Supporting Information

Organocatalytic Enantioselective Decarboxylative Protonation of α-Alkyl-α-Aryl Malonate Monoesters

Cong-Ying Guo, Jia-Zheng Chen, Wen-Ting, Liu, Hao Mei, Jie Meng, and Jian-Ping Chen*

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

Contents

1. General information	2
2. The procedure of preparation and corresponding spectral characterizations of α	-alkyl-α-aryl
malonate monoesters 1	3
3. Representative procedure for the enantioselective decarboxylative protonation	and spectral
characterizations of the products 2	12
4. Synthetic Applications	21
5. Some pka values of our reaction related compounds	24
6. Reference	25
7. ¹ H NMR, ¹³ C NMR and HPLC Spectra Data	

1. General information

All reagents and organic solvents were purchased from TCI, Sigma-Aldrich, Adamasbeta and Energy Chemical of the highest purity grade and used without further purification unless otherwise noted. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. HRMS-ESI spectra were recorded on Waters Micromass GCT Premier. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. Melting points were measured without correction. HPLC spectra were measured using a Thermo 3000. The **C1** and **C6** catalysts were purchased from Adamas-beta and used without further purification. The known Cinchona alkaloid catalysts **C2-C5** were prepared according to literature method.¹ The chiral 1,2-*trans*-diaminocyclohexane derived organocatalysts **C7-C14** were synthesized based on the literature method.²

2. The procedure of preparation and corresponding spectral characterizations of α -alkyl- α -aryl malonate monoesters 1

LDA (23 mL, 45.8 mmol, 2 M in hexanes) was added to a flame-dried round bottom flask containing anhydrous THF (60 mL) at -78 °C under argon. A solution of 2phenylbutanoic acid (3 g, 18.3 mmol) dissolved in THF (10 mL) was added dropwise to the LDA solution. The solution was allowed to warm to room temperature and stir for four hours. The solution was then cooled to -78 °C and the dianion was allowed to react with phenylchloroformate (3.4 g, 22 mmol). The reaction was stirred overnight and quenched with HCl (3 M). Diethyl ether (25 mL) was added to the reaction mixture and two resulting phases were separated. The aqueous phase was acidified with 3 M HCl to pH = 3 and extracted three times with diethyl ether (20 mL) and the combined organic phases were washed three times with brine, and dried over anhydrous sodium sulfate. The solvent was removed in vacuo at -20 °C. The remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate =10/1) to afford the desired product **1a** as a white solid (2.3 g, 44%). (Note: α-Alkyl-α-aryl substituted malonate phenyl monoesters demonstrate stability at -30°C when stored in a refrigerator. However, after a period of three weeks, less than 5% of the decarboxylative protonation product was observed. The racemic decarboxylative protonation product could be removed by washing the crude mixture with petroleum ether.)

2-(phenoxycarbonyl)-2-phenylbutanoic acid (1a): white solid, Mp: 82-83 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.53 (m, 2H), 7.43 – 7.33 (m, 5H), 7.26 – 7.22 (m, 1H), 7.04 – 7.01 (m, 2H), 2.68 – 2.52 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.3, 170.7, 150.5, 136.1, 129.7, 128.8, 128.4, 127.8, 126.5, 121.3, 63.2, 28.6, 9.7.

HRMS-ESI (m/z) Calcd for C₁₇H₁₇O₄ [(M + H) ⁺] 285.1121, Found: 285.1130. **IR (KBr):** v (cm⁻¹) 2980, 1744, 1618, 1592, 1492, 1457, 747, 589.

2-(4-methoxyphenyl)-2-(phenoxycarbonyl)butanoic acid (1d)

Compound **1d** was prepared according to the same procedure as the one used for **1a**. Yield: 81%, white solid, Mp: 81–83 °C.

¹H NMR (400MHz, CDCl₃): δ 7.46 – 7.43 (m, 2H), 7.38 (t, J = 7.9 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.01 (d, J = 7.8 Hz, 2H), 6.95 – 6.92 (m, 2H), 3.82 (s, 3H), 2.71 – 2.51 (m, 2H), 1.11 (t, J = 7.4 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 175.6, 170.8, 159.4, 150.5, 129.7, 129.2, 127.8, 126.4, 121.3, 114.1, 62.4, 55.4, 28.4, 9.7.

HRMS-ESI (m/z) Calcd for $C_{18}H_{19}O_5$ [(M + H) ⁺] 315.1227, Found: 315.1238. **IR (KBr):** v (cm⁻¹) 3474, 2938, 1742, 1713, 1591, 1254, 829, 799.

2-(phenoxycarbonyl)-2-(p-tolyl)butanoic acid (1e)

Compound **1e** was prepared according to the same procedure as the one used for **1a**. Yield: 78%, white solid, Mp: 90–91 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.42 – 7.36 (m, 4H), 7.28 – 7.21 (m, 3H), 7.03 – 7.00 (m, 2H), 2.71 – 2.51 (m, 2H), 2.36 (s, 3H), 1.11 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.3, 171.0, 150.5, 138.2, 133.0, 129.6, 129.5, 127.7, 126.5, 121.3, 62.8, 28.5, 21.2, 9.7.

HRMS-ESI (m/z) Calcd for C₁₈H₁₉O₄ $[(M + H)^+]$ 299.1278, Found: 299.1284. **IR** (**KBr**): v (cm⁻¹) 3446, 1706, 1650, 1630, 1592, 815, 764, 749.

2-(phenoxycarbonyl)-2-(m-tolyl)butanoic acid (1f)

Compound **1f** was prepared according to the same procedure as the one used for **1a**. Yield: 57%, white solid, Mp: 66-67 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.21 (m, 6H), 7.15 (d, J = 7.3 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 2.63 – 2.52 (m, 2H), 2.37 (s, 3H), 1.08 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.1, 170.9, 150.5, 138.4, 136.0, 129.6, 129.1, 128.6, 128.4, 126.5, 124.8, 121.3, 63.1, 28.6, 21.8, 9.8.

HRMS-ESI (m/z) Calcd for C₁₈H₁₉O₄ $[(M + H)^+]$ 299.1278, Found: 299.1283.

IR (KBr): v (cm⁻¹) 3473, 2979, 1743, 1710, 1591, 1491, 782, 748.

1-(*tert*-butyl) 3-ethyl 2-(o-tolyl) malonate (583 mg, 3.1 mmol) was slowly added to a suspension of NaH (126 mg, 3.15 mmol) in 10 mL of DMF at 0 °C. After the solution was stirred for 0.5 h at room temperature, ethyl iodide (983 mg, 6.3 mmol) was added and the mixture was stirred at rt overnight. Then the solution was quenched with saturated NH4Cl solution. Diethyl ether (25 mL) was added to the reaction mixture and extracted three times with diethyl ether (20 mL) and the combined organic phases were washed three times with brine, and dried over anhydrous sodium sulfate. The

solvent was removed in vacuo. The remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate = 20/1) to afford the alkylated product. A solution of the alkylated product in dry CH₂Cl₂(1.5 mL) was treated with TFA (0.98 mL, 12.7 mmol), and the reaction was stirred at 0 °C for 10 h. The reaction was concentrated in vacuo, the remaining residue was purified by column chromatography with 5% MeOH in CH₂Cl₂ to afford the desired product **1g** (180 mg, 34%, Colorless oil).

2-(ethoxycarbonyl)-2-(o-tolyl)butanoic acid (1g)

¹**H NMR (400MHz, CDCl₃):** δ 7.49 – 7.47 (m, 1H), 7.28 – 7.21 (m, 2H), 7.15 – 7.13 (m, 1H), 4.33 – 4.15 (m, 2H), 2.62 – 2.53 (m, 1H), 2.47 – 2.38 (m, 1H), 2.17 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 177.8, 172.1, 136.7, 136.0, 131.6, 128.1, 126.7, 126.5, 63.5, 60.1, 30.9, 20.0, 13.8, 9.6.

HRMS-ESI (m/z) Calcd for C₁₄H₁₉O₄ [(M + H) ⁺] 251.1278, Found: 251.1285. **IR (KBr):** v (cm⁻¹) 3473, 2985, 1737, 1637, 1488, 1456, 765, 749.

2-(4-bromophenyl)-2-(phenoxycarbonyl)butanoic acid (1h)

Compound **1h** was prepared according to the same procedure as the one used for **1a**. Yield: 53%, white solid, Mp: 87–89 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 8.7, 2.0 Hz, 2H), 7.44 – 7.37 (m, 4H), 7.29 – 7.25(m,1H), 7.01 – 7.00 (m, 2H), 2.65 – 2.50 (m, 2H), 1.10 – 1.06 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 175.3, 169.7, 150.4, 134.8, 131.9, 129.8, 129.7, 126.6, 122.7, 121.2, 62.8, 28.5, 9.5.

HRMS-ESI (m/z) Calcd for C₁₇H₁₆BrO₄ [(M + H) ⁺] 363.0226, Found: 363.0232. **IR (KBr):** v (cm⁻¹) 3063, 1744, 1713, 1592, 1492, 1457, 1387, 747, 689.

2-(4-iodophenyl)-2-(phenoxycarbonyl)butanoic acid (1i)

Compound **1i** was prepared according to the same procedure as the one used for **1a**. Yield: 65%, white solid, Mp: 92–94 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.76 – 7.72 (m, 2H), 7.40 – 7.35 (m, 2H), 7.31 – 7.24 (m, 3H), 7.03 – 7.01 (m, 2H), 2.63 – 2.48 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.1, 169.7, 150.4, 137.8, 135.6, 129.9, 129.7, 126.6, 121.2, 94.4, 62.9, 28.4, 9.5.

HRMS-ESI (m/z) Calcd for C₁₇H₁₆IO₄ [(M + H) ⁺] 411.0088, Found: 411.0089. **IR (KBr):** v (cm⁻¹) 3447, 1739, 1713, 1592, 1489, 817, 745, 687.

2-((benzyloxy)carbonyl)-2-(4-(methoxycarbonyl)phenyl)butanoic acid (1j)

Compound 1j was prepared according to the same procedure as the one used for 1g. Yield: 81%, colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.02 – 7.96 (m, 2H), 7.45 – 7.39 (m, 2H), 7.32 (dd, *J* = 4.8, 2.0 Hz, 3H), 7.23 (dd, *J* = 6.5, 3.1 Hz, 2H), 5.28 – 5.18 (m, 2H), 3.92 (s, 3H), 2.60 – 2.48 (m, 1H), 2.45 – 2.36 (m, 1H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 173.7, 172.0, 166.7, 141.3, 134.4, 129.7, 129.6, 128.6, 128.6, 128.2, 127.6, 68.2, 62.8, 52.3, 28.5, 9.4.

HRMS-ESI (m/z) Calcd for $C_{20}H_{20}O_6[(M + Na)^+]$ 379.1152, Found: 379.1152.

IR (KBr): v (cm⁻¹) 3676, 2953 1725 1610, 1438, 1282, 745, 597.

2-((benzyloxy)carbonyl)-2-(4-(trifluoromethyl)phenyl)butanoic acid (1k)

Compound 1k was prepared according to the same procedure as the one used for 1g. Yield: 82%, white solid.

¹**H** NMR (400MHz, CDCl₃): δ 7.58 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.31 (dd, J = 5.0, 2.1 Hz, 3H), 7.22 (dd, J = 6.7, 2.9 Hz, 2H), 5.27 – 5.11 (m, 2H), 2.50 – 2.40 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 173.9, 171.7, 140.2, 134.5, 130.2 (q, *J* = 32.8), 128.7, 128.6, 128.2, 128.1, 125.4, 125.4, 123.8 (q, *J* = 272.3), 68.1, 62.7, 28.5, 9.4.

HRMS-ESI (m/z) Calcd for C₁₉H₁₇F₃O₄ [(M + Na) ⁺] 389.0971, Found: 389.0970. **IR (KBr):** v (cm⁻¹) 2979, 1741, 1705, 1327, 1218, 1126, 887, 749.

Pn

2-([1,1'-biphenyl]-4-yl)-2-(phenoxycarbonyl)butanoic acid (11)

Compound 11 was prepared according to the same procedure as the one used for 1a. Yield: 66%, white solid, Mp: 93–94 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.65 – 7.59 (m, 6H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.37 (q, *J* = 8.1 Hz, 3H), 7.28 – 7.24 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 2.74 – 2.57 (m, 2H), 1.14 (t, *J* = 4.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.0, 170.8, 150.5, 141.2, 140.4, 135.0, 129.7, 129.0, 128.3, 127.7, 127.5, 127.3, 126.6, 121.3, 62.9, 28.6, 9.8.

HRMS-ESI (m/z) Calcd for C₂₃H₂₁O₄ $[(M + H)^+]$ 361.1434, Found: 361.1446.

IR (KBr): v (cm⁻¹) 3474, 2979, 1743, 1710, 1618, 1591, 1488, 834, 764, 749.

2-(naphthalen-2-yl)-2-(phenoxycarbonyl)butanoic acid (1m)

Compound **1m** was prepared according to the same procedure as the one used for **1a**. Yield: 73%, white solid, Mp: 79–81 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 1.3 Hz, 1H), 7.89 – 7.83 (m, 3H), 7.61 (dd, J = 8.7, 1.9 Hz, 1H), 7.53 – 7.50 (m, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 7.9 Hz, 2H), 2.82 – 2.65 (m, 2H), 1.16 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.6, 170.9, 150.5, 133.5, 133.2, 132.9, 129.7, 128.5, 128.4, 127.6, 127.0, 126.8, 126.6, 126.5, 125.6, 121.3, 63.2, 28.7, 9.8. HRMS-ESI (m/z) Calcd for C₂₁H₁₉O4 [(M + H) ⁺] 335.1278, Found: 335.1287. IR (KBr): v (cm⁻¹) 3454, 1647, 1632, 1492, 1457, 815, 745, 688.

2-(phenoxycarbonyl)-2-(thiophen-2-yl)butanoic acid (1n)

Compound **1n** was prepared according to the same procedure as the one used for **1a**. Yield: 59%, white solid, Mp: 72-73 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.35 (m, 3H), 7.27 – 7.24 (m, 2H), 7.09 – 7.04 (m, 3H), 2.68 – 2.53 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.3, 168.9, 150.5, 138.1, 129.6, 127.2, 126.6, 126.5, 126.5, 121.2, 60.7, 31.0, 9.4.

HRMS-ESI (m/z) Calcd for C₁₅H₁₅SO₄ [(M + H) ⁺] 291.0686, Found: 291.0688. **IR (KBr):** v (cm⁻¹) 3474, 2977, 1719, 1592, 1491, 1457, 747, 703.

2-methyl-3-oxo-3-phenoxy-2-phenylpropanoic acid (10)

Compound **10** was prepared according to the same procedure as the one used for **1a**. Yield: 75%, white solid, Mp: 76–77 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.54 – 7.51 (m, 2H), 7.42 – 7.33 (m, 5H), 7.24 – 7.20 (m, 1H), 7.08 – 7.06 (m, 2H), 2.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.3, 170.1, 150.7, 137.0, 129.6, 128.6, 128.4, 127.6, 126.4, 121.3, 58.9, 22.0.

HRMS-ESI (m/z) Calcd for C₁₆H₁₅O₄ [(M + H) ⁺] 271.0965, Found: 271.0973. **IR (KBr):** ν (cm⁻¹) 3271, 1747, 1713, 1591, 1492, 1457, 745, 694.

2-(phenoxycarbonyl)-2-phenylpentanoic acid (1p)

Compound **1p** was prepared according to the same procedure as the one used for **1g**. Yield: 31%, white solid, Mp: 66–67 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.54 (d, J = 7.8 Hz, 2H), 7.42 – 7.33 (m, 5H), 7.26 – 7.22 (m, 1H), 7.02 (d, J = 8.0 Hz, 2H), 2.54 – 2.46 (m, 2H), 1.47 – 1.44 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.7, 171.2, 150.4, 136.4, 129.7, 128.8, 128.3, 127.6, 126.5, 121.2, 62.5, 37.5, 18.7, 14.5.

HRMS-ESI (m/z) Calcd for C₁₈H₁₉O₄ $[(M + H)^+]$ 299.1278, Found: 299.1284.

IR (KBr): v (cm⁻¹) 3412, 2965, 1743, 1710, 1591, 1492, 1448, 744, 689.

5-bromo-2-(phenoxycarbonyl)-2-phenylpentanoic acid (1q)

Compound **1q** was prepared according to the same procedure as the one used for **1g**. Yield: 30%, white solid, Mp: 117–119 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.52 (m, 2H), 7.44 – 7.34 (m, 5H), 7.26 – 7.23 (m, 1H), 7.07 – 7.04 (m, 2H), 3.50 – 3.41 (m, 2H), 2.69 – 2.65 (m, 2H), 2.07 – 1.90 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 174.6, 170.1, 150.4, 135.8, 129.7, 128.9, 128.5, 127.7, 126.5, 121.2, 62.2, 34.3, 33.3, 28.3.

HRMS-ESI (m/z) Calcd for $C_{18}H_{18}B_rO_4$ [(M + H) ⁺] 377.0383, Found: 377.0390. **IR (KBr):** v (cm⁻¹) 3413, 3063, 1743, 1715, 1590, 1491, 1447, 766, 748.

5-azido-2-(phenoxycarbonyl)-2-phenylpentanoic acid (1r)

Compound 1r was prepared according to the same procedure as the one used for 1g. Yield: 35%, white solid, Mp: 55–57 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.51 (d, *J* = 7.5 Hz, 2H), 7.45 – 7.37 (m, 5H), 7.28 – 7.25 (m, 1H), 7.05 – 7.03 (m, 2H), 3.46 – 3.34 (m, 2H), 2.64 – 2.57 (m, 2H), 1.77 – 1.68 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 174.7, 170.2, 150.4, 135.7, 129.7, 128.9, 128.5, 127.6, 126.6, 121.2, 62.3, 51.4, 32.8, 24.8.

HRMS-ESI (m/z) Calcd for $C_{18}H_{18}N_3O_4[(M + H)^+]$ 340.1292, Found: 340.1291. **IR (KBr):** v (cm⁻¹) 2936, 2098, 1744, 1591, 1492, 1448, 746, 689.

COOH COOPh

2-(phenoxycarbonyl)-2-phenylpent-4-enoic acid (1s)

Compound 1s was prepared according to the same procedure as the one used for 1g. Yield: 44%, white solid, Mp: 76–77 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.55 – 7.53 (m, 2H), 7.44 – 7.35 (m, 5H), 7.27 – 7.23 (m, 1H), 7.01 (d, J = 8.2 Hz, 2H), 5.96 – 5.85 (m, 1H), 5.31 – 5.20 (m, 2H), 3.37 (dd, J = 14.1, 6.7 Hz, 1H), 3.25 (dd, J = 14.0, 7.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 173.4, 171.2, 150.4, 136.0, 132.2, 129.7, 128.9, 128.5, 127.5, 126.6, 121.2, 120.2, 62.4, 39.9.

HRMS-ESI (m/z) Calcd for C₁₈H₁₇O₄ $[(M + H)^+]$ 297.1121, Found: 297.1126. **IR (KBr):** v (cm⁻¹) 3063, 1747, 1713, 1629, 1591, 1492, 796, 746.

2-(4-isobutylphenyl)-2-methyl-3-oxo-3-phenoxypropanoic acid (1t)

Compound 1t was prepared according to the same procedure as the one used for 1a. Yield: 53%, white solid, Mp: 60-62 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.9 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.07 (d, J = 7.6 Hz, 2H), 2.48 (d, J = 7.2 Hz, 2H), 2.05 (s, 3H), 1.92 – 1.82 (m, 1H), 0.91 (d, J = 7.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 177.2, 170.4, 150.8, 141.9, 134.2, 129.6, 129.4, 127.3, 126.3, 121.3, 58.6, 45.1, 30.2, 22.6, 22.1.

HRMS-ESI (m/z) Calcd for C₂₀H₂₃O₄ [(M + H) ⁺] 327.1591, Found: 327.1604. **IR (KBr):** v (cm⁻¹) 3412, 2954, 1748, 1713, 1592, 1514, 1383, 739, 687.

COOH

2-(4-isobutylphenyl)-2-(phenoxycarbonyl)butanoic acid (1u)

Compound 1u was prepared according to the same procedure as the one used for 1a. Yield: 56%, white solid, Mp: 68-70 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 (d, J = 8.2 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.25 – 7.22 (m, 1H), 7.17 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 2.66 – 2.50 (m, 2H), 2.47 (d, J = 7.2 Hz, 2H), 1.90 – 1.82 (m, 1H), 1.08 (t, J = 7.4 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 174.5, 171.4, 150.4, 141.9, 133.4, 129.6, 129.5, 127.3, 126.5, 121.2, 62.8, 45.1, 30.2, 28.6, 22.5, 9.8.

HRMS-ESI (m/z) Calcd for C₂₁H₂₅O₄ $[(M + H)^+]$ 341.1747, Found: 341.1758.

IR (KBr): v (cm⁻¹) 3414, 1746, 1710, 1638, 1618, 1492, 764, 749.

2-methyl-3-oxo-3-phenoxy-2-(3-phenoxyphenyl)propanoic acid (1v)

Compound 1v was prepared according to the same procedure as the one used for 1a. Yield: 56%, white solid, Mp: 116–117 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.30 (m, 5H), 7.27 – 7.20 (m, 3H), 7.09 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 4H), 6.98 (dd, J = 8.0, 2.1 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 169.8, 157.4, 157.0, 150.6, 138.9, 130.0,

129.9, 129.6, 126.4, 123.6, 122.4, 121.3, 119.1, 118.5, 118.5, 58.8, 22.1.

HRMS-ESI (m/z) Calcd for C₂₂H₁₉O₅ $[(M + H)^+]$ 363.1227, Found: 363.1232.

IR (KBr): v (cm⁻¹) 3451, 1747, 1714, 1592, 1488, 1223, 750, 689.

2-benzyl-2-methyl-3-oxo-3-phenoxypropanoic acid (1w)

Compound **1w** was prepared according to the same procedure as the one used for **1g**. Yield: 52%, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, J = 7.9 Hz, 2H), 7.33 – 7.26 (m, 6H), 7.06 (d, J = 7.8 Hz, 2H), 3.47 (d, J = 13.7 Hz, 1H), 3.32 (d, J = 13.7 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 170.2, 150.6, 135.5, 130.5, 129.6, 128.5, 127.4, 126.3, 121.4, 55.3, 41.2, 20.1.

HRMS-ESI (m/z) calcd for C17H16O4Na $[(M + Na)^+]$ 309.0941, found 309.0947.

2-((benzyloxy)carbonyl)-2-phenylbutanoic acid (1b)

Compound **1b** was prepared according to the same procedure as the one used for **1a**. Yield: 88%, white solid, Mp: 79–80 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.30 (m, 8H), 7.23 – 7.21 (m, 2H), 5.22 (q, J = 12.3 Hz, 2H), 2.57 – 2.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 173.8, 173.4, 136.8, 134.7, 128.7, 128.7, 128.3, 128.2, 127.2, 68.2, 62.7, 28.6, 9.8.

HRMS-ESI (m/z) Calcd for C₁₈H₁₈O₄Na [(M + Na) ⁺] 321.1097, Found: 321.1103. **IR (KBr):** v (cm⁻¹) 3446, 2977, 1735, 1711, 1601, 1498, 1455, 735, 696.

A solution of 1.27 g (22.7 mmol) of KOH in 11 mL of H₂O is added dropwise to a solution of 3.0 g (11.4 mmol) of diethyl 2-ethyl-2-phenylmalonate in 26 mL of cold ethanol (0-5 °C). Agitation is continued for 24 hours at 25 °C and the solvent is evaporated off. The residue is separated with H₂O and diethylether. After decantation, the aqueous layer is acidified at 0 °C with 3N HCl and extracted with diethylether (50 mL \times 2). The solution was evaporated in vacuo, the remaining residue was purified by recrystallization with PE and DCM to afford the desired product **1c** as a white solid (2 g, 74%).

¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.31 (m, 5H), 4.36 – 4.22 (m, 2H), 2.61 – 2.52 (m, 1H), 2.43 – 2.34 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.8, 173.0, 137.2, 128.8, 128.2, 126.9, 62.9, 62.5, 28.7, 13.9, 9.9.

HRMS-ESI (m/z) Calcd for $C_{13}H_{17}O_4[(M + H)^+] 237.1121$, Found: 237.1123. **IR (KBr):** v (cm⁻¹) 3509, 2981, 1708, 1601, 1498, 1447, 760, 697.

3. Representative procedure for the enantioselective decarboxylative protonation and spectral characterizations of the products **2**

To a mixture of catalyst C14 (0.01 mmol), disubstituted malonic acid half-esters 1 (0.1 mmol) in a vial (4.0 mL) were added TBME (1.0 mL). Then the reaction mixture was stirred at 20 °C and was monitored by TLC. After completion, the reaction mixture was concentrated in vacuo, and the remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired product **2**.

(R)-phenyl-2-phenylbutanoate (2a):

Yield: 98%; ee: 91%. Colorless oil, $[\alpha]_D^{20} = -68^\circ (0.44, \text{CHCl}_3)$.

¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.28 (m, 7H), 7.19 (t, J = 7.5 Hz, 1H), 7.00 – 6.98 (m, 2H), 3.70 (t, J = 7.7 Hz, 1H), 2.28 – 2.17 (m, 1H), 1.96 – 1.85 (m, 1H), 1.00 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.7, 150.9, 138.7, 129.5, 128.9, 128.2, 127.5, 125.9, 121.6, 53.6, 26.9, 12.3.

HRMS-ESI (m/z) Calcd for C₁₆H₁₇O₂ $[(M + H)^+]$ 241.1223, Found: 241.1229.

IR (KBr): v (cm⁻¹) 3478, 2966, 1754, 1618, 1592, 1491, 764, 748.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min, 210 nm, 25 °C, t_R = 8.72 min (minor), 10.09 min (major).

(*R*)-phenyl -2-(4-methoxyphenyl) butanoate (2d):

MeO

Yield: 96%; ee: 91%.

Colorless oil, $[\alpha]_{D^{20}} = -65^{\circ} (0.23, \text{CHCl}_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.35 – 7.31 (m, 4H), 7.21 – 7.17 (m, 1H), 6.99 – 6.97 (m, 2H), 6.91 – 6.89 (m, 2H), 3.81 (s, 3H), 3.64 (t, *J* = 7.7 Hz, 1H), 2.25 – 2.14 (m, 1H), 1.93 – 1.82 (m, 1H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.9, 159.0, 150.9, 130.7, 129.4, 129.1, 125.8, 121.6, 114.2, 55.4, 52.7, 26.8, 12.2.

HRMS-ESI (m/z) Calcd for $C_{17}H_{19}O_3[(M + H)^+]$ 271.1329, Found: 271.1338.

IR (KBr): v (cm⁻¹) 3414, 2932, 1753, 1610, 1592, 1511, 1252, 816, 750.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min,

204 nm, 25 °C, t_R = 27.54 min (minor), 38.92 min (major).

(R)-phenyl -2-(p-tolyl) butanoate (2e):

Yield: 91%; ee: 91%. Colorless oil, $[\alpha]_D{}^{20} = -74^\circ$ (0.39, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.27 (m, 4H), 7.20 – 7.16 (m, 3H), 7.00 – 6.97 (m, 2H), 3.66 (t, J = 7.7 Hz, 1H), 2.35 (s, 3H), 2.26 – 2.15 (m, 1H), 1.93 – 1.83 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.8, 151.0, 137.2, 135.7, 129.5, 129.4, 128.0, 125.8, 121.6, 53.2, 26.9, 21.2, 12.3.

HRMS-ESI (m/z) Calcd for C₁₇H₁₉O₂ $[(M + H)^+]$ 255.1380, Found: 255.1388.

IR (KBr): v (cm⁻¹) 3450, 2964, 1754, 1646, 1513, 1491, 749, 687.

HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min, 204 nm, 25 °C, $t_R = 15.59$ min (major), 18.64 min (minor).

(R)-phenyl -2-(m-tolyl) butanoate (2f):

Yield: 91%; ee: 90%. Colorless oil, $[\alpha]_D^{20} = -65^{\circ}$ (0.24, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.31 (m, 2H), 7.27 – 7.23 (m, 1H), 7.20 – 7.16 (m, 3H), 7.10 (d, J = 7.2 Hz, 1H), 7.00 – 6.98 (m, 2H), 3.65 (t, J = 7.7 Hz, 1H), 2.36 (s, 3H), 2.26 – 2.16 (m, 1H), 1.94 – 1.83 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 150.9, 138.7, 138.5, 129.4, 128.9, 128.7, 128.3, 125.8, 125.1, 121.6, 53.6, 26.9, 21.6, 12.3. HRMS-ESI (m/z) Calcd for C₁₇H₁₉O₂ [(M + H) ⁺] 255.1380, Found: 255.1385. IR (KBr): v (cm⁻¹) 3451, 2965, 1755, 1630, 1592, 1491, 767, 749. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min, 204 nm, 25 °C, t_R = 12.10 min (minor), 13.76 min (major).

(R)-ethyl-2-(o-tolyl) butanoate (2g):

Yield: 90%; ee: 89%. Colorless oil, $[\alpha]_D{}^{20} = -60^\circ (0.13, \text{CHCl}_3)$. ¹**H NMR (400 MHz, CDCl}_3):** δ 7.32 (d, J = 7.2 Hz, 1H), 7.19 – 7.13 (m, 3H), 4.16 – 4.05 (m, 2H), 3.73 (t, J = 8 Hz, 1H), 2.38 (s, 3H), 2.17 – 2.06 (m, 1H), 1.81 – 1.70 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 137.9, 136.3, 130.5, 126.9, 126.8, 126.4, 60.7, 48.8, 26.4, 20.0, 14.3, 12.4. HRMS-ESI (m/z) Calcd for C₁₃H₁₉O₂ [(M + H) ⁺] 207.1380, Found: 207.1383. IR (KBr): v (cm⁻¹) 3415, 2965, 1733, 1636, 1490, 1463, 750, 732. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 99.8/0.2, 0.6 mL/min, 204 nm, 25 °C, t_R = 11.24 min (major), 12.21 min (minor).

(R)-phenyl-2-(4-bromophenyl) butanoate (2h):

Yield: 99%; ee: 86%.

Colorless oil, $[\alpha]_D^{20} = -64^{\circ}$ (0.18, CHCl₃).

¹H NMR (400 MHz, CDCl₃): 7.50 - 7.47 (m, 2H), 7.36 - 7.32 (m, 2H), 7.29 - 7.27 (m, 2H), 7.22 - 7.18 (m, 1H), 6.99 - 6.97 (m, 2H), 3.66 (t, J = 7.7 Hz, 1H), 2.26 - 2.15 (m, 1H), 1.93 - 1.82 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.2, 150.7, 137.7, 132.0, 129.9, 129.5, 126.0, 121.5, 121.5, 53.0, 26.8, 12.2.

HRMS-ESI (m/z) Calcd for C₁₆H₁₆BrO₂ $[(M + H)^+]$ 319.0328, Found: 319.0337.

IR (KBr): v (cm⁻¹) 3461, 2965, 1754, 1592, 1489, 1456, 815, 749.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 95/5, 1.0 mL/min, 204 nm, 25 °C, t_R = 16.46 min (minor), 23.39 min (major).

(R)-phenyl-2-(4-iodophenyl) butanoate (2i):

Yield: 94%; ee: 85%. Colorless oil, $[\alpha]_D^{20} = -59^{\circ}$ (0.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.71 – 7.68 (m, 2H), 7.36 – 7.32 (m, 2H), 7.22 – 7.18 (t, *J* = 7.7 Hz, 1H), 7.17 – 7.14 (m, 2H), 6.98 (d, *J* = 7.7 Hz, 2H), 3.64 (t, *J* = 7.7 Hz, 1H), 2.26 – 2.15 (m, 1H), 1.93 – 1.82 (m, 1H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 150.8, 138.4, 137.9, 130.2, 129.5, 126.0, 121.5, 93.1, 53.1, 26.8, 12.2. HRMS-ESI (m/z) Calcd for C₁₆H₁₆IO₂ [(M + H) ⁺] 367.0189, Found: 367.0195. IR (KBr): v (cm⁻¹) 3477, 2964, 1755, 1638, 1592, 1485, 814, 750. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 95/5, 1.0 mL/min, 204 nm, 25 °C, t_R = 17.77 min (minor), 31.39 min (major).

(*R*)-methyl-4-(1-(benzyloxy)-1-oxobutan-2-yl)benzoate (2j):

Yield: 97%; ee: 84%.

Colorless oil, $[\alpha]_{D^{20}} = -6^{\circ} (0.21, \text{CHCl}_3).$

¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.24 (m, 2H), 5.26 – 4.97 (m, 2H), 3.91 (s, 3H), 3.57 (t, J = 7.7 Hz, 1H), 2.19 – 2.08 (m, 1H), 1.88 – 1.77 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 173.2, 166.9, 144.0, 135.7, 129.8, 129.1, 128.5, 128.2, 128.1, 128.0, 66.6, 53.4, 52.1, 26.6, 12.0.

HRMS-ESI (m/z) Calcd for $C_{19}H_{20}O_4$ [(M + H) ⁺] 313.1434, Found: 313.1437.

IR (KBr): v (cm⁻¹) 2966, 2406, 1725, 1559, 1281, 1162, 921, 746.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm, 25 °C, t_R =12.56 min (minor), 17.99 min (major).

(*R*)-benzyl -2-(4-(trifluoromethyl)phenyl)butanoate (2k)

OBn

F₃C Yield: 99%; ee: 78%. Colorless oil, [α] $D^{20} = -4^{\circ}$ (0.11, CHCl₃).

¹**H** NMR (400MHz, CDCl₃): δ 7.57 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.36 – 7.29 (m, 3H), 7.26 – 7.22 (m, 2H), 5.46 – 4.85 (m, 2H), 3.57 (t, J = 7.7 Hz, 1H), 2.20 – 2.09 (m, 1H), 1.88 – 1.77 (m, 1H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 173.1, 142.8, 135.7, 129.5 (q, *J* = 32.8), 128.5, 128.4, 128.2, 128.0, 125.5, 125.5, 122.8, 66.6, 53.2, 26.6, 12.0.

HRMS-ESI (m/z) Calcd for $C_{18}H_{17}F_{3}O_{2}[(M + Na)^{+}]$ 345.1073, Found: 345.1083.

IR (KBr): v (cm⁻¹) 3662, 2966, 2235, 1736, 1261, 1123, 801, 751.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 98/2, 1.0 mL/min, 210 nm, 25 °C, t_R = 9.08 min (minor), 11.53 min (major).

(*R*)-phenyl-2-([1,1'-biphenyl]-4-yl) butanoate (2l):

COOPh Ph

Yield: 98%; ee: 90%.

Colorless oil, $[\alpha]_D^{20} = -69^\circ$ (0.44, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.58 (m, 4H), 7.49 – 7.42 (m, 4H), 7.36 – 7.32 (m, 3H), 7.21 – 7.17 (m, 1H), 7.02 – 7.00 (m, 2H), 3.74 (t, *J* = 7.7 Hz, 1H), 2.32 – 2.21 (m, 1H), 2.00 – 1.89 (m, 1H), 1.03 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.7, 150.9, 140.8, 140.5, 137.8, 129.5, 128.9, 128.6, 127.6, 127.5, 127.2, 125.9, 121.6, 53.3, 26.9, 12.3.

HRMS-ESI (m/z) Calcd for $C_{22}H_{21}O_2$ [(M + H)⁺] 317.1536, Found: 317.1539.

IR (KBr): v (cm⁻¹) 3476, 2965, 1753, 1619, 1592, 1486, 816, 748.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 85/15, 1.0 mL/min, 204 nm, 35 °C, t_R = 19.86 min (minor), 23.97 min (major).

(*R*)-phenyl-2-(naphthalen-2-yl) butanoate (2m):

Yield: 99%; ee: 91%.

Colorless oil, $[\alpha]_D^{20} = -91^{\circ}$ (0.26, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.87 – 7.83 (m, 4H), 7.56 – 7.47 (m, 3H), 7.34 – 7.30 (m, 2H), 7.20 – 7.16 (m, 1H), 6.99 – 6.97 (m, 2H), 3.87 (t, *J* = 7.7 Hz, 1H), 2.38 – 2.27 (m, 1H), 2.07 – 1.96 (m, 1H), 1.03 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 150.9, 136.1, 133.6, 132.8, 129.4, 128.6, 128.0, 127.8, 127.2, 126.3, 126.0, 126.0, 125.9, 121.5, 53.7, 26.8, 12.3. HRMS-ESI (m/z) Calcd for C₂₀H₁₉O₂ [(M + H) ⁺] 291.1380, Found: 291.1386. IR (KBr): v (cm⁻¹) 3472, 2965, 1752, 1630, 1592, 1491, 764, 749. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 85/15, 1.0 mL/min, 204 nm, 25 °C, t_R = 20.06 min (minor), 25.87 min (major).

(*R*)-phenyl-2-(thiophen-2-yl) butanoate (2n):

Yield: 99%; ee: 88%.

Colorless oil, $[\alpha]_{D^{20}} = -26^{\circ}$ (0.29, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.33 (m, 2H), 7.25 – 7.19 (m, 2H), 7.05 – 7.03 (m, 3H), 7.00 – 6.98 (m, 1H), 4.01 (t, J = 7.6 Hz, 1H), 2.30 – 2.20 (m, 1H), 2.05 – 1.94 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 150.8, 140.9, 129.5, 126.9, 126.0, 125.8, 124.9, 121.5, 48.8, 28.1, 12.2.

HRMS-ESI (m/z) Calcd for C₁₄H₁₅SO₂ [(M + H) ⁺] 247.0787, Found: 247.0788. **IR (KBr):** v (cm⁻¹) 3414, 2931, 1757, 1592, 1491, 1456, 750, 700.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 85/15, 1.0 mL/min, 204 nm, 25 °C, t_R = 21.53 min (major), 24.38 min (minor).

(*R*)-phenyl-2-phenylpropanoate (20):

Yield: 92%; ee: 86%. Colorless oil, $[\alpha]p^{20} = -83^{\circ}$ (0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.28 (m, 7H), 7.21 – 7.17 (m, 1H), 7.00 – 6.97 (m, 2H), 3.96 (q, J = 7.2 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 173.2, 150.9, 140.2, 129.4, 128.9, 127.6, 127.5, 125.9, 121.5, 45.8, 18.6. HRMS-ESI (m/z) Calcd for C₁₅H₁₅O₂ [(M + H) ⁺] 227.1067, Found: 227.1078. IR (KBr): v (cm⁻¹) 3414, 2979, 1757, 1638, 1592, 1491, 749, 732. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min, 204 nm, 25 °C, t_R = 32.89 min (major), 36.80 min (minor). (R)-phenyl-2-phenylpentanoate (2p):

Yield: 91%; ee: 92%. Colorless oil, $[\alpha]_D^{20} = -60^\circ$ (0.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.27 (m, 7H), 7.21 – 7.17 (m, 1H), 7.00 – 6.97 (m, 2H), 3.80 (t, J = 7.7 Hz, 1H), 2.20 – 2.13 (m, 1H), 1.89 – 1.81 (m, 1H), 1.39 (ddd, J = 14.2, 9.3, 7.6 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMP (100 MHz, CDCl₃): δ 172 8 150 9 138 9 129 4 128 8 128 1 127 5

¹³C NMR (100 MHz, CDCl₃): δ 172.8, 150.9, 138.9, 129.4, 128.8, 128.1, 127.5, 125.9, 121.5, 51.7, 35.7, 20.9, 14.0.

HRMS-ESI (m/z) Calcd for C₁₇H₁₉O₂ $[(M + H)^+]$ 255.1380, Found: 255.1387.

IR (KBr): v (cm⁻¹) 3415, 2929, 1755, 1618, 1592, 1491, 750, 697.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 90/10, 1.0 mL/min, 204 nm, 25 °C, t_R = 12.84 min (minor), 15.07 min (major).

(R)-phenyl-5-bromo-2-phenylpentanoate (2q):

Yield: 91%; ee: 91%.

Colorless oil, $[\alpha]_{D^{20}} = -46^{\circ}$ (0.14, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.25 (m, 7H), 7.22 – 7.18 (m, 1H), 6.99 – 6.96 (m, 2H), 3.81 (td, J = 7.7, 1.8 Hz, 1H), 3.43 (t, J = 6.5 Hz, 2H), 2.36 – 2.30 (m, 1H), 2.09 – 1.97 (m, 1H), 1.96 – 1.81 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 172.2, 150.8, 138.1, 129.5, 129.1, 128.1, 127.8, 126.0, 121.5, 51.1, 33.1, 32.0, 30.7.

HRMS-ESI (m/z) Calcd for C₁₆H₁₆BrO₂ $[(M + H)^+]$ 333.0485, Found: 333.0488.

IR (KBr): v (cm⁻¹) 3451, 2921, 1752, 1630, 1491, 1454, 764, 749.

HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 85/15, 1.0 mL/min, 204 nm, 25 °C, t_R = 29.49 min (minor), 42.53 min (major).

(*R*)-phenyl-5-azido-2-phenylpentanoate (2r):

Yield: 99%; ee: 90%. Colorless oil, $[\alpha]_D^{20} = -75^{\circ}$ (0.15, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃): δ 7.41 – 7.30 (m, 7H), 7.20 (t, J = 7.4 Hz, 1H), 6.98 (dd, J = 8.5, 0.9 Hz, 2H), 3.80 (t, J = 7.7 Hz, 1H), 3.34 – 3.30 (m, 2H), 2.27 – 2.23 (m, 1H), 1.99 – 1.96 (m, 1H), 1.69 – 1.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 172.3, 150.7, 138.1, 129.5, 129.1, 128.0, 127.8, 126.0, 121.4, 51.4, 51.2, 30.6, 27.0.

HRMS-ESI (m/z) Calcd for C₁₇H₁₇N₃O₂ $[(M + H)^+]$ 296.1394, Found: 296.1398.

IR (KBr): v (cm⁻¹) 2961, 2096, 1754, 1592, 1491, 1452, 729, 689.

HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 70/30, 1.0 mL/min, 204 nm, 35 °C, $t_R = 14.00$ min (minor), 21.90 min (major).

(*R*)-phenyl-2-phenylpent-4-enoate (2s):

Yield: 99%; ee: 90%. Colorless oil, $[\alpha]_D{}^{20} = -54^\circ (0.13, \text{CHCl}_3)$. ¹**H NMR (400 MHz, CDCl}_3):** δ 7.42 – 7.28 (m, 7H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 2H), 5.86 – 5.78 (m, 1H), 5.12 (dd, *J* = 33.8, 13.6 Hz, 2H), 3.96 – 3.79 (m,

1H), 2.98 – 2.91 (m, 1H), 2.65 – 2.58 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 172.1, 150.9, 138.2, 135.1, 129.5, 128.9, 128.1, 127.7, 126.0, 121.5, 117.5, 51.6, 37.7.

HRMS-ESI (m/z) Calcd for $C_{17}H_{17}O_2[(M + H)^+]$ 253.1223, Found: 253.1229.

IR (KBr): v (cm⁻¹) 3472, 3078, 2921, 1756, 1644, 1592, 1491, 749.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 95/5, 1.0 mL/min, 204 nm, 25 °C, t_R = 17.61 min (major), 18.72 min (minor).

(*R*)-phenyl-2-(4-isobutylphenyl) propanoate (2t):

COOPh

Yield: 92%; ee: 86%. Colorless oil, $[\alpha]_D^{20} = -67^\circ$ (0.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.29 (m, 4H), 7.20 – 7.13 (m, 3H), 7.00 – 6.98 (m, 2H), 3.93 (q, *J* = 7.1 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 1.91 – 1.81 (m, 1H), 1.60 (d, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 151.0, 140.9, 137.4, 129.6, 129.4, 127.3, 125.8, 121.5, 45.4, 45.2, 30.3, 22.5, 18.7. HRMS-ESI (m/z) Calcd for C₁₉H₂₃O₂ [(M + H) ⁺] 283.1693, Found: 283.1701.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 99/1, 1.0 mL/min, 210 nm, 25 °C, t_R = 23.03 min (major), 35.55 min (minor).

(*R*)-phenyl-2-(4-isobutylphenyl) butanoate (2u):

Yield: 99%; ee: 90%. Colorless oil, $[\alpha]_D^{20} = -44^\circ$ (0.11, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃): δ 7.35 – 7.28 (m, 4H), 7.21 – 7.17 (m, 1H), 7.13 (d, J = 8.1 Hz, 2H), 7.00 – 6.98 (m, 2H), 3.67 (t, J = 7.7 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 2.25 – 2.17 (m, 1H), 1.92 – 1.85 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H).

¹³C NMR (100MHz, CDCl₃): δ 172.9, 151.0, 141.0, 135.9, 129.5, 129.4, 127.8, 125.8, 121.6, 53.3, 45.2, 30.3, 26.9, 22.5, 12.3.

HRMS-ESI (m/z) Calcd for C₂₀H₂₅O₂ $[(M + H)^+]$ 297.1849, Found: 297.1854.

IR (KBr): v (cm⁻¹) 3473, 2960, 1756, 1632, 1511, 1492, 1382, 749.

HPLC: Chiralcel OJ-H (25 cm \times 0.46 cm), hexane/2-propanol = 98/2, 1.0 mL/min, 204 nm, 25 °C, t_R = 11.39 min (minor), 12.77 min (major).

(*R*)-phenyl-2-(3-phenoxyphenyl) propanoate (2v):

Yield: 99%; ee: 87%. Colorless oil, $[\alpha]_D{}^{20} = -62^\circ$ (0.18, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.30 (m, 5H), 7.20 (t, J = 7.4 Hz, 1H), 7.14 – 7.07 (m, 3H), 7.04 – 6.92 (m, 5H), 3.93 (q, J = 7.1 Hz, 1H), 1.60 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 157.7, 157.1, 150.9, 142.1, 130.2, 129.9, 129.5, 125.9, 123.5, 122.5, 121.5, 119.1, 118.2, 117.8, 45.6, 18.5. HRMS-ESI (m/z) Calcd for C₂₁H₁₉O₃ [(M + H) ⁺] 319.1329, Found: 319.1332. IR (KBr): v (cm⁻¹) 3473, 2963, 1757, 1583, 1487, 1260, 764, 750. HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol = 80/20, 1.0 mL/min, 204 nm, 25 °C, t_R = 32.36 min (major), 38.65 min (minor).

phenyl 2-methyl-3-phenylpropanoate (2w)

PhOOC H

Yield: 30%; ee: 8%.

¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 15.0, 7.1 Hz, 4H), 7.24 (dd, J = 7.6, 6.1 Hz, 3H), 7.19 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 7.8 Hz, 2H), 3.13 (dd, J = 13.3, 7.6 Hz, 1H), 3.05 – 2.94 (m, 1H), 2.83 (dd, J = 13.3, 7.2 Hz, 1H), 1.32 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 150.8, 139.1, 129.5, 129.2, 128.6, 126.6, 125.8, 121.6, 41.8, 39.9, 17.1.

HRMS-ESI (m/z) calcd for $C_{16}H_{16}O_2Na$ [(M + Na) ⁺] 263.1043, found 263.1053. **HPLC**: Chiralcel OD-H (25 cm × 0.46 cm), hexane/2-propanol = 98/2, 1.0 mL/min, 204 nm, 25 °C, t_R = 21.93 min (major), 23.12 min (minor).

(*R*)-benzyl-2-phenylbutanoate (2b)³

Yield: 47%; ee: 88%.

Colorless oil, $[\alpha]_D^{20} = -12^{\circ} (0.11, \text{CHCl}_3).$

¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.28 (m, 7H), 7.26 –7.23 (m, 3H), 5.10 (dd, J = 33.2, 12.5 Hz, 2H), 3.51 (t, J = 7.7 Hz, 1H), 2.18 – 2.07 (m, 1H), 1.87 – 1.77 (m, 1H), 0.88 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.0, 139.0, 136.1, 128.7, 128.6, 128.2, 128.1, 128.0, 127.3, 66.4, 53.6, 26.8, 12.3.

HPLC: Chiralcel OD-H (25 cm × 0.46 cm), hexane/2-propanol = 98/2, 1.0 mL/min, 204 nm, 25 °C, $t_R = 22.23$ min (major), 24.90 min (minor).

(*R*)-ethyl-2-phenylbutanoate (2c)⁴

Yield: 50%; ee: 90%.

Colorless oil, $[\alpha]_{D^{20}} = -56^{\circ} (0.05, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.35 – 7.24 (m, 5H), 4.18 – 4.06 (m, 2H), 3.43 (t, J = 7.7 Hz, 1H), 2.13 – 2.06 (m, 1H), 1.83 – 1.75 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.2, 139.3, 128.6, 128.0, 127.2, 60.7, 53.6, 26.9, 14.3, 12.3.

HPLC: Chiralcel OD-H (25 cm \times 0.46 cm), hexane/2-propanol = 99.8/0.2, 1.0 mL/min, 204 nm, 25 °C, t_R = 14.18 min (major), 28.64 min (minor).

4. Synthetic Applications

4.1 Gram-Scale Synthesis of 2a and (S)-2v

To a mixture of catalyst C14 (10 mol%) and 2-(phenoxycarbonyl)-2phenylbutanoic acid 1a (1.0 g, 3.5 mmol) in a vial were added TBME (35.0 mL), then the reaction mixture was stirred at 20 °C for 35 h. The mixture was concentrated in vacuo. The remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired product 2a (828 mg, 98%) in 91% ee.

To a mixture of catalyst (*S*, *S*)-C14 (10 mol%) and 2-methyl-3-oxo-3-phenoxy-2-(3-phenoxyphenyl) propanoic acid 1v (1.0 g, 2.76 mmol) in a vial were added TBME (28.0 mL), then the reaction mixture was stirred at 20 °C for 35 h. The mixture was concentrated in vacuo, and the remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired product (*S*)-2v (878 mg, 97%) in 86% ee.

4.2 The Transformations of Compound 2a and enantiomer (S)-2v

30% H₂O₂ (0.48 mL) and aq. LiOH (1.22 mL, 2.0 M) were added to a solution of **2a** (0.200 g, 0.83 mmol) in THF (4.88 mL) and water (0.73 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 6 h, quenched with NaS₂O₃ (4.9 mL, 0.7 M) and NaHCO₃ (9.8 mL, 0.5 M), stirred for another 15 min, acidified with 20% HCl, extracted with EtOAc (5 mL \times 3), dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (petroleum ether/ethyl acetate = 10/1) to give acid **3a** as a colorless oil (0.13 g, 96% yield, 91% ee).

(R)-2-phenylbutanoic acid (R)- $3a^5$

 $[\alpha]_{D}^{20} = -63^{\circ} (c \ 0.21, \text{CHCl}_3).$

¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.28 (m, 5H), 3.50 – 3.45 (m, 1H), 2.15 – 2.08 (m, 1H), 1.88 – 1.80 (m, 1H), 0.96 – 0.90 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.9, 138.5, 128.8, 128.2, 127.6, 53.5, 26.4, 12.2. IR (KBr): v (cm⁻¹) 3468, 2966, 1706, 1601, 1495, 1455, 748, 697.

HPLC: Chiralcel OJ-H (25 cm × 0.46 cm), hexane/2-propanol/CF₃COOH = 95/4/1, 1.0 mL/min, 204 nm, 25 °C, t_R = 16.61 min (major), 17.74 min (minor).

The optical rotation of compound **3a** was $[\alpha]_D{}^{20} = -63^\circ$ (*c* 0.21, CHCl₃), and the absolute configuration of **3a** was determined to be *R* by comparing the reported optical rotation of (-)-(*S*)-**3a** $[\alpha]_D{}^{23} = 70.7$ (*c* 1.0 CHCl₃).⁵

30% H₂O₂ (0.36 mL) and aq. LiOH (0.93 mL, 2.0 M) were added to a solution of (*S*)-**2v** (0.200 g, 0.63 mmol) in THF (3.7 mL) and water (0.56 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 6 h, quenched with NaS₂O₃ (3.7 mL, 0.7 M) and NaHCO₃ (7.4 mL, 0.5 M), stirred for another 15 min, acidified with 20% HCl, extracted with EtOAc (5 mL × 3), dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (petroleum ether/ethyl acetate = 10/1) to give (*s*)-fenoprofen⁵ as a colorless oil (0.14 g, 95% yield, 86% ee). $[\alpha]_D^{20} = 41^\circ$ (0.41, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.25 (m, 3H), 7.13 – 7.03 (m, 2H), 7.02 – 7.01 (m, 3H), 6.89 (dd, J = 7.9, 2.2 Hz, 1H), 3.72 (q, J = 7.2 Hz, 1H), 1.50 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.6, 157.6, 157.0, 141.8, 130.0, 129.9, 123.5, 122.5, 119.1, 118.3, 117.6, 45.3, 18.2.

IR (KBr): $v (cm^{-1}) 3473, 2930, 1708, 1583, 1488, 1245, 752, 691.$ HPLC: Chiralcel AD-H (25 cm × 0.46 cm), hexane/2-propanol/CF₃COOH = 90/10/0.1, 1.0 mL/min, 204 nm, 25 °C, t_R = 24.42 min (minor), 28.20 min (major).

Entry	Compounds	р <i>К</i> а (H ₂ O)	pKa (DMSO)
16	Me COOH Me COOH	3.15	-
27	⊕ Et ₃ NH	10.72	9.07
38	F ₃ C SO ₂ NHMe F ₃ C	5.50	11.11
48	PhO Ph Et	9.14	17.96

5. Some pka values of our reaction related compounds

6. Reference

1). (a) A. Nakano, S. Kawahara, S. Akamatsu, K. Morokuma, M. Nakatani, Y. Iwabuchi, K. Takahashi, J. Ishihara and S. Hatakeyama, *Tetrahedron* 2006, **62**, 381; (b) B. Hu and L. Deng, *Angew. Chem. Int. Ed.* 2018, **57**, 2233; (c) J. Luo, L.-W. Xu, R. A. S. Hay and Y. Lu, *Org. Lett.* 2009, **11**, 437; (d) B. Vakulya, S. Varga, A. Csámpai and T. Soós, *Org. Lett.* 2005, **7**, 1967.

2). M. Dajek, R. Kowalczyk and P. J. Boratyński, Catal. Sci. Technol., 2018, 8, 4358.

3). X.-N. Wang, H. Lv, X.-L. Huang and S. Ye, Org. Biomol. Chem., 2009, 7, 346.

4). B. A. Sandoval; A. J. Meichan and T. K. Hyster, J. Am. Chem. Soc. 2017, 139, 11313.

5). C. E. Stivala and A. Zakarian, J. Am. Chem. Soc. 2011, 133, 11936.

6). *CRC Handbook of Chemistry and Physics*, ed. W. M. Haynes, CRC Press, Boca Raton, FL, 97th edn, 2016–2017, pp. 5–91.

7). M. R. Crampton and I. A. Robotham, J. Chem. Res. (S) 1997, 22.

8). Corresponding pKa value was predicted by the approach developed by Luo and Zhang, see: Q. Yang, Y. Li, J.-D. Yang, Y. Liu, L. Zhang, S. Luo and J.-P. Cheng, *Angew. Chem. Int. Ed.* 2020, **59**, 19282.

7. ¹H NMR, ¹³C NMR and HPLC Spectra Data

¹H-NMR(400 MHz, CDCl₃)

S40

7, 33 2, 36 2, 37 2, 38

1.0 1.03-7.06 0.99 1.97 1.00-1 1.03 . 0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 2.0 0. 9.5 9.0 8. 0 7.0 6.5 6.0 3.0 1.5 0.5 8.5 7.5 2.5 -172.68 129.45 128.86 128.86 127.54 121.56 ----53.64 -12.29

¹H-NMR(400MHz, CDCl₃)

S52

¹H-NMR(400 MHz, CDCl₃)

5.16 5.13 5.09 5.06

¹H-NMR(400MHz, CDCl₃)

<1.63 1.61

¹H-NMR(400MHz, CDCl₃)

1.00-1 3.70H 5.06 3.03 3.03 4.93 4.4 5.5 5.0 f1 (ppm) .0 9.5 7.0 4.0 8.0 7.5 6.5 6.0 3.0 2.0 1. 0 0.5 9.0 8.5 4.5 3.5 2.5 1.5 0.

HPLC Spectra Data:

(R)-phenyl-2-phenylbutanoate (2a):

COOPh

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1 mL/min, 25 °C, UV 210 nm

(R)-phenyl -2-(4-methoxyphenyl) butanoate (2d):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1 mL/min, 25 °C, UV 204 nm

(R)-phenyl -2-(p-tolyl) butanoate (2e):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1 mL/min, 25 °C, UV 204 nm

(R)-phenyl -2-(m-tolyl) butanoate (2f):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1 mL/min, 25 °C, UV 204 nm

(R)-ethyl-2-(o-tolyl) butanoate (2g):

Column DAICEL Chiralcel OJ-H 5 μ m, heptane/i-PrOH 99.8:0.2, flow rate 0.6 mL/min, 25 °C, UV 204 nm

(*R*)-phenyl-2-(4-bromophenyl) butanoate (2h):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 95:5, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-(4-iodophenyl) butanoate (2i):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 95:5, flow rate 1.0 mL/min, 25 °C, UV 204 nm


```
(R)-methyl-4-(1-(benzyloxy)-1-oxobutan-2-yl)benzoate (2j):
```


Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 80:20, flow rate 1.0 mL/min, 25 °C, UV 254 nm

(*R*)-benzyl -2-(4-(trifluoromethyl)phenyl)butanoate (2k):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 98:2, flow rate 1.0 mL/min, 25 °C, UV 210 nm

(*R*)-phenyl-2-([1,1'-biphenyl]-4-yl) butanoate (2l):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 85:15, flow rate 1.0 mL/min, 35 °C, UV 204 nm

(R)-phenyl-2-(naphthalen-2-yl) butanoate (2m):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 85:15, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-(thiophen-2-yl) butanoate (2n):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 85:15, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-phenylpropanoate (20):

COOPh

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-phenylpentanoate (2p):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 90:10, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-5-bromo-2-phenylpentanoate (2q):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 85:15, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-5-azido-2-phenylpentanoate (2r):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 70:30, flow rate 1.0 mL/min, 35 °C, UV 204 nm

(R)-phenyl-2-phenylpent-4-enoate (2s):

Column DAICEL Chiralcel OJ-H 5 μ m, heptane/i-PrOH 95:5, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-(4-isobutylphenyl) propanoate (2t):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 99:1, flow rate 1.0 mL/min, 25 °C, UV 210 nm

(R)-phenyl-2-(4-isobutylphenyl) butanoate (2u):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 98:2, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-phenyl-2-(3-phenoxyphenyl) propanoate (2v):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH 80:20, flow rate 1.0 mL/min, 25 °C, UV 204 nm

phenyl 2-methyl-3-phenylpropanoate (2w):

No	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*mi	mAU	%	%	n.a
1		21.099	501.5	251.9	49.971	49.971	na
2		22.394	473.1	294.6	50.029	50.029	na

No	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*mi	mAU	%	%	n.a
1		21.934	161.6	127.1	54.117	54.117	na
2		23.117	130.1	108.4	45.883	45.883	n.a

(R)-benzyl-2-phenylbutanoate (2b):

Column DAICEL Chiralcel OD-H 5µm, heptane/i-PrOH 98:2, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-ethyl-2-phenylbutanoate (2c):

Column DAICEL Chiralcel OD-H 5 $\mu m,$ heptane/i-PrOH 99.8:0.2, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(R)-2-phenylbutanoic acid (3a):

Column DAICEL Chiralcel OJ-H 5µm, heptane/i-PrOH/CF₃COOH 95:4:1, flow rate 1.0 mL/min, 25 °C, UV 204 nm

(S)-phenyl-2-(3-phenoxyphenyl)propanoate:

Column DAICEL Chiralcel AD-H 5µm, heptane/i-PrOH/CF₃COOH 90:10:0.1, flow rate 1.0 mL/min, 25 °C, UV 204 nm

