Electronic Supplementary Information for

Electronic structure modulation of Mo sites in anion and cation co-doped MoO₂

nanospheres for electrocatalytic water oxidation

Chunyan Zhang, ‡ Ling Wang, ‡ Zhuwei Cao, Rui Li, Sheng Ye*

School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural

University, Hefei 230036, China

*Corresponding author

E-mail: sye503@ahau.edu.cn

[‡] These authors contributed equally to this work: Chunyan Zhang and Ling Wang.

Experimental

Material

(NH₄)₆Mo₇O₂₄·4H₂O was purchased from Sinopharm Chemical Reagent Co., Ltd. Both NaBH₄ and HCl were from Macklin Co., Ltd. Ni(NO₃)₂·6H₂O was provided by Aladdin Co., Ltd. The water used in the experiments was purified by a Millipore system. All purchased reagents can be used directly without further purification.

Synthesis of MoO₂ nanospheres

Firstly, MoO₂ were synthesized by hydrothermal method. Specifically, slowly drop aqueous solution with 15 mmol sodium borohydride dissolved in 50 ml distilled water into a solution containing 1 mmol of ammonium molybdate and 300 ml of distilled water under magnetic stirring. After 10 min, the pH value of above solution was adjusted to 5 by using concentrated 37% HCl. And the mixed solution was strongly stirred at room temperature for 3 h. The brown black solution was transferred to a 500 mL polytetrafluoroethylene lined autoclave and held at 220 °C for 20 h. After centrifugation, the resulted samples were obtained by washing with 95% ethanol and drying at room temperature.

Synthesis of Ni-MoO₂, N-MoO₂ and Ni/N-MoO₂ nanospheres

The synthesis methods of the three kinds of samples were similar to those of MoO₂. Ni-MoO₂ was prepared by adding 2 wt % Ni(NO₃)₂·6H₂O in the preparation process. For comparison, samples were fabricated by the same procedure with different percentages of Ni(NO₃)₂·6H₂O. While N-MoO₂ and Ni/N-MoO₂ composites were synthesized by calcining the bulk MoO₂ and Ni-MoO₂ composites respectively at 450 °C for 30 min and 150 min under NH₃ atmosphere at a heating speed of 2 °C min⁻¹. For comparison, samples were fabricated by the same procedure with different calcining time.

Characterizations

Field emission scanning electron microscope (SEM, Hitachi S4800) and transmission electron microscope (TEM, Tecnai G2 F20) were used to characterize the morphology and structural information of the prepared samples. The high-resolution transmission electron microscope (HRTEM, JEM-2100 plus) image was tested on the transmission electron microscope. Fourier transform infrared spectroscopy (FTIR, Nicolet iS 10) was recorded on the Brooke tensor II Fourier transform infrared spectrometer. The powder X-ray diffraction (XRD, X' Pert PRO MPD) analysis of the composite was carried out using Rigaku D/Max 2500 PC diffractometer (test range: 10-80 °, working voltage: 40 V, working current: 20 mA). Thermo Science 250Xi system was used for X-ray photoelectron spectroscopy (XPS, Thermo Kalpha) measurement with monochromatic Al K α as the excitation source, the binding energy was calibrated with reference to the C1S peak of 284.8 eV.

Electrochemical measurements

In 1.0 M KOH electrolyte, all electrochemical measurements of OER activity of the prepared materials were performed using an electrochemical workstation (CHI 760E, CH Instruments Ins., Shanghai, China). Using the standard three electrode system, prepared the catalyst into a 2 mg mL⁻¹ solution, in which the volume ratio of water, ethanol and 5 wt% Nafion solution is 8:1:1. Then, dripped it to foam nickel (0.5×0.5 cm²) as the working electrode, silver/silver chloride electrode as the reference electrode,

and platinum plate as the counter electrode. The relationship between all measured potentials and the reversible hydrogen electrode (RHE) is reported according to the following equation: $E_{(RHE)} = E_{(AgCI/Ag)} + (0.24 + 0.059 \text{ pH}) \text{ V}.$

In 1.0 M KOH electrolyte solution, all linear sweep voltammetry curves (LSV) were measured at a scanning rate of 5 mV s⁻¹ within the RHE range of 0.1-0.3 V. According to the formula (η = a + blog (abs (j))) to calculate the Tafel curve (b: Tafel slope, j: current density). The electrochemical impedance spectroscopy (EIS) measurement was carried out under the condition that RHE was 1.57 V, frequency was from 0.1 Hz to 1 ×10⁶ Hz. The closed cycle voltammetry (CV) curves at different scanning rates were measured to study the double-layer capacitance (C_{dl}).

DFT calculations

The DFT results were obtained plane wave basis sets, periodic boundary conditions of CASTEP. The configurations of the systems were optimized by fully relaxing the atomic structures until the remaining forces were less than 0.01 eV/Å. A cutoff energy of 600 eV was used for the GGA-PBE and plane wave basis in all relaxation processes. For self-consistent field (SCF) calculations, the convergence criteria for total energy and electron density were set to 1×10^{-6} au. To model the (-111) plane of MoO₂. To match the lattice parameters. To avoid interactions with neighboring atomic layers, a vacuum region of 15 Å was set along the z direction, which had no effect on the total energy. The Brillouin zone sampling was set to $2 \times 2 \times 1$ k-points. During the optimization of the configurations, the atomic structures were fully relaxed until the remaining forces were less than 0.01 eV/Å. To improve accuracy. According to the

literature description, the absorption energy of the free energy change (ΔGH) was calculated and used to observe catalytic activity.

Fig. S1 SEM images of MoO₂.

Fig. S2 TEM images of MoO₂.

Fig. S3 SEM images of Ni-MoO₂.

Fig. S4 TEM images of Ni-MoO₂.

Fig. S5 XRD patterns of the as-prepared $Ni-MoO_2$ catalysts with different configurations.

Fig. S6 (a) Polarization curves. (b) Overpotential comparison diagram at 10 mA cm⁻². (c) Tafel slopes of the as-prepared Ni-MoO₂ catalysts with different configurations. (d) Chronopotentiometric responses of Ni-MoO₂ at the current density of 10 mA cm⁻².

Fig. S7 SEM images of N-MoO₂.

Fig. S8 TEM images of N-MoO₂.

Fig. S9 XRD patterns of the as-prepared N-MoO₂ catalysts with different calcination times.

Fig. S10 (a) Polarization curves. (b) Overpotential comparison diagram at 10 mA cm⁻².
(c) Tafel slopes of the as-prepared N-MoO₂ catalysts with different calcination times.
(d) Chronopotentiometric responses of N-MoO₂ at the current density of 10 mA cm⁻².

Fig. S11 SEM images of Ni/N-MoO₂.

Fig. S12 TEM images of Ni/N-MoO₂.

Fig. S13 HRTEM images of (a) MoO₂, (b) Ni-MoO₂, (c) N-MoO₂, and (d) Ni/N-

MoO₂.

Fig. S14 The closed CV curves of the (a) MoO_2 , (b) Ni-MoO₂, (c) N-MoO₂, and (d)

Ni/N-MoO2 catalysts.

Fig. S15 Nyquist plots of EIS of the MoO₂, Ni-MoO₂, N-MoO₂, and Ni/N-MoO₂ catalysts.

Fig. S16 ECSA of MoO₂, Ni-MoO₂, N-MoO₂ and Ni/N-MoO₂ in 1.0 M KOH.

Fig. S17 The corresponding bar graph of the ECSA-normalized current density at the overpotential of 300 mV.

Fig. S18 XPS spectra of (a) N 1s orbital for N-MoO₂ and Ni/N-MoO₂. (b) Ni 2p orbital for Ni-MoO₂ and Ni/N-MoO₂.

Fig. S19 Mo 3d XPS of Ni-MoO₂ and N-MoO₂.

Fig. S20 XPS survey spectra of (a) MoO₂, (b) Ni-MoO₂, (c) N-MoO₂, and (d) Ni/N-

MoO₂.

Fig. S21 SEM images of Ni/N-MoO₂ after OER process.

Fig. S22 TEM images of Ni/N-MoO₂ after the OER process.

Fig. S23 XRD patterns of Ni/N-MoO₂ after the OER process.

Fig. S24 The XPS spectrum of Ni 2p orbital after the OER process.

Fig. S25 Structure models of the (a) MoO_2 , (b) $Ni-MoO_2$, (c) $N-MoO_2$ and (d) $Ni/N-MoO_2$.

Fig. S26 Total density of states for MoO₂, Ni-MoO₂, N-MoO₂, Ni/N-MoO₂.

Fig. S27 Partial electronic density of states (PDOS) of the Mo d orbit, O p orbit, Ni d orbit, and N d orbit in the MoO₂, Ni-MoO₂, N-MoO₂, and Ni/N-MoO₂.

Fig. S28 The electron density differences of (a) Ni-MoO₂ and (b) N-MoO₂.

Fig. S29 The HER process and corresponding chemisorption models of MoO₂, Ni-MoO₂, and N-MoO₂.

Catalysts	Electrolyte	η10 (mV)	Ref.
Ni/N-MoO ₂	1.0 M KOH	270	This work
MoO ₂ @3DC	1.0 M KOH	348	[1]
MoO ₂ /NF	1.0 M KOH	340	[2]
MoO ₂ nanosheet	1.0 M KOH	300	[3]
Ni/MoO ₂	1.0 M KOH	287	[4]
MoO ₂ -Co ₂ Mo ₃ O ₈	1.0 M KOH	320	[5]
CMO@NC	1.0 M KOH	272	[6]
MoO ₂ @NC	1.0 M KOH	302	[7]
MoO _{2-x} +OH ⁻	1.0 M KOH	296	[8]
CoO-MoO ₂	1.0 M KOH	312	[9]
MoO ₂ /CoC ₂ O ₄ ·2H ₂ O	1.0 M KOH	330	[10]
MoO ₂ @MoS ₂ @Co ₉ S ₈	1.0 M KOH	310	[11]
Ni-MoO ₂ @SCG	1.0 M KOH	278	[12]
NiMoO _{4-x} /MoO ₂	1.0 M KOH	233	[13]
Fe ₂ O ₃ /NiO/MoO ₂	1.0 M KOH	282	[14]
MCF/NPCCNT	1.0 M KOH	292	[15]
MoO ₂ -Co ₂ Mo ₃ O ₈ @C	1.0 M KOH	320	[16]
Co/MoO ₂	1.0 M KOH	318	[17]
MoO ₂ /Ni _{0.2} Mo _{0.8} N	1.0 M KOH	264	[18]
MoO2@MoS2@Co9S8	1.0 M KOH	310	[19]
Ni ₃ Mo ₃ N-MoO ₂ -NiO	1.0 M KOH	363	[20]

 Table 1. Summary of OER catalytic activities of representative MoO₂-based catalysts

 in alkaline electrolyte.

References

- W. Zhu, X. H. Yan, X. P. Huang, S. T. Wu, H. Chen, J. M. Pan, T. Li and Z. Shahnavaz, *Ceram. Int.* 2023, 49, 5646-5656.
- H. Y. Wang, J. T. Ren, C. C. Weng, X. W. Lv and Z. Y. Yuan, *Chem. Eng. J.* 2021, 426, 130761.
- Y. S. Jin, H. T. Wang, J. J. Li, X. Yue, Y. J. Han, P. K. Shen and Y. Cui, *Adv. Mater*. 2016, 28, 3785-3790.
- S. Ni, H. N. Qu, H. F. Xing, Z. H. Xu, X. Y. Zhu, M. L. Yuan, L. Wang, J. M. Yu,
 Y. Q. Li, L. R. Yang and H. Z. Liu, *ACS Appl. Mater. Interfaces*, 2021, 13, 17501-17510.
- Y. Q. Li, H. B. Xu, H. Y. Huang, C. Wang, L. G. Gao and T. L, Ma, *Chem. Commun.* 2018, 54, 2739-2742.
- W. Yaseen, M. Xie, B. A. Yusuf, Y. G. Xu, M. Rafiq, N. Ullah, P. Y. Zhou, X. Li and J. M. Xie, *Int. J. Hydrogen Energ.* 2022, 47, 15673-15686.
- 7. M. L. Mei, X. X. Xu, Y. Wang, X. J Wang and Y. Q. Huo, J. Name. 2013, 00, 1-3.
- P. Guha, B. Mohanty, R. Thapa, R. M. Kadam, P. V. Satyam and B. K. Jena, ACS Appl. Energy Mater. 2020, 3, 5208-5218.
- F. L. Lyu, Y. C. Bai, Z. W. Li, W. J. Xu, Q. F. Wang, J. Mao, L. Wang, X. W. Zhang, and Y. D. Yin, *Adv. Funct. Mater.* 2017, 27, 1702324.
- S. Ghosh, H. R. Inta, S. Ganguli, G. Tudu, H. V. S. R. M. Koppisetti and V. Mahalingam, J. Phys. Chem. C. 2020, 124, 20010-20020.

- Y. Q. Li, C. Wang, M. Cui, J. B. Xiong, L. W. Mi, S. Chen, *Appl. Surf. Sci.* 2021, 543, 148804.
- 12. T. Zhou, Y. Q. Huang, A. Ali, P. K. Shen, J. Electroanal. Chem. 2021, 897, 115555.
- 13. Z. Zhang, X. X. Ma, and J. L. Tang, J. Mater. Chem. A. 2018, 6, 12361-12369.
- X. J. Zhang, Y. F. Chen, M. L. Chen, B. Wang, B. Yu, X. Q. Wang, W. L. Zhang,
 D. G. Yang, *Nanoscale*, 2020, **12**, 3777-3786.
- X. J. Zhang, Y. F. Chen, M. L. Chen, B. Yu, B. Wang, X. Q. Wang, W. L. Zhang,
 D. X. Yang, J. Colloid. *Interf. Sci*, 2021, 581, 608-618.
- Y. Q. Li, H. B. Xu, H. Y. Huang, C. Wang, L. G. Gao, T. L. Ma, *Chem. Commun*, 2018, **54**, 2739-2742.
- L. Xia, Y. J. Li, H. Song, X. X. Li, W. J. Gong, X. Y. Jiang, M. Javanbakht, X. M.
 Zhang, B. Gao, P. K. Chu, *Rsc. Adv*, 2022, **12**, 34760-34765.
- 18. Y. W. Hu, H. Yang, J. Chen, New. J. Chem, 2023, 47, 10916-10920.
- Y. Q. Li, C. Wang, M. Cui, J. B. Xiong, L. W. Mi, S. R. Chen, *Appl. Surf. Sci*, 2021, 543, 148804.
- B. Peng, J. Hao, Z. M. Tian, Q. C. Xu, C. X. Ma, G. Y. Liu, Y. Y. Shi, W. J. Zheng, Energ. Fuel, 2022, 36, 4902-4910