Supplementary Information

Pd-catalysed $\mathbf{C}-\mathbf{H}$ alkynylation of benzophospholes

Yu Tokura, ${ }^{\dagger}$ Shibo Xu, ${ }^{\dagger}$ Kosuke Yasui, ${ }^{\dagger}$ Yuji Nishii, ${ }^{\dagger}$ and Koji Hirano ${ }^{*},{ }^{\dagger},{ }^{\dagger}$
${ }^{\dagger}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
\ddagger Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
E-mail: k_hirano@chem.eng.osaka-u.ac.jp (K.H.)

Contents

Instrumentation and Chemicals S2
Experimental Procedures and Characterization Data for Products S4-S18
X-Ray Analysis S19-S22
Detailed Optimisation Studies S23-S26
Chiral HPLC Charts S27
Control Experiments S28
Plausible Mechanism S29
Photoluminescence Properties S30
Cyclic Voltammetry and Differential Pulse Voltammetry S31-S37
Robustness Screen S38
Copies of NMR spectra S39-S80
References S81

Instrumentation and Chemicals

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at $400 \mathrm{MHz}, 100 \mathrm{MHz}, 376$ MHz , and 162 MHz , respectively, for CDCl_{3} solutions. HRMS data were obtained by APCI using TOF. GC analysis was carried out using a silicon OV-17 column (i. d. $2.6 \mathrm{~mm} \times 1.5 \mathrm{~m}$) or a CBP-1 capillary column (i. d. $0.5 \mathrm{~mm} \times 25 \mathrm{~m}$). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck silica gel $60 \mathrm{~F}_{254}$. Silica gel (60 N , spherical neutral, Kanto Chemical Co.) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-20AR (pump, SHIMADZU, $7.5 \mathrm{~mL} / \mathrm{min} \mathrm{CHCl}_{3}$) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 ($20 \times 600 \mathrm{~mm}$, particle size: $10 \mu \mathrm{~m}$) (preparative columns, YMC). UV-vis spectra were acquired with JASCO V-750 spectrometer. Photoluminescence spectra and quantum yield measurements were conducted with JASCO FP-8500 spectrometer equipped with an integration sphere system. The crystal measurement was performed with XtaLAB Synergy-S/Cu or Mo (Rigaku). Cyclic voltammograms and differential pulse voltammograms were recorded on ALS Electrochemical Analyzer Model 600E equipped with SVC-3 Voltammetry cell. Counter and working electrodes were made of Pt , and the reference electrode was $\mathrm{Ag} / \mathrm{Ag}^{+}$. The working electrodes were polished on a cloth polishing pad in an alumina slurry and then washed in $\mathrm{H}_{2} \mathrm{O}$ under sonication before use. The measurements were conducted in MeCN solvent (degassed by N_{2} gas bubbling) containing tetrabutylammonium hexafluorophosphate as a supporting
electrolyte at an indicated scan rate. All the potentials were calibrated with the standard ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple measured in identical conditions.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. 1,4-Dioxane was dried on a Glass Contour Solvent dispensing system (Nikko Hansen \& Co., Ltd.) prior to use. $\operatorname{Pd}(\mathrm{OPiv})_{2}$ and NaOPiv were purchased from Sigma-Aldrich. The $\mathrm{C} 2-\mathrm{H}$ benzophospholes $\mathbf{1}^{\mathrm{S} 1}$ and alkynyl bromides $\mathbf{2}^{\mathrm{S} 2}$ were prepared according to the literature methods. Unless otherwise noted, all reactions were performed under nitrogen atmosphere.

Experimental Procedures and Characterization Data for Products

Pd-Catalysed C2-H Alkynylation of Benzophospholes (Scheme 2: general procedure A)

A 0.10 mmol scale synthesis of 3: The benzophosphole oxide $1(0.10 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OPiv})_{2}(3.1 \mathrm{mg}, 0.010$ $\mathrm{mmol})$, and $\mathrm{NaOPiv} \cdot \mathrm{xH}_{2} \mathrm{O}(25 \mathrm{mg}, 0.20 \mathrm{mmol})$ were placed in a Schlenk tube, which was filled with N_{2} by using the standard Schlenk technique. 1,4-Dioxane (1.5 mL) and the alkynyl bromide 2 (0.20 mmol) were finally added via syringe. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate to give the corresponding $\mathrm{C} 2-\mathrm{H}$ alkynylated benzophosphole.

A 1.0 mmol scale synthesis of 3aa: 1,3-Diphenylphosphindole 1 -oxide ($\mathbf{1 a} ; 303 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OPiv})_{2}(31 \mathrm{mg}, 0.10 \mathrm{mmol})$, NaOPiv$\cdot \mathrm{xH}_{2} \mathrm{O}(248 \mathrm{mg}, 2.0 \mathrm{mmol})$, and 1,4 -dioxane $(15 \mathrm{~mL})$ were placed in a Schlenk tube, which was filled with N_{2} by using the standard Schlenk technique. 1,4-Dioxane (15 mL) and tri(isopropyl)silyl (TIPS)-substituted alkynyl bromide 2a ($523 \mathrm{mg}, 2.0 \mathrm{mmol}$) were finally added via syringe. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate $(2: 1, \quad \mathrm{v} / \mathrm{v})$ then $\operatorname{GPC} \quad\left(\mathrm{CHCl}_{3}\right)$ to give 1,3-diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $329 \mathrm{mg}, 0.68 \mathrm{mmol}$) in 68% yield.

1,3-Diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa): Synthesized from 1a (31 mg, 0.10 mmol) and $\mathbf{2 a}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A , purified by silica gel column chromatography with hexane/ethyl acetate ($2 / 1, \mathrm{v} / \mathrm{v}$): $35 \mathrm{mg}(72 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. 111.1-111.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=9.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 9 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$157.1(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 1 \mathrm{C}), 142.3(\mathrm{~d}, J=24.4 \mathrm{~Hz}, 1 \mathrm{C}), 133.2(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, 1C), 132.5 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.3$ (1C), 131.2 (1C), 131.1 (d, $J=104.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.9$ (d, $J=10.8$ $\mathrm{Hz}, 1 \mathrm{C}), 129.8(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.5$ (1C), 129.0 (d, $J=103.8,1 \mathrm{C}$), 128.9 (2C), 128.8 (1C), 128.7 (1C), $128.4(2 \mathrm{C}), 124.6(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{C}), 119.8(\mathrm{~d}, J=102.6 \mathrm{~Hz}, 1 \mathrm{C}), 104.8(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{C})$, 99.5 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 18.5$ (6C), 11.1 (3C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.30$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{OPSi}$: 483.2268, found: 483.2287.

6-Methyl-1-phenyl-3-(p-tolyl)-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3ba): Synthesized from 1b ($33 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{2 a}(52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 1, \mathrm{v} / \mathrm{v}$): 37 mg ($72 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. 135.8-136.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77$ (m, 2H), 7.56-7.51 (m, 4H), 7.46-7.41 (m, 2H), $7.34(\mathrm{dd}, J=7.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3(\mathrm{dd}, J=20.7 \mathrm{~Hz}$, 1C), 140.3 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 139.7$ ($\mathrm{d} J=24.4 \mathrm{~Hz}, 1 \mathrm{C}$), 139.6 (1C), 133.4 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{C}), 132.3$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.4(\mathrm{~d}, J=104.3 \mathrm{~Hz}, 1 \mathrm{C}), 131.3$ (1C), 131.2 (1C), 130.52 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{C})$, 130.46 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{C}), 129.3$ (d, $J=103.3 \mathrm{~Hz}, 1 \mathrm{C}), 129.0$ (2C), 128.8 (2C), 128.7 (1C), 128.6 (1C), 124.5 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{C}), 117.9$ (d, $J=103.7 \mathrm{~Hz}, 1 \mathrm{C}), 103.9$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{C}), 99.9$ (d, $J=9.4$ $\mathrm{Hz}, 1 \mathrm{C}), 21.5(1 \mathrm{C}), 21.3(1 \mathrm{C}), 18.5(6 \mathrm{C}), 11.2(3 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.37$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{OPSi}$: 511.2581, found: 511.2585.

6-(tert-Butyl)-3-(4-(tert-butyl)phenyl)-1-phenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3ca): Synthesized from 1c ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2a ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A , purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1, \mathrm{v} / \mathrm{v})$ and GPC (CHCl_{3}): $50 \mathrm{mg}\left(84 \%, 0.10 \mathrm{mmol}\right.$ scale); Yellow solid; m.p. 191.9-192.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta$ 7.84-7.77 (m, 3H), 7.61-7.58 (m, 2H), 7.55-7.41 (m, 7H), $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$, 0.92-0.88 (m, 21H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5(\mathrm{dd}, J=20.9 \mathrm{~Hz}, 1 \mathrm{C}), 153.6(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{C}), 152.6$ (1C), 139.7 (d, $J=24.6 \mathrm{~Hz}, 1 \mathrm{C}), 132.3$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.3$ (1C), 131.2 (1C), 131.1 (d, $J=101.1 \mathrm{~Hz}, 1 \mathrm{C}), 130.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.9(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.4$ (d, $J=103.2 \mathrm{~Hz}$, $1 \mathrm{C}), 128.71$ (1C), 128.67 (2C), 128.6 (1C), 126.9 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{C}$), 125.3 (2C), 124.4 (d, $J=11.0 \mathrm{~Hz}$, 1C), 118.4 (d, $J=103.7 \mathrm{~Hz}, 1 \mathrm{C}), 103.4(\mathrm{~d}, ~ J=5.8 \mathrm{~Hz}, 1 \mathrm{C}), 100.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{C}), 35.1$ (1C), 34.8 (1C), 31.25 (3C), 31.18 (3C), 18.5 (6C), $11.2(3 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.64$; HRMS (APCI) m/z ([M+H] $\left.{ }^{+}\right)$calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{OPSi}: 595.3520$, found: 595.3509.

6-Methoxy-3-(4-methoxyphenyl)-1-phenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3da): Synthesized from 1d ($36 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2a ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 1, \mathrm{v} / \mathrm{v}$): 52 mg ($95 \%, 0.10 \mathrm{mmol}$ scale); Orange solid; m.p. 165.2-165.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77$ (m, 2H), 7.66-7.63 (m, 2H), 7.59-7.55 (m, 1H), $7.44(\mathrm{td}, J=7.7,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.6,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{dd}, J=11.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 21 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{C}), 160.5(1 \mathrm{C}), 156.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C})$, 134.7 (d, $J=24.3 \mathrm{~Hz}, 1 \mathrm{C}), 133.5(\mathrm{~d}, J=103.5 \mathrm{~Hz}, 1 \mathrm{C}), 132.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.3$ (1C), 131.2 (1C), 130.5 (2C), 129.3 (d, $J=103.7 \mathrm{~Hz}, 1 \mathrm{C}$), 128.7 (1C), 128.6 (1C), 125.9 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{C}$), $125.8(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{C}), 117.9(1 \mathrm{C}), 115.7(\mathrm{~d}, J=105.6 \mathrm{~Hz}, 1 \mathrm{C}), 115.4(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 113.8$ (2C), 102.7 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{C}), 100.1$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{C}), 55.7$ (1C), 55.4 (1C), 18.5 (6C), 11.2 (3C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.94$; HRMS (APCI) m/z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{PSi}$: 543.2479, found: 543.2469.

6-Chloro-3-(4-chlorophenyl)-1-phenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3ea):

Synthesized from 1e ($37 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{2 a}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A , purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1, \mathrm{v} / \mathrm{v}): 39 \mathrm{mg}$ ($71 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. $138.5-139.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.76$ (m, 2H), $7.69(\mathrm{dd}, J=10.0,1.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{dd}, J=8.3,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.00-0.86(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 1 \mathrm{C}), 140.7(\mathrm{~d}$, $J=24.0 \mathrm{~Hz}, 1 \mathrm{C}), 136.7(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{C}), 135.7(1 \mathrm{C}), 133.2(\mathrm{~d}, J=102.3 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{C}), 132.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 131.23(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{C}), 131.21(1 \mathrm{C}), 131.1$ (1C), 130.2 (2C), 130.1 (d, $J=10.3,1 \mathrm{C}), 129.0$ (1C), 128.90 (2C), 128.88 (1C), 127.9 (d, $J=104.9 \mathrm{~Hz}, 1 \mathrm{C}), 125.3$ (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{C}), 120.4(\mathrm{~d}, J=102.7 \mathrm{~Hz}, 1 \mathrm{C}), 106.6(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{C}), 98.9(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 18.4$ (6C), $11.1(3 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 35.10; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{Cl}_{2}$ OPSi: 551.1488, found: 551.1480.

6-Fluoro-3-(4-fluorophenyl)-1-phenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3fa): Synthesized from 1f ($34 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2a ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1, \mathrm{v} / \mathrm{v}): 51 \mathrm{mg}$ $(97 \%, 0.10 \mathrm{mmol}$ scale $)$; Pale yellow solid; m.p. $107.8-108.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.81-7.76 (m, 2H), 7.64-7.56 (m, 3H), 7.49-7.35 (m, 4H), 7.21-7.16 (m, 3H), 0.99-0.87 (m, 21H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1(\mathrm{dd}, J=253.1,15.3 \mathrm{~Hz}, 1 \mathrm{C}), 162.3(\mathrm{~d}, J=248.7 \mathrm{~Hz}, 1 \mathrm{C})$, 154.1 (dd, $J=20.3,1.8 \mathrm{~Hz}, 1 \mathrm{C}), 136.9(\mathrm{dd}, J=23.8,3.1 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{dd}, J=103.2,6.7 \mathrm{~Hz}, 1 \mathrm{C})$, $131.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 130.1(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{C}), 129.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{C}), 128.0(\mathrm{dd}, J=16.8,3.4$ $\mathrm{Hz}, 1 \mathrm{C}), 127.9$ (1C), 127.8 (1C), 127.1 (d, $J=104.8 \mathrm{~Hz}, 1 \mathrm{C}), 125.0$ (dd, $J=12.1,7.8 \mathrm{~Hz}, 1 \mathrm{C}), 118.62$ (dd, $J=22.5,1.1 \mathrm{~Hz}, 1 \mathrm{C}), 118.58(\mathrm{dd}, J=103.9,4.0 \mathrm{~Hz}, 1 \mathrm{C}), 116.6(\mathrm{dd}, J=23.9,10.3 \mathrm{~Hz}, 1 \mathrm{C}), 114.7$ (d, $J=21.7 \mathrm{~Hz}, 2 \mathrm{C}), 104.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{C}), 98.0(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{C}), 17.4(6 \mathrm{C}), 10.1(3 \mathrm{C}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}),-110.3 ;{ }^{31} \mathrm{P}\left\{{ }^{[1} \mathrm{H}\right\} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.76(\mathrm{~d}$, $J=5.4 \mathrm{~Hz})$; HRMS (APCI) m/z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{OPSi}$: 519.2079, found: 519.2080.

1-Phenyl-6-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)-2-((triisopropylsilyl)ethynyl)phosphin dole 1-oxide (3ga): Synthesized from $\mathbf{1 g}(44 \mathrm{mg}, 0.10 \mathrm{mmol})$ and 2a ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1$, $\mathrm{v} / \mathrm{v}): 39 \mathrm{mg}\left(63 \%, 0.10 \mathrm{mmol}\right.$ scale) ; Pale yellow solid; m.p. $148.5-149.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 7 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H})$, 0.98-0.85 (m, 21H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{C}), 145.0(\mathrm{~d}, J=24.0$ $\mathrm{Hz}, 1 \mathrm{C}), 136.3$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{C}), 133.2$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 133.1$ (1C), 132.7, 132.6, 132.5, 132.4, $132.3,132.2,132.1,131.94,131.88,131.7,131.61,131.55,131.50,131.2(1 \mathrm{C}), 130.5$ (dd, $J=3.4,2.2$ $\mathrm{Hz}, 1 \mathrm{C}), 129.20$ (2C), 129.16 (1C), 129.0 (1C), 127.8, 127.7, 127.5, 126.9, 126.83, 126.80, 126.76, 126.73, 126.67, 125.8 (dd, $J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{C}), 125.1,124.81,124.79,124.6,124.2$ (d, $J=10.1 \mathrm{~Hz}$, 1C), 123.6, 122.4, 122.10, 122.08, 119.7, 119.4, 108.7 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{C}), 98.4$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{C})$, 18.4 (6C), 11.0 (3C) (All observed signals cannot be completely assigned because of complexity associated with $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{P}$ couplings.); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta-62.7,-62.9 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 34.96; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{OPSi}$ 619.2015, found: 619.2018.

3-(Naphthalen-2-yl)-1-phenyl-2-((triisopropylsilyl)ethynyl)benzo[g]phosphindole 1-oxide (3ha):

 Synthesized from 1h ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2a ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1, \mathrm{v} / \mathrm{v}): 51 \mathrm{mg}$ ($88 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. $105.8-106.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H})$, 8.13-8.11 (m, 1H), $8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.83(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{dd}, J=$ $8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.84(\mathrm{~m}$, $21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.4(\mathrm{~d}, J=22.3 \mathrm{~Hz}, 1 \mathrm{C}), 141.9$ (d, $\left.J=23.7 \mathrm{~Hz}, 1 \mathrm{C}\right)$, 133.93 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{C}), 133.89$ (1C), 133.7 (1C), 133.0 (1C), 132.5 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 132.4$ (d, $J$$=8.6 \mathrm{~Hz}, 1 \mathrm{C}), 131.3(1 \mathrm{C}), 131.2(1 \mathrm{C}), 130.9(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{C}), 129.3(\mathrm{~d}, J=100.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.0$ (1C), 128.9 (1C), 128.8 (1C), 128.75 (1C), 128.68 (1C), 128.5 (1C), 128.1 (1C), 127.8 (1C), 127.3 (1C), 127.1 (1C), 126.8 (d, $J=102.8 \mathrm{~Hz}, 1 \mathrm{C}), 126.5$ (1C), 126.2 (1C), 126.1 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{C}), 121.8$ (d, J $=11.9 \mathrm{~Hz}, 1 \mathrm{C}), 120.8(\mathrm{~d}, J=102.8 \mathrm{~Hz}, 1 \mathrm{C}), 105.1(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{C}), 99.9(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{C}) 18.5$ (6C), 11.3 (3C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.96$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{OPSi}$: 583.2581, found: 583.2562.

6,6-Dimethyl-2-phenyl-1-((triisopropylsilyl)ethynyl)-6H-naphtho[1,2,3-cd]phosphindole 2-oxide (3ia): Synthesized from $\mathbf{1 i}(34 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathbf{2 a}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 1, \mathrm{v} / \mathrm{v}$): 51 mg ($97 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. $176.6-177.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44(\mathrm{dd}, J$ $=2.0,0.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H})$, 7.42-7.38 (m, 2H), 7.34-7.30 (m, 1H), 1.74 (s, 3H), $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.00(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5(1 \mathrm{C}), 145.1(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 1 \mathrm{C}), 142.3(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{C}), 136.1(\mathrm{~d}, J=$ $27.0 \mathrm{~Hz}, 1 \mathrm{C}), 132.2$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.5$ (1C), 131.4 (1C), 131.3 (1C), 130.9 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{C})$, $130.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}), 130.5(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.61(\mathrm{~d}, J=103.6 \mathrm{~Hz}, 1 \mathrm{C}), 129.60(\mathrm{~d}, J=$ $104.6 \mathrm{~Hz}, 1 \mathrm{C}), 128.6$ (1C), 128.5 (1C), 128.0 (1C), 127.7 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 127.481$ (1C), 127.479 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{C}), 111.4(\mathrm{~d}, J=106.3 \mathrm{~Hz}, 1 \mathrm{C}), 109.2(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{C}), 102.1(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{C}), 38.7$ (1C), 33.7 (1C), 32.7 (1C), 18.6 (6C), $11.3(3 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.79$; HRMS (APCI) m/z ([M+H] ${ }^{+}$) calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{OPSi}$: 523.2581, found: 523.2588.

1,3-Diphenyl-2-((triphenylsilyl)ethynyl)phosphindole 1-oxide (3ab): Synthesized from 1a (31 mg, $0.10 \mathrm{mmol})$ and $\mathbf{2 b}(73 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A , purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 2, \mathrm{v} / \mathrm{v}$) and GPC $\left(\mathrm{CHCl}_{3}\right): 35 \mathrm{mg}(59 \%, 0.10$ mmol scale); Pale yellow solid; m.p. 228.6-229.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.75(\mathrm{~m}, 3 \mathrm{H})$, 7.66-7.64 (m, 2H), 7.61-7.57 (m, 1H), 7.55-7.42 (m, 14H), 7.39-7.34 (m, 3H), 7.28-7.24 (m, 6H);
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0(\mathrm{~d}, J=20.4 \mathrm{~Hz}, 1 \mathrm{C}), 142.2(\mathrm{~d}, J=24.5 \mathrm{~Hz}, 1 \mathrm{C}), 135.5(6 \mathrm{C})$, 133.2 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{C}), 133.1(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(3 \mathrm{C}), 132.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.4$ (1C), 131.3 (1C), 131.1 (d, $J=105.5 \mathrm{~Hz}, 1 \mathrm{C}), 130.3(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 129.9(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{C}), 129.84$ (3C), 129.76 (1C), 129.0 (1C), 128.92 (2C), 128.88 (1C), 128.8 (d, $J=104.1 \mathrm{~Hz}, 1 \mathrm{C}$), 128.6 (2C), 127.9 (6C), $125.0(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{C}), 118.9(\mathrm{~d}, J=102.2 \mathrm{~Hz}, 1 \mathrm{C}), 102.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{C}), 102.0(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.48$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{OPSi}: 585.1798$, found: 585.1799 .

2-((tert-Butyldimethylsilyl)ethynyl)-1,3-diphenylphosphindole 1-oxide (3ac): Synthesized from 1a ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{2 c}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v) and GPC $\left(\mathrm{CHCl}_{3}\right): 20 \mathrm{mg}(46 \%$, 0.10 mmol scale $)$; Yellow solid; m.p. $145.2-145.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.78(\mathrm{~m}, 2 \mathrm{H})$, 7.77-7.72 (m, 1H), 7.63-7.60 (m, 2H), 7.59-7.54 (m, 1H), 7.53-7.42 (m, 8H), 0.77 (s, 9H), 0.015 (s, $3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 1 \mathrm{C}), 142.2(\mathrm{~d}, J=24.4$ $\mathrm{Hz}, 1 \mathrm{C}), 133.1(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{C}), 132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.2$ (1C), 131.1 (1C), 131.0 (d, $J=105.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.9$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{C}), 129.8(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.5$ (1C), $129.0(\mathrm{~d}, J=103.9 \mathrm{~Hz}, 1 \mathrm{C}), 128.8(2 \mathrm{C}+1 \mathrm{C}), 128.7$ (1C), 128.4 (2C), 124.7 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{C})$, 119.3 (d, $J=103.0 \mathrm{~Hz}, 1 \mathrm{C}$), 106.6 ($\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{C}$), 98.2 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{C}), 25.9$ (3C), 16.6 (1C), -4.94 (2C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.32; HRMS (APCI) m/z ([M+H]) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{OPSi}$: 441.1798, found: 441.1798 .

2-(3,3-Dimethylbut-1-yn-1-yl)-1,3-diphenylphosphindole 1-oxide (3ad): Synthesized from 1a (31 $\mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{2 d}(32 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A, purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 2, \mathrm{v} / \mathrm{v}$): $12 \mathrm{mg}(30 \%, 0.10 \mathrm{mmol}$ scale); Pale yellow solid; m.p. 184.3-185.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.62-7.60 (m, 2H), 7.58-7.53 (m, 1H), 7.51-7.39 (m, 8H), $1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 154.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 1 \mathrm{C}), 142.5(\mathrm{~d}, J=24.9 \mathrm{~Hz}, 1 \mathrm{C}), 133.3(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{C}), 132.9(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{C}), 132.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.2(1 \mathrm{C}), 131.1(1 \mathrm{C}), 130.9(\mathrm{~d}, J=105.0 \mathrm{~Hz}, 1 \mathrm{C}), 129.7(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{C}), 129.39(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{C}), 129.38(\mathrm{~d}, J=102.1 \mathrm{~Hz}, 1 \mathrm{C}), 129.3$ (1C), 128.9 (2C), 128.8 (1C), 128.7 (1C), 128.2 (2C), 124.2 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 119.8$ (d, $J=104.9 \mathrm{~Hz}, 1 \mathrm{C}), 112.3$ (d, J $=7.0 \mathrm{~Hz}, 1 \mathrm{C}), 72.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{C}), 30.5(3 \mathrm{C}), 28.6(1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 36.17; HRMS (APCI) m/z ([M+H] $\left.{ }^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{OP}: 383.1559$, found: 383.1559 .

2-((1-((tert-Butyldimethylsilyl)oxy)cyclohexyl)ethynyl)-1,3-diphenylphosphindole 1-oxide (3ae): Synthesized from 1a ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{2 e}(63 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A , purified by silica gel column chromatography with hexane/ethyl acetate $(2 / 1, \mathrm{v} / \mathrm{v})$ and GPC (CHCl_{3}): $13 \mathrm{mg}\left(25 \%, 0.10 \mathrm{mmol}\right.$ scale); White solid; m.p. $115.8-116.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.34(\mathrm{~m}, 11 \mathrm{H}), 1.71-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H})$, $-0.20(\mathrm{~s}, 3 \mathrm{H}),-0.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 1 \mathrm{C}), 142.4$ (d, J $=24.2 \mathrm{~Hz}, 1 \mathrm{C}), 133.5(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{C}), 132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.5$ (d, $J=105.0 \mathrm{~Hz}, 1 \mathrm{C}), 131.4(1 \mathrm{C}), 131.3$ (1C), $129.8(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 129.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{C})$, 129.4 (1C), 128.9 (1C), 128.8 (1C), 128.71 (2C), 128.69 (d, $J=102.8 \mathrm{~Hz}, 1 \mathrm{C}$), 128.5 (2C), 124.3 (d, J $=10.3 \mathrm{~Hz}, 1 \mathrm{C}), 119.3(\mathrm{~d}, J=103.9 \mathrm{~Hz}, 1 \mathrm{C}), 105.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{C}), 78.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{C}), 70.0$ (1C), 40.9 (2C), 25.7 (3C), 25.1 (1C), 22.7 (2C), 17.9 (1C), -3.25 (1C), -3.35 (1C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.02 ; \mathrm{HRMS}(\mathrm{APCI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{PSi}$: 539.2530, found: 539.2520 .

Protodesilylation of 3aa (Scheme 3)

In a Schlenk tube, 1,3-diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $48 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ was dissolved in THF $(1.0 \mathrm{~mL})$, and $\mathrm{MeOH}(0.10 \mathrm{mmol}, 4.1 \mu \mathrm{~L})$ was added under N_{2}. The tube was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, and tetrabutylammmonium fluoride (TBAF, $1 \mathrm{~mol} / \mathrm{L}$ in THF, 0.105 $\mathrm{mmol}, 0.105 \mathrm{~mL}$) was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by silica gel
column chromatography with hexane/EtOAc (1:2, v/v) to give 2-ethynyl-1,3-diphenylphosphindole 1-oxide (4; 83\%, 27.5 mg).

2-Ethynyl-1,3-diphenylphosphindole 1-oxide (4): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): $28 \mathrm{mg}\left(83 \%, 0.10 \mathrm{mmol}\right.$ scale); Brown solid; m.p. 228.3-229.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.41(\mathrm{~m}, 11 \mathrm{H}), 3.36(\mathrm{~d}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 1 \mathrm{C}), 141.9(\mathrm{~d}, J=24.6 \mathrm{~Hz}, 1 \mathrm{C})$, 133.2 (1C), 132.9 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{C}), 132.7$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.24$ (d, $J=105.5 \mathrm{~Hz}, 1 \mathrm{C}), 131.21$ (1C), 131.1 (1C), 130.2 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{C}$), 129.8 (1C), 129.7 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{C}$), 129.0 (1C), 128.9 (1C), $128.6(2 \mathrm{C}+2 \mathrm{C}), 128.4(\mathrm{~d}, J=102.0 \mathrm{~Hz}, 1 \mathrm{C}), 124.9(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 118.1(\mathrm{~d}, J=103.8 \mathrm{~Hz}$, 1C), $89.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{C}), 76.6(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.90$; HRMS (APCI) m/z ([M+H] ${ }^{+}$) calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{OP}: 327.0933$, found: 327.0914.

Protodesilylation/Cu-Catalysed Azide-Alkyne Cycloaddition of 3aa (Scheme 3)

In a Schlenk tube, 1,3-diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $48 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ was dissolved in THF $(1.0 \mathrm{~mL})$, and $\mathrm{MeOH}(0.10 \mathrm{mmol}, 4.1 \mu \mathrm{~L})$ was added under N_{2}. The tube was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, and tetrabutylammmonium fluoride (TBAF, $1 \mathrm{~mol} / \mathrm{L}$ in THF, 0.105 mmol, 0.105 mL) was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was directly transferred to another Schlenk tube. CuI ($3.8 \mathrm{mg}, 0.020 \mathrm{mmol}$), THF (1.0 mL), DIPEA ($3.5 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$), and benzyl azide ($13 \mathrm{mg}, 0.10 \mathrm{mmol}$) were added under N_{2}. The mixture was stirred at room temperature for 28 h . After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with ethyl acetate then GPC $\left(\mathrm{CHCl}_{3}\right)$ to give 2-(1-benzyl-1 H-1,2,3-triazol-4-yl)-1,3-diphenylphosphindole 1-oxide ($5 ; 37.5 \mathrm{mg}, 0.082 \mathrm{mmol}$) in 81% yield.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-1,3-diphenylphosphindole 1-oxide (5): Purified by silica gel column chromatography with ethyl acetate and GPC $\left(\mathrm{CHCl}_{3}\right): 38 \mathrm{mg}(81 \%, 0.10 \mathrm{mmol}$ scale $)$; White solid; m.p. 208.6-209.2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=9.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.25(\mathrm{~m}, 13 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}) 5.26(\mathrm{~d}, J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4$ (d, $J=18.9 \mathrm{~Hz}, 1 \mathrm{C}$), 143.9 (d, $\left.J=25.7 \mathrm{~Hz}, 1 \mathrm{C}\right)$, $141.0(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{C}), 134.4(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{C}), 134.3(1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{C}), 132.2(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.8(\mathrm{~d}, J=106.4 \mathrm{~Hz}, 1 \mathrm{C}), 131.4(1 \mathrm{C}), 131.3(1 \mathrm{C}), 129.9(\mathrm{~d}, J=102.2 \mathrm{~Hz}, 1 \mathrm{C})$, 129.3 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 129.24(2 \mathrm{C}), 129.22(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 129.0$ (1C), 128.9 (2C), 128.8 (1C), 128.64 (1C), 128.60 (1C), 128.2 (2C), 128.0 (2C), 125.6 (d, $J=98.1 \mathrm{~Hz}, 1 \mathrm{C}), 124.0(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, 1C), 122.4 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{C}), 53.9(1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.63$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OP}: 460.1573$, found: 460.1566 .

Protodesilylation/Cu-Catalysed Glaser Coupling of 3aa (Scheme 3)

In a Schlenk tube, 1,3-diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $48 \mathrm{mg}, 0.10$ mmol) was dissolved in THF (1.0 mL), and $\mathrm{MeOH}(0.10 \mathrm{mmol}, 4.1 \mu \mathrm{~L})$ was added under N_{2}. The tube was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, and tetrabutylammmonium fluoride (TBAF, $1 \mathrm{~mol} / \mathrm{L}$ in THF, 0.105 $\mathrm{mmol}, 0.105 \mathrm{~mL}$) was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was directly transferred to another Schlenk tube. In a vial, $\mathrm{CuCl}(2.0 \mathrm{mg}, 0.020 \mathrm{mmol})$ and TMEDA $(2.0 \mu \mathrm{~L}, 0.013 \mathrm{mmol})$ were dissolved in acetone $(0.050 \mathrm{~mL})$ under N_{2}. The mixture was stirred at room temperature for 15 minutes. The mixture was transferred to the Schlenk tube with acetone $(0.050 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 h under O_{2} (1 atm , balloon). After quenching with water, extraction with CHCl_{3} three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with ethyl acetate to give 2,2'-(buta-1,3-diyne-1,4-diyl)bis(1,3-diphenylphosphindole 1-oxide) ($6 ; 31.9 \mathrm{mg}, 0.049$ mmol) in 97% yield.

2,2'-(Buta-1,3-diyne-1,4-diyl)bis(1,3-diphenylphosphindole 1-oxide) (6, 1:1 diastereomixture): Purified by silica gel column chromatography with ethyl acetate: $32 \mathrm{mg}(97 \%, 0.050 \mathrm{mmol}$ scale); Yellow solid; m.p. 128.4-129.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.76-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.42$ $(\mathrm{m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 2 \mathrm{C}), 160.2(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 2 \mathrm{C})$, 141.7 (d, $J=23.9 \mathrm{~Hz}, 4 \mathrm{C}), 133.3$ (4C), 132.85 (d, $J=2.6 \mathrm{~Hz}, 4 \mathrm{C}), 132.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 4 \mathrm{C}), 131.4$ (d, $J=105.1 \mathrm{~Hz}, 4 \mathrm{C}), 131.2$ (4C), 131.1 (4C), 130.5 (d, $J=10.8 \mathrm{~Hz}, 4 \mathrm{C}), 130.1$ (4C), 129.8 (d, $J=9.4$ Hz, 4C), 129.1 (4C), 129.0 (4C), 128.8 (4C), 128.6 (8 C), 128.3 (d, $J=103.7 \mathrm{~Hz}, 2 \mathrm{C}$), 128.2 (d, $J=$ $103.3 \mathrm{~Hz}, 2 \mathrm{C}), 125.1(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 4 \mathrm{C}), 117.8(\mathrm{~d}, J=101.9 \mathrm{~Hz}, 4 \mathrm{C}), 85.4(\mathrm{dd}, J=6.6,5.1 \mathrm{~Hz}, 2 \mathrm{C})$, 85.3 (dd, $J=6.5,5.1 \mathrm{~Hz}, 2 \mathrm{C}), 78.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{C}), 78.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.46,36.42$; $\mathrm{HRMS}(\mathrm{APCI}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{44} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}_{2}: 651.1637$, found: 651.1610 .

Cyclization of 1,3-Diyne 4 with TIPS-SH (Scheme 3)

2,2'-(Buta-1,3-diyne-1,4-diyl)bis(1,3-diphenylphosphindole 1-oxide) ($\mathbf{6} ; 33 \mathrm{mg}, 0.050 \mathrm{mmol}$) and CsF ($36 \mathrm{mg}, 0.20 \mathrm{mmol}$) were placed in a Schlenk tube, which was filled with N_{2} by using the standard Schlenk technique. DMF (2.0 mL) and triisopropylsilanethiol ($19 \mathrm{mg}, 0.10 \mathrm{mmol}$) were finally added via syringe. The mixture was stirred at room temperature for 4 h . After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by preparative thin-layer chromatography with ethyl acetate and $\operatorname{GPC}\left(\mathrm{CHCl}_{3}\right)$ to give ($\left.1 R^{\prime}, 1 S^{\prime} S^{\prime}\right)-2,2^{\prime}$-(Thiophene-2,5-diyl)bis(1,3-diphenylphosphindole 1-oxide) (syn-7; $5.9 \mathrm{mg}, 0.0086$ mmol) in 17% yield and ($1 R^{\prime}, 1^{\prime} R^{\prime}$)-2,2'-(thiophene-2,5-diyl)bis(1,3-diphenylphosphindole 1-oxide) (anti-7; $6.7 \mathrm{mg}, 0.0098 \mathrm{mmol}$) in 19% yield.

($\left.1 R^{\prime}, 1^{\prime} S^{\prime}\right)-2,2{ }^{\prime}$-(Thiophene-2,5-diyl)bis(1,3-diphenylphosphindole 1-oxide) (syn-7): Purified by preparative thin-layer chromatography with ethyl acetate and GPC $\left(\mathrm{CHCl}_{3}\right): 5.9 \mathrm{mg}(17 \%, 0.050 \mathrm{mmol}$ scale); Orange solid; m.p. $139.1-139.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{dd}$,
$J=9.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 4 \mathrm{H})$, $7.02(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=7.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.0(\mathrm{~d}, J=20.4 \mathrm{~Hz}$, 2C), 144.4 (d, $J=25.7 \mathrm{~Hz}, 2 \mathrm{C}), 137.1(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{C}), 133.6(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{C}), 133.1(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 2 \mathrm{C}), 132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 131.3(\mathrm{~d}, J=106.8 \mathrm{~Hz}, 2 \mathrm{C}), 131.0(2 \mathrm{C}), 130.9$ (2C), 130.0 (d, J $=99.2 \mathrm{~Hz}, 2 \mathrm{C}$), 129.44 (4C), 129.39 (2C), 129.2 (2C), 129.0 (2C), 128.9 (2C), 128.816 (d, $J=21.0 \mathrm{~Hz}$, 2C), 128.812 (2C), 128.6 (4C), 128.4 (d, $J=95.2 \mathrm{~Hz}, 2 \mathrm{C}), 123.8$ (d, $J=10.6 \mathrm{~Hz}, 2 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 38.34; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{44} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}: 685.1515$, found: 685.1520 .

($1 R^{\prime}, 1^{\prime} R^{\prime}$)-2,2'-(Thiophene-2,5-diyl)bis(1,3-diphenylphosphindole 1-oxide) (anti-7): Purified by preparative thin-layer chromatography with ethyl acetate and GPC $\left(\mathrm{CHCl}_{3}\right): 6.7 \mathrm{mg}(19 \%, 0.050 \mathrm{mmol}$ scale); Orange solid; m.p. 143.8-144.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{dd}$, $J=10.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 4H), $7.11(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=7.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6(\mathrm{~d}, J=20.3$ $\mathrm{Hz}, 2 \mathrm{C}), 144.5(\mathrm{~d}, J=25.9 \mathrm{~Hz}, 2 \mathrm{C}), 137.3$ (d, $J=15.1 \mathrm{~Hz}, 2 \mathrm{C}), 133.4$ (d, $J=14.2 \mathrm{~Hz}, 2 \mathrm{C}), 133.1$ (d, J $=2.3 \mathrm{~Hz}, 2 \mathrm{C}), 132.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 131.1(\mathrm{~d}, J=106.9 \mathrm{~Hz}, 2 \mathrm{C}), 130.9(2 \mathrm{C}), 130.8(2 \mathrm{C}), 130.0(\mathrm{~d}$, $J=99.2 \mathrm{~Hz}, 2 \mathrm{C}$), 129.8 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{C}), 129.4$ (4C), 129.3 (2C), 129.1 (2C), 129.0 (2C), 128.9 (d, J $=5.5 \mathrm{~Hz}, 2 \mathrm{C}), 128.8(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{C}), 128.6(4 \mathrm{C}), 128.3(\mathrm{~d}, J=93.3 \mathrm{~Hz}, 2 \mathrm{C}), 123.8(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, 2C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 38.76; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{44} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}$: 685.1515, found: 685.1524 .

Desilylative Sonogashira Coupling of 3aa with Aryl Iodides (Scheme 3, 3ag)

In a Schlenk tube, 1,3-diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $48 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, 4-iodotoluene ($44 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.1 \mathrm{mg}, 0.010 \mathrm{mmol})$, $\mathrm{CuI}(3.8 \mathrm{mg}, 0.020$ $\mathrm{mmol})$ were dissolved in THF $(1.0 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.3 \mathrm{mmol})$ was added under N_{2}. The tube was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, and tetrabutylammmonium fluoride (TBAF, $1 \mathrm{~mol} / \mathrm{L}$ in THF, 0.105 mmol, 0.105 mL) was slowly added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then heated at $50{ }^{\circ} \mathrm{C}$ for 16.5 h (oil bath). The resulting mixture was cooled to room temperature. After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column
chromatography on silica gel with hexane/ethyl acetate (1:2, v/v) to give 1,3-diphenyl-2-(p-tolylethynyl)phosphindole 1-oxide (3ag; $31.7 \mathrm{mg}, 0.076 \mathrm{mmol}$) in 76% yield.

1,3-Diphenyl-2-(p-tolylethynyl)phosphindole 1-oxide (3ag): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): $32 \mathrm{mg}(76 \%, 0.10 \mathrm{mmol}$ scale); Yellow solid; m.p. 157.8-158.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.41(\mathrm{~m}$, $9 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.9$ (d, $J=21.2 \mathrm{~Hz}, 1 \mathrm{C}), 142.4(\mathrm{~d}, J=24.3 \mathrm{~Hz}, 1 \mathrm{C}), 139.0(1 \mathrm{C}), 133.4(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{C}), 133.1$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{C}), 132.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.78(1 \mathrm{C}), 131.76(1 \mathrm{C}), 131.3(\mathrm{~d}, J=105.1 \mathrm{~Hz}, 1 \mathrm{C})$, 131.2 (1C), 131.1 (1C), 129.8 (1C), 129.7 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 129.6$ (1C), 129.0 ($\mathrm{d}, J=103.6 \mathrm{~Hz}, 1 \mathrm{C}$), 129.0 (3C), 128.94 (2C), 128.86 (1C), 128.5 (2C), 124.5 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 119.8$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{C}$), $119.1(\mathrm{~d}, J=103.9 \mathrm{~Hz}, 1 \mathrm{C}), 101.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{C}), 82.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{C}), 21.6(1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.34$; HRMS (APCI) m/z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{OP}: 417.1403$, found: 417.1390.

Desilylative Sonogashira Coupling of 3aa with Aryl Iodides (Scheme 3, 3ah)

In a Schlenk tube, 1,3-Diphenyl-2-((triisopropylsilyl)ethynyl)phosphindole 1-oxide (3aa; $483 \mathrm{mg}, 1.0$ mmol), 4-iodoanisole ($468 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(72 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{CuI}(38 \mathrm{mg}, 0.20 \mathrm{mmol})$ were dissolved in THF $(1.0 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}, 13 \mathrm{mmol})$ was added under N_{2}. The tube was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, and tetrabutylammmonium fluoride (TBAF, $1 \mathrm{~mol} / \mathrm{L}$ in THF, 1.05 mmol, 1.05 mL) was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then heated at $50^{\circ} \mathrm{C}$ for 16.5 h (oil bath). The resulting mixture was cooled to room temperature. After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (1:2, v/v) to give 2-((4-methoxyphenyl)ethynyl)-1,3-diphenylphosphindole 1-oxide (3ah; $326 \mathrm{mg}, 0.75 \mathrm{mmol}$) in 75% yield.

2-((4-Methoxyphenyl)ethynyl)-1,3-diphenylphosphindole 1-oxide (3ah): Purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 2, \mathrm{v} / \mathrm{v}$): $326 \mathrm{mg}(75 \%, 1.0 \mathrm{mmol}$ scale); Yellow solid; m.p. 167.8-168.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 3 \mathrm{H})$, 7.58-7.40 (m, 9H), 7.26-7.21 (m, 2H), 6.79-6.75 (m, 2H), 3.78 (s, 3H) ${ }^{13}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.0(1 \mathrm{C}), 155.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 1 \mathrm{C}), 142.5(\mathrm{~d}, J=24.6 \mathrm{~Hz}, 1 \mathrm{C}), 133.4(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{C})$, 133.45 (1C), 133.43 (1C), 133.1 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{C}), 132.6$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 131.3$ (d, $J=105.3 \mathrm{~Hz}$, $1 \mathrm{C}), 131.2$ (1C), 131.1 (1C), 129.7 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{C}), 129.6$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.5$ (1C), 129.1 (d, $J=103.3 \mathrm{~Hz}, 1 \mathrm{C}), 129.0(1 \mathrm{C}), 128.9$ (2C), 128.8 (1C), 128.5 (2C), 124.3 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{C}), 119.2$ (d, $J=103.8 \mathrm{~Hz}, 1 \mathrm{C}), 115.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{C}), 113.9(2 \mathrm{C}), 101.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{C}), 82.2(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, 1C), $55.3(1 \mathrm{C}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.34$; HRMS (APCI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}: 433.1352$, found: 433.1338 .

Pt-Catalysed Cycloisomerization of 3ah (Scheme 3)

In a Schlenk tube, 2-((4-methoxyphenyl)ethynyl)-1,3-diphenylphosphindole 1-oxide (3ah; 22 mg , $0.050 \mathrm{mmol})$ and $\mathrm{PtCl}_{2}(2.7 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved in TCE $(1.0 \mathrm{~mL})$ under N_{2}. The mixture was refluxed at $150{ }^{\circ} \mathrm{C}$ for 20 h (oil bath). The resulting mixture was cooled to room temperature. After quenching with water, extraction with ethyl acetate three times, filtration through a short pad of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and cerite, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (1:2, v/v) to give 6-(4-methoxyphenyl)-7-phenyldibenzo[b,e]phosphindole 7-oxide ($8 ; 18 \mathrm{mg}, 0.042 \mathrm{mmol}$) in 83% yield.

6-(4-Methoxyphenyl)-7-phenyldibenzo[b,e]phosphindole 7-oxide (8): Purified by silica gel column chromatography with hexane/ethyl acetate ($1 / 2, \mathrm{v} / \mathrm{v}$): $18 \mathrm{mg}(83 \%, 0.050 \mathrm{mmol}$ scale); Yellow solid;
m.p. 189.9-190.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=8.0,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.09$ $(\mathrm{m}, 4 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3(1 \mathrm{C}), 142.9(\mathrm{~d}, J=$ $21.6 \mathrm{~Hz}, 1 \mathrm{C}), 141.1(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{C}), 139.8(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 1 \mathrm{C}), 137.0(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{C}), 134.3$ (d, $J=106.4 \mathrm{~Hz}, 1 \mathrm{C}), 133.0(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{C}), 132.4(\mathrm{~d}, J=101.4 \mathrm{~Hz}, 1 \mathrm{C}), 131.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C})$, 131.5 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{C}), 131.2$ (2C), 130.9 (1C), 130.8 (1C), 130.5 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{C}), 130.2(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{C}), 130.0(\mathrm{~d}, J=105.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.5(1 \mathrm{C}), 128.9(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{C}), 128.3$ (d, $J=11.0 \mathrm{~Hz}$, $1 \mathrm{C}), 128.0(1 \mathrm{C}), 127.9(2 \mathrm{C}), 127.4$ (1C), 125.4 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{C}), 124.7$ (1C), 113.2 (2C), 55.3 (1C); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.20; HRMS (APCI) m/z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}$: 433.1352, found: 433.1364.

X-Ray Analysis

The single X-ray quality crystals of 3ac were grown from pentane $/ \mathrm{CHCl}_{3}$ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S1. ORTEP drawing of 3ac (CCDC 2279968, 50\% thermal probability).

Table S1. Crystal data for 3ac

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	$\mathrm{P}-1$
Space group name Hall	-P 1
Cell length a	$14.1352(4)$
Cell length b	$15.4491(5)$
Cell length c	$19.4502(6)$
Cell angle alpha	$85.750(2)$
Cell angle beta	$69.641(2)$
Cell angle gamma	$64.337(3)$
Cell volume	$3574.6(2)$
Cell formula units Z	2
Refine ls R factor all	0.1073
Refine ls R factor gt	0.0916
Refine ls wR factor gt	0.2915
Refine ls wR factor ref	0.3000
Refine ls goodness of fit ref	1.095

The single X-ray quality crystals of $\mathbf{5}$ were grown from pentane/EtOAc by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S2. ORTEP drawing of 5 (CCDC 2285491, 50\% thermal probability).

Table S2. Crystal data for 5

Crystal system
Space group IT number
Space group name H-M alt
Space group name Hall
Cell length a
Cell length b
Cell length c
Cell angle alpha
Cell angle beta
Cell angle gamma
Cell volume
Cell formula units Z
Refine ls R factor all
Refine ls R factor gt
Refine ls wR factor gt
Refine ls wR factor ref
Refine ls goodness of fit ref
0.1152
triclinic
2
P-1
-P 1
9.9714(2)
10.8463(2)
22.5248(4)
77.043(2)
86.915(2)
82.273(2)
2351.83(8) 2
0.0464
0.0417
0.1109
1.054

The single X-ray quality crystals of 7 were grown from pentane $/ \mathrm{CHCl}_{3}$ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S3. ORTEP drawing of 7 (CCDC 2283132, 50\% thermal probability).

Table S3. Crystal data for 7

Crystal system
Space group IT number
Space group name H-M alt
Space group name Hall
Cell length a
Cell length b
Cell length c
Cell angle alpha
Cell angle beta
Cell angle gamma
Cell volume
Cell formula units Z
Refine ls R factor all
Refine ls R factor gt
Refine ls wR factor gt
Refine ls wR factor ref
Refine ls goodness of fit ref
0.1234
triclinic
2
P-1
-P 1
14.0465(2)
14.1358(2)
14.4268(2)
118.189(2)
92.5060(10)
114.771(2)
2185.49(7)

2
0.0496
0.0450
0.1195
1.068

The single X-ray quality crystals of $\mathbf{8}$ were grown from pentane/EtOAc by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S4. ORTEP drawing of $\mathbf{8}$ (CCDC 2283133, 50\% thermal probability).

Table S4. Crystal data for 8

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P $121 / \mathrm{c} 1$
Space group name Hall	-P 2 ybc
Cell length a	$9.4750(2)$
Cell length b	$18.8265(3)$
Cell length c	$12.4890(2)$
Cell angle alpha	90
Cell angle beta	$109.249(2)$
Cell angle gamma	90
Cell volume	$2103.25(7)$
Cell formula units Z	4
Refine ls R factor all	0.0421
Refine ls R factor gt	0.0377
Refine ls wR factor gt	0.1013
Refine ls wR factor ref	0.1052
Refine ls goodness of fit ref	1.060

Detailed Optimisation Studies

Table S5. Pd-Catalysed C2-H Alkynylation of 1a with 2a: Screening of Bases. ${ }^{[a]}$

entry	base	yield (\%) ${ }^{[b]}$	entry	base	yield (\%) ${ }^{[b]}$
1	CsOPiv	7	9	NaOPiv	38
2	CsOAc	2	10	NaOAc	20
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2	11	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	11
4	KOPiv	8	12	NaHCO_{3}	0
5	KOAc	10	13	NaTFA	1
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	5	14	LiOAc	7
7	KHCO_{3}	9	15	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	0
8	$\mathrm{K}_{3} \mathrm{PO}_{4}$	6	16	none	0

[a] Reaction conditions: $\operatorname{Pd}(\mathrm{OAc})_{2}(0.010 \mathrm{mmol})$, base $(0.20 \mathrm{mmol}), 1 \mathbf{1 a}(0.10 \mathrm{mmol}), \mathbf{2 a}(0.20 \mathrm{mmol})$, 1,4-dioxane $(1.0 \mathrm{~mL}), 110{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, \mathrm{~N}_{2}$. [b] Estimated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR with $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{3}$ as the internal standard.

Table S6. Pd-Catalysed C2-H Alkynylation of 1a with 2a: Screening of Solvents and Temperature. ${ }^{[a]}$

	$+\mathrm{Br}=\mathrm{TIPS}$ 2a		
entry	solvent, conditions		yield (\%) ${ }^{[\mathrm{b}]}$
1	1,4-dioxane (1.0 mL), $110{ }^{\circ} \mathrm{C}$		38
2	DMSO (1.0 mL), $110{ }^{\circ} \mathrm{C}$		0
3	toluene (1.0 mL), $110{ }^{\circ} \mathrm{C}$		41
4	1,4-dioxane (1.0 mL), $60{ }^{\circ} \mathrm{C}$		60
5	THF (1.0 mL), $60{ }^{\circ} \mathrm{C}$		54
6	$\mathrm{MeCN}(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$		5
7	toluene (1.0 mL), $60{ }^{\circ} \mathrm{C}$		33
8	CPME (1.0 mL), $60{ }^{\circ} \mathrm{C}$		57
9	MTBE (1.0 mL), $60{ }^{\circ} \mathrm{C}$		17

10	2-MeTHF $(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$	41
11	i - $\mathrm{Pr}_{2} \mathrm{O}(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$	5
12	hexane $(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$	4
13	cyclohexane $(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$	15
14	1,4 -dioxane $(1.0 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}$	0
15	1,4 -dioxane $(1.0 \mathrm{~mL}), 80^{\circ} \mathrm{C}$	52
16	1,4 -dioxane $(1.0 \mathrm{~mL}), 40^{\circ} \mathrm{C}$	28
17	1,4-dioxane $(1.0 \mathrm{~mL}), \mathrm{rt}$	7

[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(0.010 \mathrm{mmol}), \mathrm{NaOPiv}(0.20 \mathrm{mmol})$, 1a $(0.10 \mathrm{mmol})$, 2a $(0.20$ mmol), solvent, $20 \mathrm{~h}, \mathrm{~N}_{2}$. [b] Estimated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR with $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{3}$ as the internal standard.

Table S7. Pd-Catalysed C2-H Alkynylation of 1a with 2a: Screening of Pd sources and additives. ${ }^{[\mathrm{a]}}$

[a] Reaction conditions: Pd (0.010 mmol), NaOPiv (0.20 mmol), 1a (0.10 mmol), 2a (0.20 mmol), 1,4-dioxane $(1.0 \mathrm{~mL}), 60{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, \mathrm{~N}_{2}$. [b] Estimated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR with $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{3}$ as the internal standard.

Table S8. Pd-Catalysed C2-H Alkynylation of 1a with 2a: Concentration Effect. ${ }^{[a]}$

entry	solvent amount (mL)	yield (\%) ${ }^{[b]}$	entry	solvent amount (mL)	yield (\%) ${ }^{[b]}$
1	1.0	73	$\mathbf{4}^{[c]}$	$\mathbf{1 . 5}$	$\mathbf{8 4 (7 2)}$

2	0.5	6	$5^{[\mathrm{c}, \mathrm{d}]}$	1.5	$40^{[\mathrm{e}]}$
3	1.5	68			

[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OPiv})_{2}(0.010 \mathrm{mmol}), \mathrm{NaOPiv}(0.20 \mathrm{mmol}), 1 \mathrm{1a}(0.10 \mathrm{mmol}), 2 \mathrm{a}(0.20$ mmol), 1,4-dioxane, $60{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, \mathrm{~N}_{2} . \quad[\mathrm{b}]$ Estimated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR with $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{3}$ as the internal standard. Isolated yield is in parentheses. [c] For 48 h . [d] With $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OPiv})_{2}(0.0050 \mathrm{mmol})$. [e] The unreacted 1a was recovered in 44% yield.

Scheme S1. Effect of Phosphorus Moiety.

Scheme S2. Effect of Alkynyl Sources.

Scheme S3. Other Attempts.

a) attempt to apply asymmteric catalysis

b) attempt to apply double $\mathrm{C}-\mathrm{H}$ alkynylation

c) attempt to apply C2,C3-free benzophosphole

Chiral HPLC Charts

3aa: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AS-H column, $95 / 5$ hexane/isopropyl alcohol, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=15.0,26.1 \mathrm{~min}$, UV detection at $258 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).

3aa synthesized under nonenantioselective conditions

3aa synthesized under enantioselective conditions using (D)-N-Ac-alanine

Control Experiments

Scheme S4. Stoichiometric Reaction with Isolated Pd(II)-Alkynyl Complex. ${ }^{\text {S3 }}$

Plausible Reaction Mechanism

Scheme S5. Plausible Catalytic Cycle.

Notably, a trans elimination process similar to the step iv) was proposed in the Rh-catalysed C-H alkynylation reaction with the alkynyl bromide, where the effective abstraction with the Ag cation was observed in the calculated transition state. ${ }^{54}$ Thus, the related abstraction with Na cation might be involved also in the present Pd-catalysed reaction.

In addition, we also investigated the effect of additional NaBr under otherwise identical conditions (see below). However, the almost same result was obtained (86% NMR yield w/ NaBr vs $84 \% \mathrm{NMR}$ yield w/o NaBr), thus suggesting the negligible role of NaBr in the catalytic reaction.

Scheme S6. Effects of NaBr .

Photoluminescence Properties

Figure S1. UV-vis absorption spectra (solid line), emission (dotted line) spectra, and fluorescence images of $\mathbf{3 a h}, \mathbf{5}, \mathbf{6}$, syn-7, anti-7, and $\mathbf{8}\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Excited at the absorption maxima for the emission spectrum.

Table S10. Photoluminescence properties of selected compounds in $\mathrm{CHCl}_{3}\left(1.0 \times 10^{-5} \mathrm{M}\right)$.

compd	$\lambda_{\mathrm{abs}}(\mathrm{nm})\left(\varepsilon\left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right)$	$\lambda_{\mathrm{em}}{ }^{a}(\mathrm{~nm})$	$\Phi_{\mathrm{F}}{ }^{b}$	$\Delta v\left(\mathrm{~cm}^{-1}\right)^{c}$
3ah	$273(2.91), 396(1.81)$	475	0.74	4200
$\mathbf{5}$	$350(0.85)$	450,461	0.15	6349
$\mathbf{6}$	$256(5.67), 426(2.49)$	500,534	0.11	3474
syn-7	$266(2.01), 440(2.20), 463(1.91)$	537	0.16	2976
anti-7	$265(2.41), 440(2.84), 465(2.51)$	532	0.19	2708
$\mathbf{8}$	$262(3.60), 373(0.31)$	439	0.51	4031

${ }^{a}$ Excited at 396 nm (3ah), 350 nm (5), 426 nm (6), 463 nm (syn-7), 465 nm (anti-7), and 373 nm (8).
${ }^{b}$ Absolute fluorescence quantum yields. ${ }^{c}$ Stokes shifts.

Cyclic Voltammetry and Differential Pulse Voltammetry

The IUPAC convention was used to report the CV and DPV data. The CV and DPV of the indicated compounds were recorded in $\mathrm{MeCN}\left(0.01 \mathrm{M}\right.$, degassed by N_{2} gas bubbling) containing 0.1 M $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ with a Pt working electrode, a Pt counter electrode, and a $\mathrm{Ag} / \mathrm{Ag}+$ reference electrode. The measurements were performed at room temperature.

Figure $\boldsymbol{S} 2$. Cyclic voltammograms (blue line, from 0 V to 2.0 V then back to 0 V) and differential pulse voltammograms (orange line) of 3ah in MeCN containing 0.1 Mn - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S3. Cyclic voltammograms (blue line, from 0 V to 2.0 V then back to 0 V) and differential pulse voltammograms (orange line) of $\mathbf{5}$ in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S4. Cyclic voltammograms (blue line, from 0 V to 2.2 V then back to 0 V) and differential pulse voltammograms (orange line) of $\mathbf{6}$ in MeCN containing $0.1 \mathrm{M} \mathrm{n-Bu} \mathrm{BNPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S5. Cyclic voltammograms (blue line, from 0 V to 2.2 V then back to 0 V) and differential pulse voltammograms (orange line) of $\boldsymbol{s y n} \boldsymbol{- 7}$ in MeCN containing 0.1 Mn - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of $0.10 \mathrm{~V} / \mathrm{s}$.

Figure S6. Cyclic voltammograms (blue line, from 0 V to 2.4 V then back to 0 V) and differential pulse voltammograms (orange line) of anti-7 in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of $0.10 \mathrm{~V} / \mathrm{s}$.

Figure $\boldsymbol{S} 7$. Cyclic voltammograms (blue line, from 0 V to 2.0 V then back to 0 V) and differential pulse voltammograms (orange line) of $\mathbf{8}$ in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S8. Cyclic voltammograms (blue line, from 0 V to -2.4 V then back to 0 V) and differential pulse voltammograms (orange line) of 3ah in MeCN containing 0.1 M n-Bu4 NPF_{6} at a scan rate of 0.10 V/s.

Figure S9. Cyclic voltammograms (blue line, from 0 V to -2.0 V then back to 0 V) and differential pulse voltammograms (orange line) of 5 in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S10. Cyclic voltammograms (blue line, from 0 V to -2.2 V then back to 0 V) and differential pulse voltammograms (orange line) of 6 in MeCN containing $0.1 \mathrm{M} \mathrm{n-Bu} \mathrm{NPFF}_{6}$ at a scan rate of 0.10 V/s.

Figure S11. Cyclic voltammograms (blue line, from 0 V to -2.4 V then back to 0 V) and differential pulse voltammograms (orange line) of syn-7 in MeCN containing $0.1 \mathrm{Mn}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Figure S12. Cyclic voltammograms (blue line, from 0 V to -2.4 V then back to 0 V) and differential pulse voltammograms (orange line) of anti-7 in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of $0.10 \mathrm{~V} / \mathrm{s}$.

Figure S13. Cyclic voltammograms (blue line, from 0 V to -2.4 V then back to 0 V) and differential pulse voltammograms (orange line) of $\mathbf{8}$ in MeCN containing $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 0.10 V/s.

Table S11. Absorption wavelengths, HOMO-LUMO energy gaps, and cyclic (differential pulse) voltammogram data of selected compounds.

compd	$\lambda_{\text {onset }}^{\text {abs }}$ $(\mathrm{nm})^{a}$	$E_{\mathrm{g}}{ }^{\text {opt }}$ $(\mathrm{eV})^{b}$	$E_{\text {ox }}$ $(\mathrm{V})^{c}$	E_{HOMO} $(\mathrm{eV})^{d}$	$E_{\text {red }}$ $(\mathrm{V})^{c}$	$E_{\text {LUMO }}$ $(\mathrm{eV})^{d}$	E_{LUMO} $(\mathrm{eV})^{e}$
$\mathbf{3 a h}$	448	2.77	1.02	-5.82	-1.86	-2.94	-3.05
$\mathbf{5}$	400	3.10	1.41	-6.21	-1.60	-3.21	-3.11
$\mathbf{6}$	524	2.37	1.24	-6.04	-1.39	-3.41	-3.67
$\mathbf{s y n - 7}$	496	2.50	0.84	-5.64	-1.77	-3.03	-3.14
anti-7	496	2.50	0.88	-5.68	-1.76	-3.04	-3.18
$\mathbf{8}$	395	3.14	1.10	-5.90	-2.14	-2.66	-2.76

${ }^{a}$ Measured in $\mathrm{CH}_{3} \mathrm{Cl} .{ }^{b}$ Determined from the onset of the absorption spectra. ${ }^{c}$ Performed in MeCN in the presence of $\mathrm{Bu}_{4} \mathrm{NPF}_{6} . v=0.10 \mathrm{~V} / \mathrm{s}$. Values determined by DPV, versus $\mathrm{Fc} / \mathrm{Fc}^{+} .{ }^{d}$ The approximation for $\mathrm{Fc} / \mathrm{Fc}^{+}$level is -4.8 eV versus vacuum: $E_{\mathrm{HOMO}}=-4.8-E_{\text {ox }} . E_{\mathrm{LUMO}}=-4.8-\mathrm{E}_{\text {red }}{ }^{e}$ Estimated from $E_{\text {Номо }}$ and $E_{\mathrm{g}}{ }^{\text {opt }} . \quad E_{\mathrm{LUMO}}=E_{\text {НОмо }}+E_{\mathrm{g}}{ }^{\text {opt }}$.

Robustness Screen

entry	additive	yield of 3aa (\%)	yield of recovered 1a (\%)	yield of recovered additive (\%)
1		88	12	72 (
2		86	0	74 (
3	$\bigcirc{ }^{2}$	$26 \times$	31	$0 \times$
4		$0 \times$	quant.	quant.
5		$46-$	49	$32 \times$
6		$0 \times$	quant.	quant.

Reaction conditions: $\mathrm{Pd}(\mathrm{OPiv})_{2}(0.010 \mathrm{mmol}), \mathrm{NaOPiv}(0.20 \mathrm{mmol}), 1 \mathrm{a}(0.10 \mathrm{mmol}), \mathbf{2 a}(0.20 \mathrm{mmol})$, additive (0.010 mmol), 1,4-dioxane (1.5 mL), $60{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, \mathrm{~N}_{2}$. Yields were estimated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and/or ${ }^{1} \mathrm{H}$ NMR with $\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{3}$ as the internal standard.

Copies of NMR Spectra

[${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3aa]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ba]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ca]

[^1]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3da]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ea]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Uud

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3fa]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ga]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 100 ppm

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ha]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ia]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ab]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{2}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ac $]$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of $\left.\mathbf{3 a d}\right]$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ae]

\footnotetext{
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	,	1	,	,	1	
100	50	0	-50	-100	-150	-200

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ag $]$

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 3ah $]$

 国国

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 4]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

合

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{2}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 5]

${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31}{ }^{31}$ \{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR $\underset{\substack{\stackrel{\circ}{0} \\ \stackrel{\infty}{\infty} \\ \infty}}{\infty}$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 6$]$

$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of syn-7]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of anti-7]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of 8]

${ }^{1} \mathrm{H} \mathrm{NMR}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

						200	
100	50	0	-50	-100	-150	-200	ppm

References

(S1) (a) K. Nishimura, K. Hirano and M. Miura, Org. Lett., 2020, 22, 3185; (b) S. Xu, K. Nishimura, K. Saito, K. Hirano and M. Miura, Chem. Sci., 2022, 13, 10950.
(S2) (a) S. Ninolai, C. Piemontesi and J. Waser, Angew. Chem., Int. Ed., 2011, 50, 4680; (b) R. Plamont, L. V. Graux and H. Clavier, Eur. J. Org. Chem., 2018, 2018, 1372; (c) T. Liu, J. X. Qiao, M. A. Poss and J.-Q. Yu, Angew. Chem., Int. Ed., 2017, 56, 10924; (d) X. Xiao, T. Wang, F. Xu and T. R. Hoye, Angew. Chem., Int. Ed., 2018, 57, 16564.
(S3) H. K. Klein, B. Zettel, U. Flöker and H.-J. Haupt, Chem. Ber., 1992, 125, 9.
(S4) U. Dutta, G. Prakash, K. Devi, K. Borah, X. Zhang and D. Maiti, Chem. Sci., 2023, 14, 11381.

[^0]: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

