Supporting Information

Diamond Lattice in Single-component Molecular Crystals Comprising Tetrabenzoporphyrin Neutral Radicals

Kosuke Mine,^a Sachie Arae,^a Hiroshi Murakawa,^b Masahisa Tsuchiizu,^c Noriaki Hanasaki ^b and Masaki

Matsuda *a

^a Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. E-mail: masaki@kumamoto-u.ac.jp

^b Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

^c Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan..

Contents

Experimental details	2	
Figure S1 Molecular structures of macrocyclic ligands of Pc ^{2–} and tbp ^{2–} .	4	
Table S1 Crystal data and structure refinement results for Co(tbp)(CN) ₂ , Fe(tbp)(CN) ₂ ,		
and Mn(tbp)Cl ₂ .	4	
Figure S2 Molecular structures in crystals and optimized geometries by DFT theory of		
Co(tbp)(CN) ₂ , Fe(tbp)(CN) ₂ and Mn(tbp)(CN) ₂ (side view).	5	
Figure S3 Crystal structure of Co(tbp)(CN) ₂ .	6	
Figure S4 Intermolecular short contacts in Co(tbp)(CN)2.		

Supporting Information

Experimental details

Synthetic procedures

 $M^{II}(tbp)$ was prepared as per the previously reported procedure.¹ An electrocrystallization cell equipped with a glass frit between two compartments was used for the electrolysis of Co(tbp) solution (8.9 mg, 0.016 mmol) with (*n*-Bu₄N)·CN (11.5 mg, 0.043 mmol) in *N*,*N*-dimethylformamide (35 mL). A 0.2–1.0 µA constant current was applied between two platinum electrodes immersed in the solution of each compartment for 3–4 weeks at 40 °C. Black prismshaped crystals of Co^{III}(tbp^{•–})(CN)₂ (3.5 mg, 0.0056 mmol, 35%) deposited on the anode surface during the current flow, and were harvested via filtration. A similar procedure using Fe(tbp) and Ph₄P·CN, and Mn(tbp) and Ph₄P·Cl yielded black prism-shaped crystals of Fe^{III}(tbp^{•–})(CN)₂, and Mn^{III}(tbp^{•–})Cl₂, respectively.

Crystal structure determination

Crystal data for $M^{III}(tbp)(CN)_2$ (M = Co, Fe) and $Mn^{III}(tbp)Cl_2$ were collected at 293 K using an automated Rigaku SuperNova system with monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved using a direct method with SHELXT-2014/5² and refined using a full-matrix least-squares technique with SHELXL-2018/1.³ Anisotropic and isotropic thermal parameters were employed for non-hydrogen and hydrogen atoms, respectively. Crystallographic data were deposited at the Cambridge Crystallographic Data Centre (CCDC).

Measurements

The electrical resistivity of Co(tbp)(CN)₂ was measured using a physical property measurement system from Quantum Design over 2–300 K temperature range with a four-probe technique under ambient and hydrostatic pressures. Gold wires were attached to the sample using gold paste. Hydrostatic pressure (0.35–2.4 GPa) was applied using a BeCu piston-cylinder cell with a pressure medium of DEMNUM S-20. The pressure was monitored using the manganin wire resistance.

Static magnetic susceptibility measurements of polycrystalline samples were performed using a magnetic property measurement system form Quantum Design , i.e., a superconducting quantum interference device (SQUID) under 0.01 or 1 T of static magnetic field over a 2–300 K temperature range. The core diamagnetism value was calculated as a sum of the Pascal's constants and used to correct the data.

Figure S1 Molecular structures of macrocyclic ligands of Pc^{2-} (left) and tbp^{2-} (right).

CCDC number	2311221	2311222	2311223
Chemical formula	$C_{38}H_{20}CoN_6$	$C_{38}H_{20}FeN_6$	$C_{36}H_{20}Cl_2MnN_4$
Formula weight	619.53	616.45	634.40
Crystal description	Black prism	Black prism	Black prism
Temperature / K	293	293	293
Crystal system	Tetragonal	Tetragonal	Tetragonal
Space group	$I4_{1}/a$	$I4_{1}/a$	$I4_{1}/a$
<i>a</i> / Å	13.6416(3)	13.7275(3)	13.7890(4)
<i>c</i> / Å	14.5402(6)	14.5027(7)	14.4334(8)
$V/\text{\AA}^3$	2705.83(16)	2732.95(18)	2744.3(2)
Ζ	4	4	4
$d_{\rm cal}$ / (g cm ⁻³)	1.521	1.498	1.535
Radiation wavelength / Å	0.71073 (MoKα)	0.71073 (MoKα)	0.71073 (ΜοΚα)
μ / mm^{-1}	0.677	0.594	0.711
No. of measured reflections	4041	4095	6430
No. of independent reflections	1574	1586	1589
No. of observed reflections	1334 ($I > 2\sigma(I)$)	$1220 (I > 2\sigma(I))$	1181 ($I > 2\sigma(I)$)
$R (I > 2\sigma(I))$	$R_1 = 0.0357$	$R_1 = 0.0404$	$R_1 = 0.0379$
	$wR_2 = 0.1010$	$wR_2 = 0.1161$	$wR_2 = 0.1199$
Goodness-of-fit	1.107	1.073	1.077
Parameters	103	103	98

Table S1. Crystal data and structure refinement results for Co(tbp)(CN)₂, Fe(tbp)(CN)₂, and Mn(tbp)Cl₂.

The Gaussian 16 software package⁴ was used to perform theoretical calculations using the density functional theory approach under the conditions of UB3LYP/6-311G(d) level. LANL2DZ basis set was applied for Mn, Fe, and Co atoms. Under the D_{2d} symmetry, structural optimization and frequency analysis were performed on initial structure. The atomic coordinates obtained by crystal structure analysis were used as an initial structure.

Figure S2. Molecular structures in crystals and optimized geometries by DFT theory of Co(tbp)(CN)₂, Fe(tbp)(CN)₂ and Mn(tbp)Cl₂ (side view).

Supporting Information

Figure S3. Crystal structure of $Co(tbp)(CN)_2$ viewed along the *a*-axis (a), *b*-axis (b), and *c*-axis (c), and (d) the diamond arrangement of Co atoms (left) in the crystal structure (right).

Figure S4. Intermolecular short contacts in Co(tbp)(CN)₂.

References

- a) S. Ito, T. Murashima, H. Uno, and N. Ono, *Chem. Commun.*, **1998**, 1661–1662; b) S. Ito, N. Ochi, T. Murashima, H. Uno, and N. Ono, *Heterocycles*, 2000, **52**, 399–411; c) S.-D. Jeong, B. Min, S. Y. Cho, C. Lee, B. K. Park, K.-S. An, and J. Lim, *J. Org. Chem.*, 2012, 77, 8329–8331.
- 2) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- 3) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.