-5.565442	0.983898	4.714202
С	-2.293516	1.261928	6.569072
Ν	-1.369431	0.527192	6.043924
С	-0.093400	0.401497	6.589604
С	0.959524	0.153463	5.684624
Cl	-1.743335	1.876006	3.142713
С	2.254129	-0.018066	6.170877
Н	-2.030744	1.851028	7.459001
Н	2.389430	0.820222	3.654718
Н	-3.933946	2.967965	7.602427
Н	-7.308799	2.141041	5.105117
Н	3.040866	1.319632	1.599647
Н	0.850699	0.144675	-1.884437
С	2.514001	0.082847	7.528748
Н	3.063808	-0.257609	5.483363
Н	3.529277	-0.057123	7.895016
С	1.476727	0.327175	8.420223
С	0.179174	0.470649	7.954507
Н	1.673797	0.380100	9.489274
Н	-0.634945	0.614134	8.663354
Н	2.844617	1.240945	-0.859410
Н	-0.908327	-0.839572	-0.468280
Н	-6.019229	0.423868	3.898500
Н	-6.274603	3.431104	6.973523
Н	-1.544933	-1.980156	4.465761

TMS+

13			
FINAL	HEAT OF F	FORMATION = -408	.284834
Si	-0.043591	-0.486428	-0.183527
С	-1.867947	-0.464270	-0.158945
Н	-2.290777	0.542850	-0.088465
Н	-2.256511	-0.951068	-1.066748
Н	-2.238794	-1.068051	0.683213
С	0.846011	-2.076967	-0.275218
Н	1.555417	-2.162100	0.561776
Н	0.183281	-2.948101	-0.272137
Н	1.460472	-2.102913	-1.188729
С	0.889853	3 1.080013	-0.106053
Н	0.569800	1.751328	-0.917001
Н	0.645534	1.607152	0.829458
Н	1.974591	0.944492	-0.160410

TMSH

14			
FINAL	HEAT OF F	ORMATION = -409	.174447
С	0.009921	-0.016622	-0.011280
Si	0.020436	-0.036781	1.868811
С	1.789078	-0.016980	2.506879
Н	-0.682460	1.181946	2.366578
С	-0.880030	-1.559142	2.507054
Н	-1.013341	-0.010644	-0.406111
Н	0.521838	0.869889	-0.405207
Н	0.517491	-0.900681	-0.417770
Н	-0.391663	-2.479822	2.163163
Н	-0.897200	-1.583243	3.603592
Н	-1.920121	-1.585902	2.159664
Н	2.330842	0.871004	2.158803
Н	1.821290	-0.014435	3.603309

Imine---2-Cl2 FLP

63			
FINAL	HEAT OF FO	RMATION =	0.00000
С	-0.439373	0.072860	0.095662
С	-0.282034	0.162974	1.486164
С	1.029878	0.084542	2.028097
С	2.136252	-0.007987	1.149935
С	1.963691	-0.042398	-0.212065
С	0.661746	-0.022110	-0.725994
0	-1.344732	0.291735	2.224744
Sn	-1.687932	-0.022239	4.197527
Cl	-1.643163	-2.383395	3.936168
С	1.314714	-0.067461	3.415571
Ν	0.497548	-0.037507	4.415914
С	0.959991	-0.504808	5.712170
С	0.009880	-0.047779	6.806251
Ν	-1.347462	-0.257870	6.376994
С	-2.188764	-0.899182	7.113006
С	-3.546389	-1.206042	6.815790
С	-4.211305	-0.774305	5.637675
С	-5.540190	-1.171270	5.448316
С	-6.192795	-1.933015	6.398465
C	-5.553214	-2.341468	7.571195
C	-4.242690	-1.9814/8	7.766428
0	-3.648482	0.019932	4.754556
H	1.9/4216	-0.138809	5.926005
H	1.002587	-1.604090	5.69/382
H	0.229338	-0.58/858	7.737821
H	0.162306	1.020891	7.020784
H	2.367702	-0.284034	3.644155
H	-1.829529	-1.236366	8.088903
п	3.140105	-0.071003	1.369379
п	Z.8Z3943 0 E112E0	-0.111144	-0.8/2009
н u	0.511259	-0.093370	-1.0010//
п ц	-1.454120	-2 200100	-0.290857
п u	-6 080029	-2.299199	0.009524
н	-7 228161	-2.939119	6 223658
и П	-6 056743	-0 872468	4 538879
N	-2 143561	2 252778	3 991154
C	-2 775655	2 684194	2 973213
H	-2.875933	3.769948	2.880813
С	-3.396845	1,994678	1.827996
C	-2.987936	2.415793	0.558948
C	-4.448259	1.097572	1.955408
C	-3.575177	1.881382	-0.568952
Н	-2.187788	3.148960	0.450912
С	-5.057547	0.589339	0.809907
Н	-4.818393	0.815804	2.933191
С	-4.618439	0.964551	-0.447151
Н	-3.234901	2.173640	-1.560819
Н	-5.891537	-0.102515	0.911308
Н	-5.092603	0.560837	-1.339318
С	-1.684884	3.256712	5.008976
С	-2.040642	4.706057	4.666864
Н	-3.121809	4.869686	4.588830
Н	-1.684430	5.346356	5.479138

-1.557106	5.062247	3.749943
-0.162384	3.171318	5.091947
0.219583	3.925067	5.788422
0.209944	2.205402	5.433493
0.294602	3.360257	4.113013
-2.365616	2.919491	6.334705
-2.220780	1.888434	6.656999
-1.971045	3.571213	7.122423
-3.446637	3.086004	6.273961
	-1.557106 -0.162384 0.219583 0.209944 0.294602 -2.365616 -2.220780 -1.971045 -3.446637	-1.5571065.062247-0.1623843.1713180.2195833.9250670.2099442.2054020.2946023.360257-2.3656162.919491-2.2207801.888434-1.9710453.571213-3.4466373.086004

Imine---2-Cl2 FLP

	63		
С	-0.369007	0.127899	0.068805
Ċ	-0 203901	0 160762	1 463641
c	1 105756	0 000225	1 00//02
C	1.103/30	0.000333	1.994403
С	2.202969	-0.128001	1.110922
С	2.024014	-0.131793	-0.248085
С	0.723704	-0.017060	-0.757649
0	-1.252921	0.321694	2.213612
Sn	-1.611698	-0.057345	4 176538
C1	_1 587186	-2 101508	3 863846
CT C	1 205060	2.404500	2 270656
C	1.383068	-0.146822	3.379636
Ν	0.5/3222	-0.085836	4.384019
С	1.036299	-0.564568	5.675882
С	0.086128	-0.123326	6.776002
Ν	-1.276420	-0.302544	6.339389
С	-2.140338	-0.885608	7.102050
Ċ	-3 517255	-1 130243	6 8/5290
c	J.JI72JJ 4 102001	1.130243	0.04JZ90 E 6E7700
C	-4.103001	-0.725720	5.657728
С	-5.552/22	-1.011661	5.538/21
С	-6.229715	-1.653239	6.554487
С	-5.582420	-2.048633	7.731025
С	-4.242977	-1.788947	7.863359
0	-3.590500	-0.069147	4.697437
Н	2 048044	-0.195187	5 894954
ц	1 084210	-1 663371	5 650528
11	0 202007	1.0000071	7 601220
п	0.293007	-0.094432	7.091330
H	0.254/3/	0.935397	7.023914
Н	2.431394	-0.3943/3	3.60/821
Н	-1.782887	-1.228717	8.083101
Η	3.203355	-0.247981	1.526515
Η	2.874244	-0.241068	-0.916095
Н	0.573558	-0.055028	-1.835138
Н	-1.378928	0.221090	-0.323491
н	-3 718531	-2 092154	8 769392
ц Ц	-6 131039	-2 553801	8 521663
11	0.131039	2.555001	0.521005
H	-7.292378	-1.85/994	6.433057
Н	-6.0/3928	-0./145/3	4.630634
Ν	-2.181914	2.177110	3.991731
С	-2.869149	2.599336	3.000424
Н	-3.050525	3.676758	2.968844
С	-3.445759	1.956196	1.814063
C	-3.275922	2.680337	0.628990
Ċ	-1 206839	0 787634	1 799078
C	-3 700000	0.101034	
U 77	-3.192302	2.200222	-0.004400
Н	-2./34468	3.62/009	0.638/16
С	-4.753529	0.340303	0.605376
Η	-4.407414	0.245077	2.715537
С	-4.538860	1.035627	-0.576732

Η	-3.639078	2.762041	-1.488803
Η	-5.363175	-0.561259	0.603480
Η	-4.971595	0.677082	-1.508772
С	-1.781401	3.179977	5.034594
С	-2.132419	4.627197	4.676717
Η	-3.212019	4.802147	4.603841
Η	-1.764280	5.274977	5.477877
Η	-1.652323	4.965264	3.751300
С	-0.264483	3.111524	5.185006
Н	0.075632	3.820547	5.946864
Н	0.102951	2.127577	5.476836
Н	0.232295	3.366993	4.241514
С	-2.515093	2.836119	6.330796
Η	-2.340759	1.818678	6.681500
Н	-2.191445	3.516248	7.126649
Η	-3.597107	2.956842	6.209412

References

1. H. Schmitt, R. Lomoth, A. Magnuson, J. Park, J. Fryxelius, M. Kritikos, J. Mårtensson, L. Hammarström, L. Sun and B. Åkermark, Chemistry - A European Journal, 2002, **8**, 3757-3768

2. R. Gericke and J. Wagler, Main Group Metal Chemistry, 2014, **37**, DOI:10.1515/mgmc-2014-0004.

3. H. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Zhou and S. B. T. Nguyen, Inorg Chem, 2004, **43**, 14, 4315–4327.

4. R. Bisht and B. Chattopadhyay, J Am Chem Soc, 2016, **138**, 1, 84–87.

5. N. Guimond and K. Fagnou, J Am Chem Soc, 2009, 131, 34, 12050–12051

6. F. Schaufelberger and O. Ramström, Chemistry - A European Journal, 2015, 21, 12735-12740

7. J. Mlochowski, E. Kubicz, K. Kloc, M. Mordarski, W. Peczyńska and L. Syper, Liebigs Ann Chem, 1988, 455-464.

8. S. B. Said, J. Młochowski and J. Skarżewski, Liebigs Ann Chem, 1990, 461-464

9. D. Enders, A. Rembiak and M. Seppelt, Tetrahedron Lett, 2013 54, 470-473

10. C. Talotta, G. Concilio, M. De Rosa, A. Soriente, C. Gaeta, A. Rescifina, P. Ballester and P. Neri, Org. Lett., 2021, **23**, 1804–1808.

11. D. Reimer, W. Schilling, A. Goetz., et al., ASC catalysis, 2018, 8, 12, 11679–11687

12. N. Chrysochos, S. Patsch, B. Elvers, et al., Chem. Commun., 2023, 59, 12350-12353

13. J. Masuda, P. Wei, D. Stephan, Dalton Trans., 2003, 3500-3505

14. 1E. Alamanova, N. Shyytyeva, Z. Berdalieva, N. Abdyldaeva, A. Duishonbaeva and Z. Abdullaeva, Journal of Crystallization Process and Technology, 2021, **10**, 1–9.

15. Sivakumar, S. G. Raj, G. R. Kumar and R. Mohan, Journal of Crystallization Process and Technology, 2012, **02**, 130–136.

16. 1G. Sheldrick, Acta Crystallographica Section A Foundations and Advances, 2018, 74.

17. 1G. M. Sheldrick, Acta Crystallographica Section C Structural Chemistry, 2015, 71, 3–8.

18. 1A. L. Spek, Acta Crystallographica Section E Crystallographic Communications, 2020, 76, 1–11.

19. 1L. J. Farrugia, Journal of Applied Crystallography, 2012, 45, 849–854.

20.P. Erdmann and L. Greb, *ChemPhysChem*, 2021, **22**, 935–943.