Supporting Information

for

Switching On Emission in Zn(II) Coordination Complexes by Tempering N_{amido} Character

Amy L. Knodel,^{*a*} *Issiah B. Lozada*,^{*a*} *Robert J. Ortiz*,^{*a*} *J. A. Gareth Williams*^{*b**} *and David E.*

Herbert^{a*}

^a Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144
 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada; *david.herbert@umanitoba.ca
 ^b Department of Chemistry, Durham University, Durham, DH1 3LE, UK;
 *j.a.g.williams@durham.ac.uk

TABLE OF CONTENTS

Experimental Details
X-ray crystallography16
Computational Modelling17
Electronic Absorption and Emission Spectroscopy Figures
Figure S1. Equimolar solutions (approx. 0.10 mM) of proligands (a) in ambient light and (b) under UV irradiation (355 nm). For each image, from left to right: ^{<i>t</i>Bu} L1, ^{CF3} L1, ^{CF3} L2, ^{<i>t</i>Bu} L3. 10
Figure S2. Equimolar solutions (approx. 0.10 mM) of complexes (a) in ambient light and (b) under UV irradiation (355 nm). For each image, from left to right: (^{<i>r</i>Bu} L1)ZnCl ₂ , (^{CF3} L1)ZnCl ₂ , (^{CF3} L2) ₂ Zn, (^{<i>r</i>Bu} L3) ₂ Zn
Figure S3. Molar absorptivity of (a) $^{R}L1 / (^{R}L1)ZnCl_{2}$ and (b) $^{CF3}L2 / (^{CF3}L2)_{2}Zn / {^{tBu}L3 / (^{tBu}L3)_{2}Zn}$ in CH ₂ Cl ₂ at 295 K
Figure S4. Normalized UV-Vis absorption spectra of equimolar solutions (1.0 x 10 ⁻⁴ M) of (a) (^{CF3} L2) ₂ Zn and (b) (^{<i>t</i>Bu} L3) ₂ Zn in solvents of varying polarities at 295 K
Figure S5. Emission spectra of equimolar solutions (1.0 x 10 ⁻⁴ M) of (a) (^{CF3} L2) ₂ Zn and (b) (^{<i>t</i>Bu} L3) ₂ Zn in solvents of varying polarities at 295 K
Figure S6. Emission and excitation spectra in CH_2Cl_2 at 295 K (red and black lines respectively, registered at the λ_{ex} and λ_{em} values shown), and emission in EPA at 77 K (blue lines, at the same λ_{ex}), for the zinc complexes indicated (left) and for the corresponding proligands (right) 22
Figure S7. Normalized emission spectra in the solid state at 295 K: $(^{CF3}L1)ZnCl_2$ ($\lambda_{ex} = 380$ nm, blue line), $(^{tBu}L1)ZnCl_2$ ($\lambda_{ex} = 400$ nm, green line), and $(^{CF3}L2)_2Zn$ ($\lambda_{ex} = 400$ nm, red line).
Table S1. Comparison of selected photophysical properties of Zn(II) systems
Figure S8. Comparison of C–N bond lengths of (a) (^{CF3} L1)ZnCl ₂ , (b) (^{CF3} L2) ₂ Zn, and (c) (^{<i>f</i>Bu} L3) ₂ Zn in the solid state. Hydrogen atoms and solvent molecules omitted for clarity. Solid-state structure of (^{<i>f</i>Bu} L3) ₂ Zn reproduced from Reference 1
Figure S9. Torsion angles between ring fragments and phenanthridinyl planes in solid-state structures of (^{CF3} L2) ₂ Zn (C-N-C-N) and (^{<i>i</i>Bu} L3) ₂ Zn (C-N-C-C). Hydrogen atoms and solvent molecules omitted for clarity. Solid-state structure of (^{<i>i</i>Bu} L3) ₂ Zn reproduced from Reference 2.
Figure S10. Atomic labels for Tables S2-S5
Table S2. Comparison of experimentally determined and calculated ^{<i>a</i>} bond distances (Å) and angles (°) for (^{CF3} L1)ZnCl ₂ . See Figure S10 for numbering scheme
Table S3. Comparison of experimentally determined and calculated ^{<i>a</i>} bond distances (Å) and angles (°) for (^{CF3} L2) ₂ Zn. See Figure S10 for numbering scheme

Table S4. Comparison of experimentally determined and calculated ^{<i>a</i>} bond distances (Å) and angles (°) for (^{<i>f</i>Bu} L3) ₂ Zn. Solid state structure of (^{<i>f</i>Bu} L3) ₂ Zn reproduced from Reference ¹ . See Figure S10 for numbering scheme
Table S5. Comparison of solid-state structure bond distances (Å) and angles (°) of complexesof varying Namido character. Solid state structure of (^{tBu} L3) ₂ Zn reproduced from Reference ¹ . SeeFigure S10 for numbering scheme.30
Figure S11. Select calculated bond distances (Å) at the S0, S1, and T1 optimized ^{<i>a</i>} geometries. 31
Figure S12. Torsion angles between ring fragments and phenanthridinyl planes in (a) S_0 , (b) S_1 , and (c) T_1 optimized geometies of (^{CF3} L2) ₂ Zn (C-N-C-N) and (^{tBu} L3) ₂ Zn (C-N-C-C). Hydrogens omitted for clarity
Computational Figures and Tables
Figure S13. Defined fragments for Tables S8, S10, S12, and S14. C=N sub-fragments are indicated in figure by bolded line and lettering
Figure S14. Normalized experimental UV-Vis absorption spectrum (solid trace, dichloromethane), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV, SMD "dichloromethane"), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.07$), and electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of (a) (^{CF3} L1)ZnCl ₂ and (b) (^{<i>r</i>Bu} L1)ZnCl ₂
Figure S15. Jablonski diagram for (a) ($^{CF3}L1$)ZnCl ₂ and (b) ($^{Hu}L1$)ZnCl ₂ along the Zn-N _{guanidine} bond at the equilibrium S ₀ and S ₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001)
Table S6. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.07$), and MO pair contributions (>10%) below 4 eV for (^{CF3} L1)ZnCl ₂ in dichloromethane. H=HOMO; L=LUMO
Table S7. Fragment contributions to select ground-state MOs of (CF3L1)ZnCl2 in dichloromethane
Table S8. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.07$), and MO pair contributions (>10%) below 4 eV for (${}^{tBu}L1$)ZnCl ₂ in dichloromethane. H=HOMO; L=LUMO
Table S9. Fragment contributions to select ground-state MOs of (^{tBu} L1)ZnCl ₂ in dichloromethane
Figure S16. Normalized experimental UV-Vis absorption spectrum (solid trace), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.05$), and electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of (^{CF3} L2) ₂ Zn in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane
Figure S17. Jablonski diagram in the singlet manifold for $(^{CF3}L2)_2Zn$ along the Zn-N _{pyrimidine} bond at the equilibrium S ₀ and S ₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane

Figure S18. Jablonski diagram with T_1 states for $(^{CF3}L2)_2$ Zn along the Zn-N _{pyrimidine} bond at the equilibrium S ₀ , S ₁ , and T ₁ optimized geometries, with spin density maps (isosurface value = 0.004) in (a) dichloromethane, (b) toluene and (c) n-hexane
Table S10. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.05)$, and MO pair contributions (>10%) for ($^{CF3}L2$) ₂ Zn in dichloromethane. H=HOMO;L=LUMO
Table S11. Fragment contributions to select ground-state MOs of (CF3L2) ₂ Zn in dichloromethane
Table S12. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3} L2) ₂ Zn in diethyl ether. H=HOMO; L=LUMO
Table S13. Fragment contributions to select ground-state MOs of (CF3L2) ₂ Zn in diethyl ether.
Table S14. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3} L2) ₂ Zn in toluene. H=HOMO; L=LUMO
Table S15. Fragment contributions to select ground-state MOs of (CF3L2) ₂ Zn in toluene 40
Table S16. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.05)$, and MO pair contributions (>10%) for (CF3L2) ₂ Zn in n-hexane. H=HOMO;L=LUMO
Table S17. Fragment contributions to select ground-state MOs of (CF3L2) ₂ Zn in n-hexane 41
Figure S19. Normalized experimental UV-Vis absorption spectrum (solid trace), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.08$), and electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of ($f^{Bu}L3$) ₂ Zn (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane
Figure S20. Jablonski diagram in the singlet manifold for $({}^{Bu}L3)_2Zn$ along the Zn-N _{phenyl} bond at the equilibrium S ₀ and S ₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane
Figure S21. Jablonski diagram with T_1 states for (${}^{fBu}L3$) ₂ Zn along the Zn-N _{phenyl} bond at the equilibrium S ₀ , S ₁ , and T ₁ optimized geometries, with spin density maps (isosurface value = 0.004) in (a) dichloromethane, (b) toluene, and (c) n-hexane. Diethyl ether is omitted due to complications with calculations
Table S18. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.08)$, and MO pair contributions (>10%) for (${}^{tBu}L3$) ₂ Zn in dichloromethane. H=HOMO;L=LUMO45
Table S19. Fragment contributions to select ground-state MOs of ("BuL3)2Zn indichloromethane

Table S20. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.08)$, and MO pair contributions (>10%) for ($^{tBu}L3$) ₂ Zn in diethyl ether. H=HOMO;L=LUMO45
Table S21. Fragment contributions to select ground-state MOs of (^{tBu} L3) ₂ Zn in diethyl ether. 46
Table S22. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.08)$, and MO pair contributions (>10%) for $({}^{tBu}L3)_2$ Zn in toluene. H=HOMO; L=LUMO
Table S23. Fragment contributions to select ground-state MOs of (<i>t</i> ^{Bu} L3) ₂ Zn in toluene46
Table S24. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths $(f_{osc} > 0.08)$, and MO pair contributions (>10%) for $({}^{tBu}L3)_2Zn$ in n-hexane. H=HOMO;L=LUMO
Table S25. Fragment contributions to select ground-state MOs of (^{/Bu} L3) ₂ Zn in n-hexane 47
Figure S22. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of the four complexes calculated in dichloromethane. From left to right: $(^{CF3}L1)ZnCl_2$ (HOMO – 1 to LUMO +1), $(^{Hu}L1)ZnCl_2$ (HOMO – 1 to LUMO +1), $(^{CF3}L2)_2Zn$ (HOMO – 3 to LUMO +3), $(^{Hu}L3)_2Zn$ (HOMO – 3 to LUMO +3)
Figure S23. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of (^{CF3} L2) ₂ Zn (HOMO – 3 to LUMO +3). From left to right: dichloromethane, diethyl ether, toluene, n-hexane. 49
Figure S24. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of (${}^{tBu}L3$) ₂ Zn (HOMO – 3 to LUMO +3). From left to right: dichloromethane, diethyl ether, toluene, n-hexane
Table S26. Spin-orbit coupling matrix elements for (^{CF3} L2) ₂ Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in dichloromethane at the optimized ground state geometry
Table S27. Spin-orbit coupling matrix elements for $(^{CF3}L2)_2$ Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in diethyl ether at the optimized ground state geometry
Table S28. Spin-orbit coupling matrix elements for $(^{CF3}L2)_2Zn$ between the five lowest-lyingexcited triplet states with the ground state and two lowest-lying excited singlet states calculatedin toluene at the optimized ground state geometry.52
Table S29. Spin-orbit coupling matrix elements for (^{CF3} L2) ₂ Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in n-hexane at the optimized ground state geometry
Table S30. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowest-lyingexcited triplet states with the ground state and two lowest-lying excited singlet states calculatedin dichloromethane at the optimized ground state geometry.53
Table S31. Spin-orbit coupling matrix elements for $({}^{rBu}L3)_2Zn$ between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in diethyl ether at the optimized ground state geometry

Table S32. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowes excited triplet states with the ground state and two lowest-lying excited singlet states calc in toluene at the optimized ground state geometry.	t-lying culated 54
Table S33. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowes excited triplet states with the ground state and two lowest-lying excited singlet states calc in n-hexane at the optimized ground state geometry.	t-lying culated 54
Figure S25. NBO results for complexes of varying Namido character.	55
Figure S26. Solvated NBO results for select complexes of varying Namido character	55
Figure S27. Atomic labels for NBO tables. Top, from left to right: (^{CF3} L1)ZnCl ₂ , (^{tBu} L1) (^{CF3} L2) ₂ Zn, (^{tBu} L3) ₂ Zn. Bottom, from left to right: (^{Me^Me} L3) ₂ Zn, (^{CF3} L4) ₂ Zn, (^{tBu} L) ₂ Z	ZnCl ₂ , (4) ₂ Zn, 56
Table S34. NBO analysis ^a of (^{CF3} L1)ZnCl ₂ with the M06-L functional.	57
Table S35. NBO analysis ^a of (CF3L1)ZnCl2 with the TPSSh functional.	58
Table S36. NBO analysis ^a of (CF3L1)ZnCl2 with the O3LYP functional.	59
Table S37. NBO analysis ^a of (CF3L1)ZnCl ₂ with the B3LYP functional.	60
Table S38. NBO analysis ^a of (CF3L1)ZnCl2 with the PBE0 functional.	61
Table S39. NBO analysis ^a of (CF3L1)ZnCl2 with the M06 functional.	62
Table S40. NBO analysis ^a of (CF3L1)ZnCl2 with the M06-2X functional	63
Table S41. NBO analysis ^a of (CF3L1)ZnCl2 with the CAM-B3LYP functional	64
Table S42. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the M06-L functional.	65
Table S43. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the TPSSh functional.	66
Table S44. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the O3LYP functional.	67
Table S45. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the B3LYP functional.	68
Table S46. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the PBE0 functional.	69
Table S47. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the M06 functional	70
Table S48. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the M06-2X functional	71
Table S49. Solvated NBO analysis ^a of (CF3L1)ZnCl2 with the CAM-B3LYP functional.	72
Table S50. NBO analysis ^a of (' ^{Bu} L1)ZnCl ₂ with the M06-L functional	73
Table S51. NBO analysis ^a of (' ^{Bu} L1)ZnCl ₂ with the TPSSh functional.	74
Table S52. NBO analysis ^a of (' ^{Bu} L1)ZnCl ₂ with the O3LYP functional	75
Table S53. NBO analysis ^a of (^{Bu} L1)ZnCl ₂ with the B3LYP functional.	76
Table S54. NBO analysis ^a of (' ^{Bu} L1)ZnCl ₂ with the PBE0 functional	77
Table S55. NBO analysis ^a of (^{Bu} L1)ZnCl ₂ with the M06 functional.	78
Table S56. NBO analysis ^a of ('BuL1)ZnCl ₂ with the M06-2X functional	79
Table S57. NBO analysis ^a of (' ^{Bu} L1)ZnCl ₂ with the CAM-B3LYP functional	80
Table S58. NBO analysis ^a of (^{CF3} L2) ₂ Zn with the M06-L functional	81

Table S59. NBO analysis ^a of (CF3L2) ₂ Zn with the TPSSh functional. 82	2
Table S60. NBO analysis ^a of (CF3L2) ₂ Zn with the O3LYP functional	3
Table S61. NBO analysis ^a of (CF3L2) ₂ Zn with the B3LYP functional. 84	4
Table S62. NBO analysis ^a of (CF3L2) ₂ Zn with the PBE0 functional	5
Table S63. NBO analysis ^a of (CF3L2) ₂ Zn with the M06 functional	6
Table S64. NBO analysis ^a of (CF3L2) ₂ Zn with the M06-2X functional	7
Table S65. NBO analysis ^a of (CF3L2) ₂ Zn with the CAM-B3LYP functional	8
Table S66. Solvated NBO analysis ^a of (^{CF3} L2) ₂ Zn with the M06-L functional	9
Table S67. Solvated NBO analysis ^a of $(^{CF3}L2)_2$ Zn with the TPSSh functional.90	0
Table S6. Solvated NBO analysis ^a of (^{CF3} L2) ₂ Zn with the O3LYP functional	1
Table S69. Solvated NBO analysis ^a of (^{CF3} L2) ₂ Zn with the B3LYP functional	2
Table S70. Solvated NBO analysis ^a of (^{CF3} L2) ₂ Zn with the PBE0 functional	3
Table S71. Solvated NBO analysis ^a of (CF3L2) ₂ Zn with the M06 functional	4
Table S72. Solvated NBO analysis ^a of (CF3L2) ₂ Zn with the M06-2X functional	5
Table S73. Solvated NBO analysis ^a of (CF3L2) ₂ Zn with the CAM-B3LYP functional	6
Table S74. NBO analysis ^a of $({}^{rBu}L3)_2Zn$ with the M06-L functional	7
Table S75. NBO analysis ^a of $({}^{tBu}L3)_2Zn$ with the TPSSh functional.98	8
Table S76. NBO analysis ^a of (^{tBu} L3) ₂ Zn with the O3LYP functional	9
Table S77. NBO analysis ^a of $({}^{rBu}L3)_2Zn$ with the B3LYP functional	0
Table S78. NBO analysis ^a of (<i>t</i> ^{Bu} L3) ₂ Zn with the PBE0 functional	1
Table S79. NBO analysis ^a of $({}^{rBu}L3)_2Zn$ with the M06 functional	2
Table S80. NBO analysis ^a of (^{tBu} L3) ₂ Zn with the M06-2X functional. 102	3
Table S81. NBO analysis ^a of (^{tBu} L3) ₂ Zn with the CAM-B3LYP functional	4
Table S82. Solvated NBO analysis ^a of $({}^{tBu}L3)_2Zn$ with the M06-L functional	5
Table S83. Solvated NBO analysis ^a of $({}^{Hu}L3)_2Zn$ with the TPSSh functional.106	6
Table S84. Solvated NBO analysis ^a of $(t^{Bu}L3)_2Zn$ with the O3LYP functional	7
Table S85. Solvated NBO analysis ^a of $(t^{Bu}L3)_2Zn$ with the B3LYP functional.108	8
Table S86. Solvated NBO analysis ^a of (^{tBu} L3) ₂ Zn with the PBE0 functional109	9
Table S87. Solvated NBO analysis ^a of (^{tBu} L3) ₂ Zn with the M06 functional	0
Table S88. Solvated NBO analysis ^a of $(t^{Bu}L3)_2Zn$ with the M06-2X functional.11	1
Table S89. Solvated NBO analysis ^a of (^{Bu} L3) ₂ Zn with the CAM-B3LYP functional	2
Table S90. NBO analysis ^a of $(^{Me}L3^{Me})_2Zn$ with the M06-L functional.112	3
Table S91. NBO analysis ^a of $(^{Me}L3^{Me})_2Zn$ with the TPSSh functional	4
Table S92. NBO analysis ^{<i>a</i>} of (^{Me} L3 ^{Me}) ₂ Zn with the O3LYP functional	5

Table S93. NBO analysis ^a of $(^{Me}L3^{Me})_2Zn$ with the B3LYP functional
Table S94. NBO analysis ^{<i>a</i>} of $({}^{Me}L3{}^{Me})_2Zn$ with the PBE0 functional
Table S95. NBO analysis ^a of (^{Me} L3 ^{Me}) ₂ Zn with the M06 functional. 112
Table S96. NBO analysis ^a of (MeL3Me) ₂ Zn with the M06-2X functional
Table S97. NBO analysis ^a of (MeL3Me) ₂ Zn with the CAM-B3LYP functional. 120 120 120 120 <t< td=""></t<>
Table S98. NBO analysis ^a of (CF3L4) ₂ Zn with the M06-L functional
Table S99. NBO analysis ^a of (CF3L4) ₂ Zn with the TPSSh functional. 122
Table S100. NBO analysis ^a of (CF3L4) ₂ Zn with the O3LYP functional
Table S101. NBO analysis ^a of (CF3L4) ₂ Zn with the B3LYP functional. 124
Table S102. NBO analysis ^a of (CF3L4) ₂ Zn with the PBE0 functional
Table S103. NBO analysis ^a of (CF3L4) ₂ Zn with the M06 functional
Table S104. NBO analysis ^a of (CF3L4) ₂ Zn with the M06-2X functional
Table S105. NBO analysis ^a of (^{CF3} L4) ₂ Zn with the CAM-B3LYP functional
Table S106. NBO analysis ^a of (^{Bu} L4) ₂ Zn with the M06-L functional
Table S107. NBO analysis ^a of $({}^{tBu}L4)_2$ Zn with the TPSSh functional.130
Table S108. NBO analysis ^a of ('BuL4) ₂ Zn with the O3LYP functional
Table S109. NBO analysis ^a of $({}^{Bu}L4)_2$ Zn with the B3LYP functional.132
Table S110. NBO analysis ^a of $({}^{Bu}L4)_2$ Zn with the PBE0 functional.132
Table S111. NBO analysis ^a of $({}^{tBu}L4)_2$ Zn with the M06 functional
Table S112. NBO analysis ^a of $({}^{tBu}L4)_2$ Zn with the M06-2X functional.133
Table S113. NBO analysis ^a of (' ^{Bu} L4) ₂ Zn with the CAM-B3LYP functional
Table S114. NBO analysis ^a of (MeL4) ₂ Zn with the M06-L functional. 13 ^a
Table S115. NBO analysis ^a of $(^{Me}L4)_2Zn$ with the TPSSh functional.133
Table S116. NBO analysis ^a of (MeL4) ₂ Zn with the O3LYP functional. 139
Table S117. NBO analysis ^a of $(^{Me}L4)_2Zn$ with the B3LYP functional.14
Table S118. NBO analysis ^a of (MeL4) ₂ Zn with the PBE0 functional. 14
Table S119. NBO analysis ^a of (MeL4) ₂ Zn with the M06 functional. 142
Table S120 NBO analysis ^a of (^{Me} L4) ₂ Zn with the M06-2X functional
Table S121. NBO analysis ^a of (MeL4) ₂ Zn with the CAM-B3LYP functional
NMR spectra
Figure S28. ¹ H NMR (400 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2 trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S29. ¹⁹ F{ ¹ H} NMR (377 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2 trifluoromethyl)phenanthridine (^{CF3} L1)

Figure S30. ¹³ C NMR (101 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S31. ¹ H- ¹³ C HSQC NMR (101 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S32. ¹ H- ¹³ C HMBC NMR (101 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S33. ¹ H- ¹ H COSY NMR (400 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S34. ¹ H- ¹ H NOESY NMR (400 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S35. 1 HNMR(400MHz,CDCl ₃ ,22°C)of(2-tert-butyl)(4-tetramethylguanidino)phenanthridine ($^{tBu}L1$)
Figure S36. 13 CNMR(101MHz,CDCl_3,22°C)of(2-tert-butyl)(4-tetramethylguanidino)phenanthridine (tBu L1)
Figure S37. ¹ H- ¹³ C HSQC NMR (101 MHz, CDCl ₃ , 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{<i>t</i>Bu} L1)
Figure S38. ¹ H- ¹³ C HMBC NMR (101 MHz, CDCl ₃ , 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{<i>t</i>Bu} L1)
Figure S39. ¹ H- ¹ H COSY NMR (400 MHz, CDCl ₃ , 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{<i>t</i>Bu} L1)
Figure S40. ¹ H- ¹ H NOESY NMR (400 MHz, CDCl ₃ , 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (<i>t</i> ^{Bu} L1)
Figure S41. ¹ H NMR (500 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S42. ${}^{19}F{}^{1}H$ NMR (471 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (${}^{CF3}L2$)
Figure S43. ¹³ C NMR (126 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S44. ¹ H- ¹³ C HSQC NMR (126 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S45. ¹ H- ¹³ C HMBC NMR (126 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S46. ¹ H- ¹ H COSY NMR (500 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S47. ¹ H- ¹ H NOESY NMR (500 MHz, CDCl ₃ , 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Figure S48. ¹ H NMR (400 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3} L1)ZnCl ₂)
Figure S49. ¹⁹ F $\{^{1}H\}$ NMR (377 MHz, CDCl ₃ , 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3} L1)ZnCl ₂)

Figure S50. ¹³C NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-Figure S51. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂)......156 Figure S52. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂)......157 Figure S53. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂)......157 Figure S54. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-22 °C) of (2-tert-butyl)(4-S55. $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃, Figure tetramethylguanidino)phenanthridine zinc chloride ((^{tBu}L1)ZnCl₂)......158 °C) of (2-tert-butyl)(4-Figure **S56**. ^{13}C NMR (101 MHz, CDCl₃, 22 tetramethylguanidino)phenanthridine zinc chloride ((^{tBu}L1)ZnCl₂)......159 Figure S57. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4tetramethylguanidino)phenanthridine zinc chloride ((^{tBu}L1)ZnCl₂)......159 Figure S58. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-Figure S59. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4tetramethylguanidino)phenanthridine zinc chloride ((^{tBu}L1)ZnCl₂)......160 Figure S60. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-Figure S61. ¹H NMR (400 MHz, C₆D₆, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S62. ${}^{19}F{}^{1}H{}$ NMR (377 MHz, C₆D₆, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S63. ¹³C NMR (101 MHz, C₆D₆, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S64. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S65. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S66. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S67. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-Figure S68. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (4-tetramethylguanidino)(2trifluoromethyl)phenanthridine zinc chloride (zoom of tetramethyl region) ((^{CF3}L2)₂Zn).... 165 Figure S69. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (4-tetramethylguanidino)(2trifluoromethyl)phenanthridine zinc chloride (full spectra) ((^{CF3}L2)₂Zn)......165

Figure S70. Variable-temperature ¹ H NMR (500 MHz, CDCl ₃) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (zoom of tetramethyl region) ((^{<i>r</i>Bu} L1)ZnCl ₂)
Figure S71. Variable-temperature ¹ H NMR (500 MHz, CDCl ₃) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (full spectra) (((^{<i>Bu</i>} L1)ZnCl ₂)
HRMS figures 167
Figure S72. APCI high-resolution mass spectrum of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3} L1)
Figure S73. APCI high-resolution mass spectrum of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{<i>Bu</i>} L1)
Figure S74. APCI high-resolution mass spectrum of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3} L2)
Coordinates of optimized geometries
References

Experimental Details

General considerations

Air-sensitive manipulations were carried either in a N₂-filled glovebox or using standard Schlenk techniques under Ar. Chloroformamidinium chloride, {Citation} (4-aminophenyl)(2-*tert*butyl)phenanthridine (*f*^{Bu}L3)¹ and *bis*(4-aminophenyl)(2-*tert*-butyl)phenanthridine zinc(II) ((*f*^{Bu}L3)₂Zn)¹ were synthesized according to literature procedure. Diethyl zinc (1.0 M in *n*-hexanes), tetramethyl urea (99 % purity), palladium(II) acetate (98 % purity), and DPEPhos (98 % purity) were purchased from Sigma Aldrich. Sodium hydroxide (97 % purity) and zinc dichloride (97 % purity) were purchased from Fisher Scientific. Oxalyl chloride (98 % purity) was purchased from Thermo Scientific. 2-bromopyrimidine (98 % purity) was purchased from Combi Blocks. Triethylamine (99 % purity) was purchased from Millipore. All other reagents and solvents were purchased from commercial suppliers and used without further purification. For moisture-sensitive manipulations, organic solvents were dried and distilled using appropriate drying agents. 1D and 2D NMR spectra were referenced to residual solvent peaks. High resolution mass spectra (HRMS) were recorded using a Bruker microOTOF-QIII mass spectrometer.

Absorption spectra were measured on an Agilent Technologies Cary series UV-Vis-NIR spectrometer. Emission spectra in solution were measured using either a Photo Technology International Xenoflash fluorimeter or Jobin Yvon FluoroMax-2 spectrometer, in quartz cuvettes of 1 cm pathlength. Spectral data are corrected for the wavelength dependence of the detector, a Hamamatsu R928 photomultiplier tube (PMT). Fluorescence quantum yields in solution were measured using fluorescein in 0.1 M aqueous NaOH ($\Phi = 0.90$) and cross-checked with aqueous [Ru(bpy)₃]Cl₂ ($\Phi = 0.04$). Fluorescence lifetimes were measured by time-correlated single-photon counting, following excitation at 405 nm with a pulsed laser diode. The emitted light was detected at 90° using an R928 PMT Peltier-cooled to -20° C, after passage through a monochromator. The estimated uncertainty in the lifetimes is ±10% or better. The fluorescence spectra in the solid state were recorded using an integrating sphere attached to a Jobin Yvon Fluorolog instrument through optical fibres. Finely powdered samples were contained within Spectralon sample holders of 10 mm diameter. Quantum yields were determined using a sample of finely powdered BaSO₄ as a non-emissive blank.

Preparation of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine, CF3L1

A solution of 4-amino-2-(trifluoromethyl)phenanthridine (0.39 g, 1.5 mmol) in acetonitrile (10 mL) was added dropwise under positive pressure of argon to chloroformamidinium chloride (0.26 g, 1.5 mmol) in a Teflon-stoppered flask and stirred for \sim 5 min. Triethylamine (0.21 mL, 1.5 mmol) was then added also under positive pressure and the mixture was heated in an oil bath set to 80 °C for 16 h. The flask was then cooled to ambient temperature and an aqueous solution of NaOH (0.060 g, 1.5 mmol; 3 mL

H₂O) was added and allowed to stir for ~ 5 min. The volatiles were removed *in vacuo*. The organic product was then taken up in ethyl acetate and washed with distilled water (3x 70 mL), stirred over Na₂SO₄ (10 g), and dried *in vacuo* to leave a tacky dark brown solid. Isolated yield: 0.47 g (87 %). ¹H NMR (CDCl₃, 400 MHz, 22 °C): δ 9.26 (s, 1H; C₆*H*), 8.56 (d, ³*J*_{HH} = 8.3 Hz, 1H; C₁₁*H*), 8.26 (s, 1H; C₁*H*), 7.99 (d, ³*J*_{HH} = 6.6 Hz, 1H; C₈*H*), 7.81 (ddd, ³*J*_{HH} = 8.4, 7.1 Hz; ⁴*J*_{HH} = 1.5 Hz, 1H; C₉*H*), 7.67 (ddd, ³*J*_{HH} = 7.4, 7.2 Hz; ³*J*_{HH} = 1.0 Hz, 1H; C₁₀*H*), 7.10 (s, 1H; C₃*H*), 2.73 ppm (s, 12H; C₁₅*H*₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz, 22 °C): δ 162.4 (*C*₁₄), 153.1 (*C*₆), 151.9 (*C*₁₂), 139.6 (*C*₄), 133.0 (*C*₁₃), 131.0 (*C*₁₁), 129.1 (q, ²*J*_{CF} = 31.4 Hz, C₂), 128.7 (*C*₈) 127.8 (*C*₁₀) 126.6 (*C*₅), 124.7 (q, ¹*J*_{CF} = 273 Hz, *C*_{CF3}), 124.7 (*C*₇), 122.4 (*C*₁₁), 115.5 (q, ³*J*_{CF} = 3 Hz; *C*₃), 110.1 (q, ³*J*_{CF} = 4 Hz; *C*₁), 39.7 ppm (*C*₁₅). ¹⁹F{¹H} NMR (CDCl₃, 377 MHz, 22 °C): -62.1 ppm (*F*_{CF3}). HR-MS (APCI/MS, m/z) calculated for M+H⁺ (M = C₁₉H₁₉F₃N₄) 361.1635; found 361.1657.

Preparation of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine, ^{tBu}L1

A suspension of 4-amino-2-(*tert*-butyl)phenanthridine (0.37 g, 1.5 mmol) in acetonitrile (15 mL) was added dropwise under positive pressure of argon to a Teflon-stoppered flask charged with chloroformamidinium chloride (0.26 g, 1.5 mmol) and stirred for \sim 5 min. Triethylamine (0.21 mL, 2.5 mmol) was then added under positive pressure of argon and the mixture was heated in an oil bath set to 80 °C

for 16 h. The flask was then cooled to ambient temperature and an aqueous solution of NaOH (0.060 g, 1.5 mmol; 3 mL H₂O) was added and allowed to stir for \sim 5 min. The volatiles were removed *in vacuo*, and the organic product was then taken up in ethyl acetate and washed with distilled water (3x 70 mL), stirred over Na₂SO₄ (10 g), and dried *in vacuo* to leave a dark brown

powder. Isolated yield: 0.45 g (89 %). ¹H NMR (CDCl₃, 400 MHz, 22 °C): δ 9.12 (s, 1H; C₆*H*), 8.60 (d, ³*J*_{HH} = 8.3 Hz, 1H; C₁₁*H*), 8.09 (s, 1H; C₁*H*), 7.94 (d, ³*J*_{HH} = 7.9 Hz, 1H; C₈*H*), 7.76 (ddd, ³*J*_{HH} = 8.4, 7.0 Hz; ⁴*J*_{HH} = 1.4 Hz, 1H; C₉*H*), 7.60 (ddd, ³*J*_{HH} = 7.4, 7.2 Hz; ⁴*J*_{HH} = 1.0 Hz, 1H; C₁₀*H*), 7.22 (s, 1H; C₃*H*), 2.74 (s, 12H; C₁₅*H*₃), 1.44 ppm (s, 9H, C₁₇*H*₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz, 22 °C): δ 161.81 (*C*₁₄), 150.8 (*C*₆), 150.5 (*C*₂), 136.5 (*C*₄), 133.2 (*C*₁₃), 130.2 (*C*₉), 128.5 (*C*₈) 126.8 (*C*₁₀) 126.6 (*C*₅), 124.1 (*C*₇), 122.2 (*C*₁₁), 119.2 (*C*₃), 110.2 (*C*₁), 39.7 (*C*₁₅), 35.1 (*C*₁₆) 31.6 (*C*₁₇) ppm. Not observed: C₁₂. HR-MS (APCI/MS, m/z) calculated for M+H⁺ (M = C₂₂H₂₈N₄) 349.2387; found 349.2349.

Preparation of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine, CF3L2

Pd(OAc)₂ (0.017 g, 0.075 mmol) and DPEPhos (0.083 g, 0.15 mmol) were combined with dry toluene (10 mL) in a Teflon-stoppered flask and stirred for ~ 5 min. Under positive pressure of argon, 2-Bromopyrimidine (0.12 g, 0.75 mmol) was added, followed by 4-amino-2-(trifluoromethyl)phenanthridine (0.20 g, 0.75 mmol) and Cs₂CO₃ (0.29 g, 0.90 mmol), with brief stirring (~ 5 min) following each addition. The

mixture was then heated in an oil bath set to 130 °C. After 16 h, the mixture was cooled to room temperature, filtered over celite, and the solvents removed *in vacuo*. The residue was taken up in methanol and filtered, and the precipitate was washed thoroughly with methanol, leaving a purplebrown solid. Isolated yield: 0.11 g (42%). ¹H NMR (CDCl₃, 500 MHz, 22 °C): δ 10.00 (s, 1H; N*H*), 9.22 (overlapped s, 2H; C₁*H*, C₆*H*), 8.57 (d, ³*J*_{HH} = 4.9 Hz, 2H; C₁₅*H*₂), 8.55 (d, ³*J*_{HH} = 8.1 Hz, 1H; C₁₁*H*), 8.33 (s, 1H; C₃*H*), 8.06 (d, ³*J*_{HH} = 7.9 Hz, 1H; C₈*H*), 7.87 (ddd, ³*J*_{HH} = 8.4, 7.0 Hz; ⁴*J*_{HH} = 1.4 Hz, 1H; C₁₀*H*), 7.72 (ddd, ³*J*_{HH} = 7.9, 7.0 Hz; ⁴*J*_{HH} = 1.1 Hz, 1H; C₉*H*), 6.84 (t, ³*J*_{HH} = 4.8 Hz, 1H; C₁₆*H*). ¹³C{¹H} NMR (CDCl₃, 126 MHz, 22 °C): δ 159.7 (C₁₄), 158.1 (C₁₅), 152.7 (C₆), 137.8 (C₁₂), 134.7 (C₄), 132.6 (C₁₃), 131.7 (C₁₀), 129.3 (q, ²*J*_{CF} = 32 Hz; C₂), 129.1 (C₈), 128.3 (C₉), 126.8 (C₇), 124.6 (q, ¹*J*_{CF} = 273 Hz; C_{CF3}), 123.5 (C₅), 122.3 (C₁₁), 113.4 (C₁₆), 111.2 (q, ³*J*_{CF} = 5 Hz; C₃), 110.6 ppm (q, ³*J*_{CF} = 4 Hz; C₁). ¹⁹F{¹H} NMR (CDCl₃, 471 MHz, 22 °C): - 62.0 ppm (*F*_{CF3}). HR-MS (APCI/MS, m/z) calculated for M+H⁺ (M = C₁₈H₁₁F₃N₄) 341.1009; found 341.1025.

Preparation of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride, (CF3L1)ZnCl₂

A solution of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (0.14 g, 0.39 mmol) in

dichloromethane (10 mL) was added to a stirring solution of ZnCl₂ (0.047 g, 0.35 mmol) in methanol (10 mL) in a round bottom flask, and continued to stir at room temperature for 16 h. The solvents were then evaporated in vacuo and the residue taken up in methanol and filtered. The precipitate was washed thoroughly with methanol, leaving a bright yellow-green solid. Isolated yield: 0.091 g (46 %). ¹H NMR (CDCl₃, 400

MHz, 22 °C): δ 9.39 (s, 1H; C₆H), 8.66 (d, ³J_{HH} = 8.3 Hz, 1H; C₁₁H), 8.38 (s, 1H; C₁H), 8.21 (d, ${}^{3}J_{\rm HH} = 8.0$ Hz, 1H; C₈H), 8.07 (ddd, ${}^{3}J_{\rm HH} = 8.5$, 7.1 Hz; ${}^{4}J_{\rm HH} = 1.4$ Hz, 1H; C₉H), 7.88 (ddd, ${}^{3}J_{\rm HH} =$ 8.1, 7.2 Hz; ${}^{4}J_{\text{HH}} = 0.8$ Hz, 1H; C₁₀H), 6.99 (s, 1H; C₃H), 3.11 (s, 6H; C₁₅H₃), 2.93 ppm (s, 6H; $C_{16}H_3$). ¹³C{¹H} NMR (CDCl₃, 101 MHz, 22 °C): δ 165.6 (C₁₄), 154.8 (C₆), 145.3 (C₁₂), 135.4 (C_{13}) , 134.4 (C_9) , 133.8 (C_4) 130.8 $(q, {}^2J_{CF} = 32.7 \text{ Hz}; C_2)$, 130.7 (C_8) , 129.7 (C_{10}) , 126.6 (C_5) , 125.7 (*C*₇), 124.0 (q, ${}^{1}J_{CF} = 276$ Hz; *C*_{CF3}), 122.7 (*C*₁₁), 112.8 (q, ${}^{3}J_{CF} = 3$ Hz; *C*₃), 111.7 (q, ${}^{3}J_{CF} = 3$ Hz; 1 4 Hz; C₁), 41.1 (C₁₅), 40.5 ppm (C₁₆). ¹⁹F {¹H} NMR (CDCl₃, 377 MHz, 22 °C): -62.5 ppm (F_{CF3}).

Preparation of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride, (tBuL1)ZnCl₂

A solution of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (0.11 g, 0.32 mmol) in dichloromethane (10 mL) was added to a stirring solution of ZnCl₂ (0.040 g, 0.29 mmol) in methanol (10 mL) in a round bottom flask, with stirring then continued at room temperature for 16 h. The solvents were next evaporated in vacuo and the residue taken up in methanol and filtered. The precipitate was washed thoroughly with methanol, leaving a bright green solid. Isolated yield: 0.79 g (56 %). ¹H NMR (CDCl₃, 400 MHz,

22 °C): δ 9.23 (s, 1H; C₆H), 8.66 (d, ³J_{HH} = 8.1 Hz, 1H; C₁₁H), 8.14 (d, ³J_{HH} = 1.9 Hz, 1H; C₁H), 8.12 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H; C₈H), 7.98 (ddd, ${}^{3}J_{HH} = 8.5$, 7.1 Hz; ${}^{4}J_{HH} = 1.4$ Hz, 1H; C₉H), 7.78 (ddd, ${}^{3}J_{\text{HH}} = 8.0, 7.1 \text{ Hz}; {}^{4}J_{\text{HH}} = 1.1 \text{ Hz}, 1\text{H}; C_{10}H$, 6.96 (s, 1H; C₃H), 3.08 (s, 6H; C₁₅H₃), 2.39 (s, 6H; $C_{16}H_3$, 1.47 ppm (s, 9H, $C_{18}H_3$). ¹³C{¹H} NMR (CDCl₃, 101 MHz, 22 °C): δ 165.5 (C₁₄), 152.2 (C_6) , 152.0 (C_2) , 143.6 (C_{12}) , 133.7 (C_4) , 133.2 (C_9) , 132.8 (C_{13}) 130.4 (C_8) 128.6 (C_{10}) , 126.5 (C_5) , 125.3 (*C*₇), 122.5 (*C*₁₁), 116.0 (*C*₃), 110.0 (*C*₁), 40.9 (*C*₁₅) 40.3 (*C*₁₆), 35.5 (*C*₁₇), 31.6 (*C*₁₈) ppm.

Preparation of *bis*(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc, ^{CF3}L2)₂Zn

In a glovebox of N₂ atmosphere, a solution of (4aminopyrimidino)(2-trifluoromethyl)phenanthridine (0.025 g, 0.073 mmol) in benzene-d₆ (1 mL) was cooled to -18 °C. Diethylzinc (0.038 mL, 0.035 mmol) was then added to the frozen solution and the mixture allowed to warm to room temperature. Upon thawing, the solution was transferred to an NMR tube, and immediately following NMR analysis of the reactive compound, the solvent was evaporated *in vacuo*, revealing a bright yellow solid.

NMR showed that reaction conversion was quantitative (> 95 %). Note: this compound is susceptible to proto-deligation and decomposes in the presence of protic solvents/impurities, including chloroform. ¹H NMR (C₆D₆, 500 MHz, 22 °C): δ 10.58 (s, 1H; C₁H₂), 8.55 (s, 1H; C₆H₂), 8.11 (s, 1H; C₃H₂), 8.05 (d, ³J_{HH} = 4.7 Hz, 2H; C₁₅H₄), 7.81 (d, ³J_{HH} = 8.7 Hz, 1H; C₈H₂), 7.17 (d, ³J_{HH} = 7.5 Hz, 1H; C₁₁H₂), 6.94 (ddd, ³J_{HH} = 8.1, 6.9 Hz; ⁴J_{HH} = 0.8 Hz, 1H; C₁₀H₂), 6.90 (d, ³J_{HH} = 7.9 Hz, 1H; C₉H₂), 5.84 (t, ³J_{HH} = 4.6 Hz, 1H; C₁₆H₂). ¹³C {¹H} NMR (C₆D₆, 126 MHz, 22 °C): δ 165.8 (*C*₁₄), 158.1 (*C*₁₅), 151.3 (*C*₆), 146.5 (*C*₁₃), 136.5 (*C*₅), 134.2 (*C*₇), 132.7 (*C*₁₁), 132.0 (*C*₁₂), 131.7 (*C*₄), 129.6 (*C*₉), 127.7 (*C*₁₀), 125.8 (q, ²J_{CF} = 103 Hz; *C*₂), 122.7 (*C*₈), 113.7 (q, ³J_{CF} = 4 Hz; *C*₁), 110.8 (*C*₁₆), 107.3 ppm (q, ³J_{CF} = 3 Hz; *C*₃). Not observed: *C*_{CF3}. ¹⁹F {¹H} NMR (CDCl₃, 471 MHz, 22 °C): -61.8 ppm (*F*_{CF3}).

X-ray crystallography

Single crystals of each compound were selected using an optical microscope and were mounted on MiTeGen loops. Data collection was carried out using the Bruker D8 QUEST ECO diffractometer and Bruker APEX4 software.² Structure solution was performed using XS, XT, and XL³ embedded in Olex2.⁴ Mercury was used to visualize solid-state structures.⁵ Details of growth, data collection, solution, and refinement specific to each crystal are given below.

Crystal structure of (CF3L1)ZnCl₂ (CCDC 2320600)

X-ray quality crystals of yellow, plate-like habit were obtained through slow cooling (60 °C to 22 °C) and slow evaporation of a saturated solution of (^{CF3}L1)ZnCl₂ in 3:1 methanol:water. The data collection was performed under a cold stream of nitrogen (150 K). Crystal structure parameters:

C₁₉H₁₉Cl₂F₃N₄Zn (248.34 g/mol): monoclinic, space group *C*2/*c*, *a* = 31.5266(16) Å, *b* = 16.1610(8) Å, *c* = 13.1152(6) Å, β = 114.276(2)°, *V* = 6091.3(5) Å³, *Z* = 16; crystal dimensions 0.39 x 0.21 x 0.05 mm; diffractometer Bruker D8 QUEST ECO CMOS, Mo K_a radiation, 2θ = 2.45 to 26.53°, 55874 reflections measured, 6320 unique (R_{int} = 0.0684, R_{sigma} = 0.0343) which were used in all calculations, intrinsic phasing; μ (MoK α) = 1.009 mm⁻¹, absorption correction semiempirical (multi-scan); refinement with olex2.refine 1.5, 294 parameters, 73 restraints, the final R_1 was 0.0406 (I > 2 σ (I)) and wR_2 was 0.0984 (all data), GooF = 1.0331, residual electron density 0.54 Å⁻³.

Crystal structure of (CF3L2)₂Zn (CCDC 2320601)

X-ray quality crystals of yellow, block-habit were obtained through layering dry hexanes over a solution of (^{CF3}L2)₂Zn in tetrahydrofuran in a glovebox of N₂ atmosphere. The data collection was performed under a cold stream of nitrogen (168 K). Crystal structure parameters C₃₆H₂₀F₆N₈Zn, C₄H₈O (M=816.07 g/mol): monoclinic, space group C2/c, a = 22.2606(14) Å, b = 21.5288(14) Å, c = 10.5400(7) Å, β = 115.087(2)°, V = 4574.7(5) Å³, Z = 4; crystal dimensions 0.22 x 0.2 x 0.09 mm; diffractometer Bruker D8 QUEST ECO CMOS, Mo K_a radiation, 2θ = 2.77 to 24.79°, 50165 reflections measured, 3912 unique (R_{int} = 0.0594, R_{sigma} = 0.0249) which were used in all calculations, intrinsic phasing; μ (MoK α) = 0.598 mm⁻¹, absorption correction semiempirical (multi-scan); refinement with SHELXL, 276 parameters, 75 restraints, the final R_1 was 0.0514 (I > 2 σ (I)) and wR_2 was 0.1537 (all data), GooF = 1.080, residual electron density 0.71 Å⁻³.

Computational Modelling

All calculations were carried out on Orca v.5.0.1.^{6,7} within the framework of Kohn-Sham density functional theory (KS-DFT); restricted and unrestricted KS were used for closed-shell and openshell calculations, respectively. Solvent effects were accounted for implicitly using the SMD solvent model.⁸ Furthermore, we used the resolution-of-identity approximation to speed up all our calculations. Note that for the hybrid and range-separated functionals used in this study, we used the resolution-of-identity 'chains of spheres' approximation (RIJCOSX). Additional auxiliary basis sets were therefore used (def2/J). The ground state geometries of the complexes were optimized at the M06-L/def2-SVP and B3LYP/def2-SVP level of theories in the gas phase and in CH₂Cl₂. The coordinates from the crystal structures of the complexes were used as initial inputs for the optimization. Subsequent frequency analyses on the optimized geometries did not show any imaginary frequencies indicating the structures are minima on the ground state potential energy surface. A comparison of the solid-state vs computationally optimized bond lengths and angles can be found in Tables S1-S3.

We then carried out natural bond orbital (NBO) analyses on the complexes using the NBO 7.0 program⁹ to interrogate the bonding around the amido/imino nitrogen donors. Here, we used the geometries obtained using M06-L/def2-SVP both in the gas phase and in solution. We varied the amount of Hartree-Fock exchange to understand its impact on the bonding character. The following functionals were used M06-L (0%),¹⁰ TPSSh (10%),¹¹ O3LYP (11.16%),¹² B3LYP (20%),¹³ PBE0 (25%),¹⁴ M06 (27%),¹⁰ M06-2X (54%),¹⁰ and CAM-B3LYP (range-separated; HF% is variational).¹⁵ A larger basis set was also implemented, using the triple-zeta and doubly polarized def2-TZVPP basis set. A summary of the NBO results can be found in Figures S25 and S26, and a collection of the relevant NBO raw output data can be found in Tables S33-S120.

For the excited states, we used the B3LYP/def2-SVP level of theory to optimize the excited S_1 and T_1 states in CH₂Cl₂. We additionally optimized the geometries in Et₂O, toluene and *n*-hexane. Time-dependent DFT (TD-DFT) was used to optimize the S_1 state. Similarly, frequency analyses did not reveal any imaginary frequencies. We further performed TD-DFT on the ground state geometries to simulate the optical spectra of the complexes in the four solvents used in this study. The simulated optical spectra were generated using Multiwfn version 3.7^{16} applying 0.35 eV broadening (Figures S14, S16, and S19). Ground state molecular orbital isosurfaces were generated on Avogadro with isovalue of 0.04. The electron-hole density maps were obtained from the changes in the electron densities obtained from the TDDFT calculations. To do this, we first generated molden files using the orca_2mkl module, which were subsequently fed into Multiwfn v.3.7. After choosing the electronic excitation of interest, we then created cube files that were opened on VESTA 3.5.8 to plot the relevant electron-hole density maps (isovalue = 0.001). Spin density maps were generated using the orca_plot module and visualized using Gabedit.¹⁷ Orbital composition analysis (Hirshfeld method)¹⁸ and fragment contribution analysis were done using Multiwfn version $3.7.^{16}$ Mercury was used to visualize S_0 , S_1 , and T_1 states.⁵

Electronic Absorption and Emission Spectroscopy Figures

Figure S1. Equimolar solutions (approx. 0.10 mM) of proligands (a) in ambient light and (b) under UV irradiation (355 nm). For each image, from left to right: ^{*t*Bu}L1, ^{CF3}L1, ^{CF3}L2, ^{*t*Bu}L3.

Figure S2. Equimolar solutions (approx. 0.10 mM) of complexes (a) in ambient light and (b) under UV irradiation (355 nm). For each image, from left to right: (^{*rBu*}L1)ZnCl₂, (^{*CF3*}L1)ZnCl₂, (^{*CF3*}L1)ZnCl₂, (^{*CF3*}L2)₂Zn, (^{*rBu*}L3)₂Zn.

Figure S3. Molar absorptivity of (a) $^{R}L1 / (^{R}L1)ZnCl_{2}$ and (b) $^{CF3}L2 / (^{CF3}L2)_{2}Zn / {^{tBu}L3 / (^{tBu}L3)_{2}Zn}$ in $CH_{2}Cl_{2}$ at 295 K.

Figure S4. Normalized UV-Vis absorption spectra of equimolar solutions (1.0 x 10^{-4} M) of (a) (^{CF3}L2)₂Zn and (b) (^{*t*Bu}L3)₂Zn in solvents of varying polarities at 295 K.

Figure S5. Emission spectra of equimolar solutions $(1.0 \times 10^{-4} \text{ M})$ of (a) $(^{CF3}L2)_2$ Zn and (b) $(^{tBu}L3)_2$ Zn in solvents of varying polarities at 295 K.

Figure S6. Emission and excitation spectra in CH₂Cl₂ at 295 K (red and black lines respectively, registered at the λ_{ex} and λ_{em} values shown), and emission in EPA at 77 K (blue lines, at the same λ_{ex}), for the zinc complexes indicated (left) and for the corresponding proligands (right).

Figure S7. Normalized emission spectra in the solid state at 295 K: $(^{CF3}L1)ZnCl_2$ ($\lambda_{ex} = 380$ nm, blue line), $(^{rBu}L1)ZnCl_2$ ($\lambda_{ex} = 400$ nm, green line), and $(^{CF3}L2)_2Zn$ ($\lambda_{ex} = 400$ nm, red line).

Compound	λ _{max} (abs)	λ_{em}	¢	Ref.
[(PNNP)Zn] ₂	425 (sh)	525	0.93	1
bis(bis-imidazo[1,2-a]pyridine)Zn(II) [BF4]2	341	450	0.50	2
(<i>meta</i> -(2-hydroxyphenyl)benzoxazole di(anisyl)amino)Zn(II)	400	500	0.50	3
(<i>para</i> -(2-hydroxyphenyl)benzoxazole di(anisyl)amino)Zn(II)	375	450	0.86	3
heteroleptic bis(dipyrrinato)zinc(II)	495	578	0.76	4
$(N^N^O)_2Zn$	366	593	0.06	5
$(^{CF3}L1)ZnCl_2$	380	512	0.64	this work
(^{tBu} L1)ZnCl ₂	383	530	0.41	this work
$(^{\mathbf{CF3}}\mathbf{L2})_{2}\mathbf{Zn}$	436	595	0.26	this work

Table S1. Comparison of selected photophysical properties of Zn(II) systems.

References for Table S1:

- 1 P. W. Roesky, Intensely Photoluminescent Diamidophosphines of the Alkaline-Earth Metals, Aluminum, and Zinc, *Angew. Chem., Int. Ed.*, 2018, **57**, 14265–14269.
- 2 V. Giuso, E. Jouaiti, C. Cebrián, S. Parant-Aury, N. Kyritsakas, C. Gourlaouen and M. Mauro, Symmetry-Broken Charge-Transfer Excited State in Homoleptic Zinc(II) Imidazo[1,2a]pyridine Complexes, *ChemPhotoChem*, 2023, 7, e202300092.
- 3 J. A. Kübler, B. Pfund and O. S. Wenger, Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion, *JACS Au*, 2022, **2**, 2367–2380.
- 4 S. Kusaka, R. Sakamoto, Y. Kitagawa, M. Okumura and H. Nishihara, An Extremely Bright Heteroleptic Bis(dipyrrinato)zinc(II) Complex, *Chemistry An Asian Journal*, 2012, **7**, 907–910.
- 5 I. B. Lozada, J. D. Braun, J. A. G. Williams and D. E. Herbert, Yellow-Emitting, Pseudo-Octahedral Zinc Complexes of Benzannulated N^N^O Pincer-Type Ligands, *Inorg. Chem.*, 2022, **61**, 17568–17578.

Structural Figures and Tables

Figure S8. Comparison of C–N bond lengths of (a) $(^{CF3}L1)ZnCl_2$, (b) $(^{CF3}L2)_2Zn$, and (c) $(^{tBu}L3)_2Zn$ in the solid state. Hydrogen atoms and solvent molecules omitted for clarity. Solid-state structure of $(^{tBu}L3)_2Zn$ reproduced from Reference 1.

Figure S9. Torsion angles between ring fragments and phenanthridinyl planes in solid-state structures of $(^{CF3}L2)_2Zn$ (C-N-C-N) and $(^{tBu}L3)_2Zn$ (C-N-C-C). Hydrogen atoms and solvent molecules omitted for clarity. Solid-state structure of $(^{tBu}L3)_2Zn$ reproduced from Reference 2.

Figure S10. Atomic labels for Tables S2-S5.

Bond/Å	(^{CF3} L1)ZnCl ₂		
	XRD	DFT	$ \mathbf{\Delta d} ^b$
N1-Zn	2.017	2.085	0.068
N4-Zn	2.067	2.109	0.042
N1-C5	1.340	1.341	0.001
N1-C11	1.402	1.388	0.014
N2-C5	1.347	1.362	0.015
N2-C6a	1.455	1.457	0.002
N2-C6b	1.451	1.459	0.008
N3-C5	1.336	1.355	0.019
N3-C7a	1.459	1.460	0.001
N3-C7b	1.451	1.459	0.008
C11-C12	1.370	1.400	0.030
C11-C10	1.417	1.440	0.023
N4-C9	1.297	1.306	0.009
N4-C10	1.380	1.380	0.000
MAD^{c}			0.017
Angle/(°)	XRD	DFT	$ \Delta \text{ angle} ^b$
N1-Zn-N4	81.31	80.03	1.3
C11-N1-Zn	112.8	113.1	0.3
C5-N1-Zn	118.9	118.3	0.6
Zn-N4-C9	128.7	126.4	2.3
Zn-N4-C10	112.1	112.7	0.6
C11-N1-C5	119.8	124.0	4.2
N1-C5-N2	122.4	123.0	0.6
N1-C5-N3	117.8	118.3	0.5
N2-C5-N3	119.7	118.5	1.2
C5-N2-C6a	126.4	121.4	5.0
C5-N2-C6b	123.1	122.9	0.2
C6a-N2-C6b	115.4	115.6	0.2
C5-N3-C7a	122.8	122.4	0.4
C5-N3-C7b	121.1	121.2	0.1
C7a-N3-C7b	115.7	115.2	0.5
N1-C11-C12	124.2	125.1	0.9
N1-C11-C10	116.6	117.1	0.5
C10-C11-C12	119.2	117.7	1.5
C11-C10-N4	116.5	116.9	0.4
C10-N4-C9	119.1	120.7	1.6
MAD ^c			1.1

Table S2. Comparison of experimentally determined and calculated^{*a*} bond distances (Å) and angles (°) for ($^{CF3}L1$)ZnCl₂. See Figure S10 for numbering scheme.

^a B3LYP (SMD "dichloromethane"/ def2-svp def2/j) ^b Absolute difference between experimentally determined and calculated bond distances or angles ^c Mean absolute deviation

Bond/Å	8	(^{CF3} L2) ₂ Zn	
	XRD	DFT	$ \Delta \mathbf{d} ^b$
N1-Zn	1.944	1.995	0.051
N4-Zn	2.097	2.126	0.029
N1-C5	1.360	1.359	0.001
N1-C11	1.375	1.373	0.002
N2-C5	1.343	1.350	0.007
N2-C6	1.335	1.335	0.000
N3-C5	1.355	1.365	0.01
N3-C7	1.328	1.326	0.002
C6-C8	1.366	1.394	0.028
C7-C8	1.378	1.402	0.024
C11-C12	1.396	1.402	0.006
C11-C10	1.439	1.451	0.012
N4-C9	1.291	1.307	0.016
N4-C10	1.391	1.379	0.012
MAD ^c			0.014
Angle/(°)	XRD	DFT	$ \Delta \text{ angle} ^b$
N1-Zn-N4	81.23	80.44	0.8
C11-N1-Zn	117.0	116.4	0.6
C5-N1-Zn	116.1	114.7	1.4
Zn-N4-C9	129.5	128.2	1.3
Zn-N4-C10	110.6	110.9	0.3
C11-N1-C5	126.9	129.0	2.1
N1-C5-N2	122.4	123.5	1.1
N1-C5-N3	112.8	112.8	0.0
N2-C5-N3	124.9	123.6	1.3
C5-N2-C6	116.2	117.4	1.2
N2-C6-C8	123.5	123.1	0.4
C6-C8-C7	116.1	115.6	0.5
C5-N3-C7	116.3	117.9	1.6
N3-C7-C8	123.1	122.4	0.7
N1-C11-C12	128.2	127.5	0.7
N1-C11-C10	114.8	115.4	0.6
C10-C11-C12	117.0	117.2	0.2
C11-C10-N4	116.2	116.9	0.7
C10-N4-C9	119.9	120.9	1.0
MAD ^c			0.87

Table S3. Comparison of experimentally determined and calculated^{*a*} bond distances (Å) and angles (°) for $(^{CF3}L2)_2Zn$. See Figure S10 for numbering scheme.

^a B3LYP (SMD "dichloromethane"/ def2-svp def2/j) ^b Absolute difference between experimentally determined and calculated bond distances or angles

^c Mean absolute deviation

Bond/Å	(^{tBu} L3) ₂ Zn				
	XRD	DFT	$ \Delta \mathbf{d} ^b$		
N1-Zn	1.946	1.991	0.045		
N4-Zn	2.060	2.075	0.015		
N1-C5	1.410	1.397	0.013		
N1-C11	1.372	1.371	0.001		
C2-C5	1.397	1.417	0.020		
C2-C6	1.388	1.398	0.010		
C3-C5	1.386	1.417	0.031		
C3-C7	1.384	1.396	0.012		
C6-C8	1.378	1.400	0.022		
C7-C8	1.390	1.401	0.011		
C11-C12	1.392	1.407	0.015		
C11-C10	1.435	1.450	0.015		
N4-C9	1.307	1.309	0.002		
N4-C10	1.382	1.378	0.004		
MAD ^c			0.015		
Angle/(°)	XRD	DFT	$ \Delta \text{ angle} ^b$		
N1-Zn-N4	82.72	83.20	0.5		
C11-N1-Zn	114.1	112.6	1.5		
C5-N1-Zn	125.9	122.0	3.9		
Zn-N4-C9	129.4	128.9	0.5		
Zn-N4-C10	110.5	106.7	3.8		
C11-N1-C5	120.0	124.9	4.9		
N1-C5-C2	122.6	124.4	1.8		
N1-C5-C3	119.1	118.5	0.6		
C2-C5-C3	118.2	117.0	1.2		
C5-C2-C6	120.4	121.1			
			0.7		
C2-C6-C8	120.8	121.1	0.3		
C6-C8-C7	119.1	118.6	0.5		
C5-C3-C7	121.0	121.6	0.6		
C3-C7-C8	120.6	120.7	0.1		
N1-C11-C12	126.8	126.6	0.2		
N1-C11-C10	116.6	117.0	0.4		
C10-C11-C12	116.5	116.3	0.2		
C11-C10-N4	115.7	117.0	1.3		
C10-N4-C9	119.8	121.2	1.4		
MAD ^c			1.3		

Table S4. Comparison of experimentally determined and calculated^{*a*} bond distances (Å) and angles (°) for $({}^{tBu}L3)_2Zn$. Solid state structure of $({}^{tBu}L3)_2Zn$ reproduced from Reference ¹. See Figure S10 for numbering scheme.

^a B3LYP (SMD "dichloromethane"/ def2-svp def2/j)
 ^b Absolute difference between experimentally determined and calculated bond distances or angles

^c Mean absolute deviation

Bond/Å	(^{CF3} L1)ZnCl ₂	$(^{CF3}L2)_2Zn$	(^{tBu} L3) ₂ Zn	$ \Delta \mathbf{d} ^a$	$ \Delta \mathbf{d} ^b$	$ \Delta \mathbf{d} ^c$
N1-Zn	2.017	1.944	1.946	0.073	0.071	0.002
N4-Zn	2.067	2.097	2.060	0.03	0.007	0.037
N1-C5	1.340	1.360	1.410	0.02	0.07	0.05
N1-C11	1.402	1.375	1.372	0.027	0.03	0.003
C2-C5/	1.347	1.343	1.397			
N2-C5				0.004	0.05	0.054
C2-C6/	n/a	1.335	1.388	n/a		
N2-C6					n/a	0.053
C3-C5/	1.336	1.355	1.386			
N3-C5				0.019	0.05	0.031
C3-C7/	n/a	1.328	1.384	n/a	n/a	
N3-C7						0.056
N2-C6a	1.455	n/a	n/a	n/a	n/a	n/a
N2-C6b	1.451	n/a	n/a	n/a	n/a	n/a
N3-C7a	1.459	n/a	n/a	n/a	n/a	n/a
N3-Cb	1.451	n/a	n/a	n/a	n/a	n/a
C6-C8	n/a	1.366	1.378	n/a	n/a	0.012
C7-C8	n/a	1.378	1.390	n/a	n/a	0.012
C11-C12	1.370	1.396	1.392	0.026	0.022	0.004
C11-C10	1.417	1.439	1.435	0.022	0.018	0.004
N4-C9	1.297	1.291	1.307	0.006	0.01	0.016
N4-C10	1.380	1.391	1.382	0.011	0.002	0.009
MAD^d				0.023	0.033	0.0245
Angle/(°)	(CF3L1)ZnCl2	$(^{CF3}L2)_2Zn$	(tBuL3)2Zn	$ \Delta \text{ angle} ^a$	$ \Delta$ angle $ ^b$	$ \Delta \text{ angle} ^c$
N1-Zn-N4	81.3	81.2	82.7	0.1	1.4	1.5
C11-N1-Zn	112.8	117.0	114.1	4.2	1.3	2.9
C5-N1-Zn	118.9	116.1	125.9	2.8	7	9.8
Zn-N4-C9	128.7	129.5	129.4	0.8	0.7	0.1
Zn-N4-C10	112.1	110.6	110.5	1.5	1.6	0.1
C11-N1-C5	119.8	126.9	120.0	7.1	0.2	6.9
N1-C5-C2/	122.4	122.4	122.6			
N1-C5-N2/				0	0.2	0.2
N1-C5-C3/	117.8	112.8	119.1			
N1-C5-N3				5	1.3	6.3
C2-C5-C3/	119.7	124.9	118.2			
N2-C5-N3				5.2	1.5	6.7
C5-C2-C6/	n/a	116.2	120.4	n/a	n/a	
C5-N2-C6						4.2
C2-C6-C8/	n/a	123.5	120.8	n/a	n/a	
N2-C6-C8						2.7
C5-N2-C6a	126.4	n/a	n/a	n/a	n/a	
C5-N2-C6b	123.1	n/a	n/a	n/a	n/a	
C6a-N2-C6b	115.4	n/a	n/a	n/a	n/a	
C5-N3-C7a	122.8	n/a	n/a	n/a	n/a	
C5-N3-C7b	121.1	n/a	n/a	n/a	n/a	
C7a-N3-C7b	115.7	n/a	n/a	n/a	n/a	
<u>C6-C8-C7</u>	n/a	116.1	119.1	n/a	n/a	3
C5-C3-C7/	n/a	116.3	121.0	n/a	n/a	/
C5-N3-C7						4.7

Table S5. Comparison of solid-state structure bond distances (Å) and angles (°) of complexes of varying N_{amido} character. Solid state structure of $({}^{tBu}L3)_2Zn$ reproduced from Reference ¹. See Figure S10 for numbering scheme.

C3-C7-C8/	n/a	123.1	120.6	n/a	n/a	
N3-C7-C8						2.5
N1-C11-C12	124.2	128.2	126.8	4	2.6	1.4
N1-C11-C10	116.6	114.8	116.6	1.8	0	1.8
C10-C11-C12	119.2	117.0	116.5	2.2	2.7	0.5
C11-C10-N4	116.5	116.2	115.7	0.3	0.8	0.5
C10-N4-C9	119.1	119.9	119.8	0.8	0.7	0.1
MAD^d				2.557	1.571	2.942

^{*a*} Absolute difference between solid-state structure bond distances or angles of (C^{F3}L1)ZnCl₂ and (C^{F3}L2)₂Zn ^{*b*} Absolute difference between solid-state structure bond distances or angles of (C^{F3}L1)ZnCl₂ and (^{*t*Bu}L3)₂Zn ^{*c*} Absolute difference between solid-state structure bond distances or angles of (C^{F3}L2)₂Zn and (^{*t*Bu}L3)₂Zn

^d Mean absolute deviation

Figure S11. Select calculated bond distances (Å) at the S0, S1, and T1 optimized^a geometries. ^a B3LYP (SMD "dichloromethane"/ def2-svp def2/j)

Figure S12. Torsion angles between ring fragments and phenanthridinyl planes in (a) S_0 , (b) S_1 , and (c) T_1 optimized geometies of (CF3L2)₂Zn (C-N-C-N) and (^{tBu}L3)₂Zn (C-N-C-C). Hydrogens omitted for clarity.

Computational Figures and Tables

Figure S13. Defined fragments for Tables S8, S10, S12, and S14. C=N sub-fragments are indicated in figure by bolded line and lettering.

Figure S14. Normalized experimental UV-Vis absorption spectrum (solid trace, dichloromethane), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV, SMD "dichloromethane"), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.07$), and

electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of (a) ($^{CF3}L1$)ZnCl₂ and (b) ($^{tBu}L1$)ZnCl₂.

Figure S15. Jablonski diagram for (a) (^{CF3}L1)ZnCl₂ and (b) (${}^{Hu}L1$)ZnCl₂ along the Zn-N_{guanidine} bond at the equilibrium S₀ and S₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001).

Table S6. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.07$), and MO pair contributions (>10%) below 4 eV for (^{CF3}L1)ZnCl₂ in dichloromethane. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	3.26	0.22	H→L 97%
2	3.71	0.07	H-1→L 48%, H→L+1 49%

Table S7. Fragment contributions to select ground-state MOs of $(^{CF3}L1)ZnCl_2$ in dichloromethane.

МО	E (eV)	Zn (%)	Phenanthridine (%)			Guanid	Cl (%)	
			full	C=N	CF3	full	C=N	
LUMO+1	-1.55	0	93	3	1	5	3	0
LUMO	-2.14	1	95	33	2	2	2	0
НОМО	-6.33	1	63	4	1	31	22	2
HOMO-1	-7.01	0	98	8	1	1	0	1

Table S8. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.07$), and MO pair contributions (>10%) below 4 eV for ($f^{Bu}L1$)ZnCl₂ in dichloromethane. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	3.29	0.17	H→L 95%
2	3.76	0.09	H-1→L 42%, H→L+1 50%

Table S9. Fragment contributions to select ground-state MOs of $(t^{Bu}L1)ZnCl_2$ in dichloromethane.

МО	E (eV)	Zn (%)	Phenanthridine (%)			Guanid	Cl (%)	
			full	C=N	tBu	full	C=N	
LUMO+1	-1.37	0	93	3	2	6	3	0
LUMO	-1.93	1	95	33	1	3	1	1
НОМО	-6.11	1	67	5	2	30	19	1
HOMO-1	-6.74	0	99	9	3	1	0	0

Figure S16. Normalized experimental UV-Vis absorption spectrum (solid trace), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.05$), and electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of (^{CF3}L2)₂Zn in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane.

Figure S17. Jablonski diagram in the singlet manifold for $(^{CF3}L2)_2Zn$ along the Zn-N_{pyrimidine} bond at the equilibrium S₀ and S₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane.

Figure S18. Jablonski diagram with T_1 states for $(^{CF3}L2)_2Zn$ along the Zn-N_{pyrimidine} bond at the equilibrium S₀, S₁, and T₁ optimized geometries, with spin density maps (isosurface value = 0.004) in (a) dichloromethane, (b) toluene and (c) n-hexane.

Table S10. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3}L2)₂Zn in dichloromethane. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.84	0.23	H-1→L 49%, H→L+1 49%
2	2.85	0.21	H→L 53%, H-1→L+1 45%
5	3.47	0.17	H-1→L+2 42%, H→L+3 38%
6	3.48	0.065	H-1→L+3 39%, H→L+2 39%
12	3.94	0.36	H-3→L+1 36%, H-2→L 39%

МО	Е	Zn	P	Phen 1 (%)		Pyrin	Pyrim 1 (%)		Phen 2	(%)	Pyrim 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.41	0	40	1	0	4	1	51	5	0	5	2
LUMO+2	-1.41	0	51	2	0	5	2	40	4	0	4	1
LUMO+1	-2.04	1	49	16	1	2	1	47	8	1	2	1
LUMO	-2.05	1	47	16	1	2	1	49	8	1	2	1
НОМО	-5.77	2	26	2	0	30	13	23	3	0	23	11
HOMO-1	-5.78	2	23	2	0	26	11	26	4	0	26	13
НОМО-2	-6.91	0	49	4	1	0	0	51	6	1	0	0
HOMO-3	-6.91	0	51	4	2	0	0	49	6	1	0	0

Table S11. Fragment contributions to select ground-state MOs of $(^{CF3}L2)_2$ Zn in dichloromethane.

Table S12. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3}L2)₂Zn in diethyl ether. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.79	0.21	H-1→L 49%, H→L+1 49%
2	2.80	0.19	H→L 52%, H-1→L+1 45%
5	3.45	0.16	H-1→L+2 42%, H→L+3 37%
6	3.45	0.056	H-1→L+3 40%, H→L+2 38%
10	3.80	0.056	H-1→L+4 45%, H→L+5 35%
12	3.94	0.33	H-3→L+1 36%, H-2→L 39%

Table S13. Fragment	contributions to select	ground-state MOs o	of (^{CF3} L2	2) ₂ Zn in	diethvl ether.
		0)-	2

MO	E	Zn	P	Phen 1 (%)		Pyrin	Pyrim 1 (%)		Phen 2	(%)	Pyrim 2	Pyrim 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N	
LUMO+3	-1.43	0	40	1	0	4	1	52	2	0	4	1	
LUMO+2	-1.43	0	52	2	0	5	1	39	1	0	3	1	
LUMO+1	-2.07	1	50	17	1	2	1	36	15	1	1	1	
LUMO	-2.08	1	45	16	1	2	1	40	17	1	2	1	
НОМО	-5.76	2	24	2	0	33	12	25	2	0	25	13	
HOMO-1	-5.76	2	26	2	0	35	12	23	2	0	23	11	
НОМО-2	-6.94	0	49	4	1	1	0	47	4	1	1	0	
НОМО-3	-6.94	0	50	4	1	1	0	47	4	1	1	0	

No.	E (eV)	fosc	MO contributions
1	2.72	0.22	H-1→L 49%, H→L+1 48%
2	2.73	0.20	H→L 51%, H-1→L+1 46%
5	3.40	0.17	H-1→L+2 42%, H→L+3 36%
6	3.40	0.052	H-1→L+3 42%, H→L+2 38%
10	3.80	0.076	H-1→L+4 50%, H→L+5 37%
12	3.91	0.36	H-3→L+1 32%, H-2→L 25%, H-4→L 16%

Table S14. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3}L2)₂Zn in toluene. H=HOMO; L=LUMO

Table S15. Fragment contributions to select ground-state MOs of (CF3L2)₂Zn in toluene.

МО	Е	Zn	P	Phen 1 (%)		Pyrin	Pyrim 1 (%)		Phen 2	(%)	Pyrim 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.47	0	40	1	0	3	1	53	2	0	4	1
LUMO+2	-1.47	0	54	2	0	4	1	39	1	0	3	1
LUMO+1	-2.11	1	48	16	1	1	1	38	16	1	1	1
LUMO	-2.12	1	48	16	1	1	1	38	16	1	1	1
НОМО	-5.75	2	45	3	0	44	22	5	1	0	5	3
HOMO-1	-5.75	2	5	1	0	5	2	42	3	0	39	21
НОМО-2	-6.97	0	48	4	1	2	0	46	4	1	1	0
НОМО-3	-6.98	0	49	4	1	1	0	46	4	1	1	0

Table S16. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.05$), and MO pair contributions (>10%) for (^{CF3}L2)₂Zn in n-hexane. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.69	0.20	H-1→L 48%, H→L+1 48%
2	2.70	0.18	H→L 51%, H-1→L+1 46%
5	3.39	0.15	H-1→L+2 42%, H→L+3 36%
10	3.81	0.070	H-1→L+4 50%, H→L+5 37%
12	3.92	0.32	H-4→L+1 39%, H-5→L+1 35%

МО	E	Zn	P	Phen 1 (%)		Pyrin	Pyrim 1 (%)		Phen 2	(%)	Pyrim 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.49	0	22	1	0	2	1	71	2	0	5	2
LUMO+2	-1.49	0	71	2	0	5	2	22	1	0	2	1
LUMO+1	-2.13	1	47	16	1	1	1	49	17	1	1	1
LUMO	-2.15	1	49	17	1	1	1	47	16	1	1	1
НОМО	-5.74	2	30	2	0	30	15	19	1	0	19	9
HOMO-1	-5.75	2	19	1	0	19	10	29	2	0	30	15
НОМО-2	-7.00	0	41	3	1	8	1	43	4	1	7	1
НОМО-3	-7.00	0	47	4	1	3	0	45	4	1	5	0

Table S17. Fragment contributions to select ground-state MOs of (^{CF3}L2)₂Zn in n-hexane.

Figure S19. Normalized experimental UV-Vis absorption spectrum (solid trace), normalized TD-DFT simulated spectrum (dotted trace, FWHM = 0.35 eV), predicted singlet-singlet vertical excitation energies ($f_{osc} > 0.08$), and electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) for the lowest-energy vertical electronic transitions of ($^{tBu}L3$)₂Zn (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane.

Figure S20. Jablonski diagram in the singlet manifold for $({}^{Bu}L3)_2Zn$ along the Zn-N_{phenyl} bond at the equilibrium S₀ and S₁ optimized geometries, with electron-hole density maps (yellow = hole; blue = electron; isosurface value = 0.001) in (a) dichloromethane, (b) diethyl ether, (c) toluene, and (d) n-hexane.

Figure S21. Jablonski diagram with T_1 states for $({}^{tBu}L3)_2Zn$ along the Zn-N_{phenyl} bond at the equilibrium S₀, S₁, and T₁ optimized geometries, with spin density maps (isosurface value = 0.004) in (a) dichloromethane, (b) toluene, and (c) n-hexane. Diethyl ether is omitted due to complications with calculations.

Table S18. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.08$), and MO pair contributions (>10%) for ($f^{Bu}L3$)₂Zn in dichloromethane. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.45	0.19	H→L 58%, H-1→L+1 40%
2	2.46	0.099	H-1→L 57%, H→L+1 42%
5	3.15	0.16	H→L+2 48%, H-1→L+3 46%
9	3.83	0.16	H-3→L 34%, H-2→L+1 30%
10	3.83	0.25	H-2→L 34%, H-3→L+1 29%
11	3.92	0.26	H-1→L+4 53%, H→L+5 38%
12	3.93	0.55	H→L+4 58%, H-1→L+5 34%
14	3.96	0.082	H→L+7 38%, H-1→L+6 27%, H-1→L+7 20%

Table S19. Fragment contributions to select ground-state MOs of $({}^{tBu}L3)_2Zn$ in dichloromethane.

МО	Ε	Zn	Ph	Phenan 1 (%)		Pheny	Phenyl 1 (%)		henan 2	2 (%)	Phenyl 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.19	0	47	2	1	3	1	48	2	1	3	1
LUMO+2	-1.20	0	48	2	1	2	1	47	2	1	2	1
LUMO+1	-1.83	2	48	17	1	1	1	47	17	1	1	1
LUMO	-1.86	2	48	17	1	1	1	46	17	1	1	1
НОМО	-5.18	2	27	2	1	27	15	22	1	0	22	13
HOMO-1	-5.19	3	21	2	0	23	12	25	2	0	28	15
НОМО-2	-6.61	0	50	5	2	1	1	48	5	2	1	0
НОМО-3	-6.62	0	49	5	2	1	0	49	5	2	1	0

Table S20. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.08$), and MO pair contributions (>10%) for (${}^{tBu}L3$)₂Zn in diethyl ether. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.41	0.17	H→L 58%, H-1→L+1 40%
2	2.42	0.09	H-1→L 57%, H→L+1 42%
5	3.12	0.15	H→L+2 49%, H-1→L+3 46%
9	3.83	0.12	H-3→L 41%, H-2→L+1 35%
10	3.83	0.27	H-2→L 40%, H-3→L+1 34%
11	3.92	0.23	H-1→L+4 55%, H→L+5 36%
12	3.92	0.51	H→L+4 59%, H-1→L+5 32%

МО	E	Zn	Ph	enan 1 ((%)	Pheny	l 1 (%)	P	henan 2	2 (%)	Phenyl 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.20	0	47	2	1	2	1	44	2	1	2	1
LUMO+2	-1.20	0	48	2	1	2	1	43	2	1	2	1
LUMO+1	-1.84	2	48	17	1	1	1	47	17	1	1	1
LUMO	-1.87	2	47	17	1	1	1	46	17	1	1	1
НОМО	-5.15	2	25	2	0	25	14	22	2	0	25	14
HOMO-1	-5.16	3	23	2	0	25	14	21	2	0	26	14
НОМО-2	-6.61	0	48	6	2	2	1	41	5	2	2	1
HOMO-3	-6.61	0	48	5	2	2	1	42	5	2	2	1

Table S21. Fragment contributions to select ground-state MOs of (^{*t*Bu}L3)₂Zn in diethyl ether.

Table S22. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.08$), and MO pair contributions (>10%) for (${}^{tBu}L3$)₂Zn in toluene. H=HOMO; L=LUMO

No.	E (eV)	fosc	MO contributions
1	2.36	0.19	H→L 59%, H-1→L+1 40%
2	2.37	0.097	H-1→L 56%, H→L+1 42%
5	3.08	0.16	H→L+2 50%, H-1→L+3 46%
9	3.81	0.13	H-3→L 37%, H-2→L+1 28%, H-4→L+1 14%, H-5→L 10%
10	3.81	0.32	H-2→L 33%, H-3→L+1 31%, H-4→L 15%, H-5→L+1 10%,
11	3.89	0.23	H-1→L+4 55%, H→L+5 35%
12	3.89	0.51	H→L+4 59%, H-1→L+5 31%

МО	Ε	Zn	Ph	Phenan 1 (%)		Pheny	Phenyl 1 (%)		Phenan 2 (%)			Phenyl 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N	
LUMO+3	-1.21	0	48	2	1	2	1	47	2	1	2	1	
LUMO+2	-1.21	0	47	2	1	2	1	48	2	1	2	1	
LUMO+1	-1.86	2	48	17	1	1	1	48	48 17 1		1	1	
LUMO	-1.89	2	48	17	1	1	1	47	17	1	1	1	
НОМО	-5.11	2	24	2	0	25	14	24	2	0	25	14	
HOMO-1	-5.13	3	23	2	0	25	14	23	2	0	25	14	
НОМО-2	-6.61	1	43	5	2	6	2	43	6	2	6	2	
HOMO-3	-6.62	1	46	6	3	4	1	46	6	3	4	1	

Table S23. Fragment contributions to select ground-state MOs of (^{*t*Bu}L3)₂Zn in toluene.

No.	E (eV)	fosc	MO contributions
1	2.34	0.17	H→L 60%, H-1→L+1 39%
2	2.35	0.088	H-1→L 56%, H→L+1 42%
5	3.07	0.14	H→L+2 50%, H-1→L+3 46%
9	3.81	0.11	H-3→L 31%, H-4→L+1 25%, H-5→L 17%, H-2→L+1 17%
10	3.82	0.28	H-4→L 28%, H-3→L+1 24%, H-2→L 20%, H-5→L+1 16%
11	3.90	0.18	H-1→L+4 54%, H→L+5 34%
12	3.90	0.42	H→L+4 57%, H-1→L+5 29%

Table S24. TD-DFT predicted singlet-singlet vertical excitation energies, oscillator strengths ($f_{osc} > 0.08$), and MO pair contributions (>10%) for (${}^{tBu}L3$)₂Zn in n-hexane. H=HOMO; L=LUMO

Table S25. Fragment contributions to select ground-state MOs of $({}^{tBu}L3)_2Zn$ in n-hexane.

МО	Ε	Zn	Ph	Phenan 1 (%)		Pheny	Phenyl 1 (%)		henan 2	2 (%)	Phenyl 2 (%)	
	(eV)	(%)	full	C=N	CF3	full	C-N	full	C=N	CF3	full	C-N
LUMO+3	-1.22	0	48	2	1	2	1	47	2	3	2	1
LUMO+2	-1.22	0	48	2	1	2	1	48	2	4	2	1
LUMO+1	-1.87	2	48	16	1	1	1	48	17	2	1	1
LUMO	-1.90	2	48	16	1	1	1	47	16	2	1	1
НОМО	-5.10	2	24	2	0	25	14	24	2	2	28	14
HOMO-1	-5.11	3	23	2	0	25	14	23	2	2	28	14
НОМО-2	-6.61	1	37	5	2	12	4	38	5	4	15	4
НОМО-3	-6.61	1	43	6	3	6	2	44	6	4	8	2

Figure S22. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of the four complexes calculated in dichloromethane. From left to right: $(^{CF3}L1)ZnCl_2$ (HOMO – 1 to LUMO +1), $(^{tBu}L1)ZnCl_2$ (HOMO – 1 to LUMO +1), $(^{CF3}L2)_2Zn$ (HOMO – 3 to LUMO +3), $(^{tBu}L3)_2Zn$ (HOMO – 3 to LUMO +3).

Figure S23. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of (^{CF3}L2)₂Zn (HOMO – 3 to LUMO +3). From left to right: dichloromethane, diethyl ether, toluene, n-hexane.

Figure S24. Ground-state frontier molecular orbital energy level diagram and isosurfaces (isovalue = 0.04) of (${}^{tBu}L3$)₂Zn (HOMO – 3 to LUMO +3). From left to right: dichloromethane, diethyl ether, toluene, n-hexane.

Table S26. Spin-orbit coupling matrix elements for (CF3L2)₂Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in dichloromethane at the optimized ground state geometry.

Root		<t h<sub>SO \$> (Re, Im) cm⁻¹</t h<sub>						
Т	S	Z	X	Y				
1	0	(0, -0.08)	(0, 0.12)	(0, 1.39)				
1	1	(0, 0.04)	(0, -0.23)	(0, -0.04)				
1	2	(0, 0.01)	(0, -0.06)	(0, -0.34)				
2	0	(0, -0.18)	(0, 1.1)	(0, -0.18)				
2	1	(0, 0)	(0, 0.05)	(0, -0.32)				
2	2	(0, 0.04)	(0, -0.38)	(0, 0.04)				
3	0	(0, 0)	(0, 0.08)	(0, 0.1)				
3	1	(0, 0.05)	(0, 0.1)	(0, 0.02)				
3	2	(0, 0.03)	(0, 0.1)	(0, 0.02)				
4	0	(0, 0.02)	(0, 0.34)	(0, -0.04)				
4	1	(0, -0.01)	(0, -0.02)	(0, 0.25)				
4	2	(0, 0.24)	(0, 0.33)	(0, -0.03)				
5	0	(0, -0.05)	(0, 0.36)	(0, -0.47)				
5	1	(0, -0.3)	(0, -1.57)	(0, -0.1)				
5	2	(0, 0.79)	(0, 0.37)	(0, 0.19)				

Table S27. Spin-orbit coupling matrix elements for (^{CF3}L2)₂Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in diethyl ether at the optimized ground state geometry.

Root			<t h<sub>SO S> (Re, Im) cm</t h<sub>	-1
Т	S	Z	X	Y
1	0	(0.00, -0.04)	(0.00, -0.10)	(-0.00, 1.49)
1	1	(0.00, -0.04)	(0.00, 0.23)	(-0.00, -0.03)
1	2	(0.00, -0.00)	(0.00, -0.01)	(-0.00, 0.33)
2	0	(0.00, 0.20)	(0.00, -1.17)	(-0.00, -0.11)
2	1	(0.00, 0.00)	(0.00, 0.01)	(-0.00, -0.31)
2	2	(0.00, 0.05)	(0.00, -0.39)	(-0.00, -0.04)
3	0	(0.00, 0.01)	(0.00, 0.26)	(-0.00, -0.10)
3	1	(0.00, -0.02)	(0.00, 0.06)	(-0.00, -0.19)
3	2	(0.00, -0.22)	(0.00, -0.25)	(-0.00, 0.18)
4	0	(0.00, 0.00)	(0.00, -0.32)	(-0.00, -0.07)
4	1	(0.00, -0.05)	(0.00, 0.03)	(-0.00, 0.17)
4	2	(0.00, 0.22)	(0.00, 0.28)	(-0.00, 0.19)
5	0	(0.00, 0.07)	(0.00, -0.40)	(-0.00, 0.49)
5	1	(0.00, -0.30)	(0.00, -1.56)	(-0.00, -0.11)
5	2	(0.00, 0.91)	(0.00, 0.38)	(-0.00, 0.20)

Root			<t h<sub>SO S> (Re, Im) cm</t h<sub>	-1
Т	S	Z	X	Y
1	0	(0.00, -0.01)	(0.00, 0.39)	(-0.00, -1.53)
1	1	(0.00, -0.05)	(0.00, 0.21)	(-0.00, -0.10)
1	2	(0.00, -0.01)	(0.00, 0.09)	(-0.00, -0.29)
2	0	(0.00, 0.22)	(0.00, -1.20)	(-0.00, -0.48)
2	1	(0.00, -0.01)	(0.00, 0.02)	(-0.00, 0.27)
2	2	(0.00, 0.05)	(0.00, -0.35)	(-0.00, -0.12)
3	0	(0.00, 0.01)	(0.00, -0.35)	(-0.00, 0.08)
3	1	(0.00, -0.00)	(0.00, 0.03)	(-0.00, -0.21)
3	2	(0.00, 0.36)	(0.00, 0.34)	(-0.00, -0.16)
4	0	(0.00, -0.02)	(0.00, 0.36)	(-0.00, 0.07)
4	1	(0.00, -0.08)	(0.00, -0.04)	(-0.00, 0.14)
4	2	(0.00, -0.32)	(0.00, -0.31)	(-0.00, -0.22)
5	0	(0.00, -0.08)	(0.00, 0.43)	(-0.00, -0.52)
5	1	(0.00, -0.32)	(0.00, -1.54)	(-0.00, -0.13)
5	2	(0.00, -1.01)	(0.00, -0.39)	(-0.00, -0.19)

Table S28. Spin-orbit coupling matrix elements for $(^{CF3}L2)_2$ Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in toluene at the optimized ground state geometry.

Table S29. Spin-orbit coupling matrix elements for (^{CF3}L2)₂Zn between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in n-hexane at the optimized ground state geometry.

Root			<t h<sub>SO S> (Re, Im) cm⁻¹</t h<sub>					
Т	S	Z	X	Y				
1	0	(0.00, -0.03)	(0.00, 0.51)	(-0.00, -1.54)				
1	1	(0.00, -0.05)	(0.00, 0.21)	(-0.00, -0.14)				
1	2	(0.00, -0.01)	(0.00, 0.12)	(-0.00, -0.27)				
2	0	(0.00, 0.23)	(0.00, 0.23)	(-0.00, -0.63)				
2	1	(0.00, -0.02)	(0.00, 0.03)	(-0.00, 0.26)				
2	2	(0.00, 0.05)	(0.00, -0.35)	(-0.00, -0.15)				
3	0	(0.00, -0.03)	(0.00, 0.42)	(-0.00, -0.06)				
3	1	(0.00, -0.02)	(0.00, -0.02)	(-0.00, 0.22)				
3	2	(0.00, -0.51)	(0.00, -0.42)	(-0.00, 0.14)				
4	0	(0.00, 0.03)	(0.00, -0.39)	(-0.00, -0.06)				
4	1	(0.00, 0.11)	(0.00, 0.11)	(-0.00, -0.11)				
4	2	(0.00, 0.42)	(0.00, 0.34)	(-0.00, 0.24)				
5	0	(0.00, 0.08)	(0.00, -0.41)	(-0.00, 0.55)				
5	1	(0.00, 0.32)	(0.00, 1.54)	(-0.00, 0.13)				
5	2	(0.00, 0.99)	(0.00, 0.34)	(-0.00, 0.18)				

Table S30. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in dichloromethane at the optimized ground state geometry.

Root			<t h<sub>SO S> (Re, Im)</t h<sub>	cm ⁻¹
Т	S	Z	X	Y
1	0	(0.00, -1.47)	(0.00, 0.91)	(-0.00, -0.23)
1	1	(0.00, -0.02)	(0.00, 0.09)	(-0.00, 0.03)
1	2	(0.00, -0.13)	(0.00, 0.27)	(-0.00, -0.24)
2	0	(0.00, 0.54)	(0.00, 2.48)	(-0.00, -0.65)
2	1	(0.00, -0.04)	(0.00, -0.01)	(-0.00, -0.03)
2	2	(0.00, 0.05)	(0.00, 0.77)	(-0.00, -0.67)
3	0	(0.00, 1.42)	(0.00, 0.16)	(-0.00, 0.03)
3	1	(0.00, 0.02)	(0.00, 3.24)	(-0.00, 0.05)
3	2	(0.00, -0.25)	(0.00, -0.17)	(-0.00, 0.24)
4	0	(0.00, 0.04)	(0.00, -3.53)	(-0.00, -0.61)
4	1	(0.00, 0.01)	(0.00, 0.20)	(-0.00, -0.13)
4	2	(0.00, -0.03)	(0.00, 1.51)	(-0.00, -4.75)
5	0	(0.00, -0.01)	(0.00, 0.56)	(-0.00, -0.55)
5	1	(0.00, -0.33)	(0.00, 0.20)	(-0.00, -0.10)
5	2	(0.00, 0.05)	(0.00, 0.45)	(-0.00, -1.15)

Table S31. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in diethyl ether at the optimized ground state geometry.

Root		<	<t h<sub>SO S> (Re, Im) cm⁻¹</t h<sub>					
Т	S	Z	X	Y				
1	0	(0.00, 1.56)	(0.00, 0.42)	(-0.00, -0.11)				
1	1	(0.00, 0.01)	(0.00, 0.07)	(-0.00, 0.08)				
1	2	(0.00, 0.13)	(0.00, 0.12)	(-0.00, -0.11)				
2	0	(0.00, 0.24)	(0.00, -2.67)	(-0.00, 0.71)				
2	1	(0.00, -0.04)	(0.00, 0.01)	(-0.00, 0.01)				
2	2	(0.00, 0.02)	(0.00, -0.80)	(-0.00, 0.71)				
3	0	(0.00, 1.37)	(0.00, 0.04)	(-0.00, 0.01)				
3	1	(0.00, -0.00)	(0.00, -3.40)	(-0.00, 0.08)				
3	2	(0.00, -0.20)	(0.00, -0.01)	(-0.00, 0.05)				
4	0	(0.00, -0.01)	(0.00, 3.49)	(-0.00, 0.70)				
4	1	(0.00, -0.04)	(0.00, 0.03)	(-0.00, 0.01)				
4	2	(0.00, 0.00)	(0.00, -1.50)	(-0.00, 4.87)				
5	0	(0.00, -0.02)	(0.00, -0.84)	(-0.00, 0.49)				
5	1	(0.00, -0.31)	(0.00, -0.05)	(-0.00, 0.03)				
5	2	(0.00, 0.02)	(0.00, -0.30)	(-0.00, 0.68)				

Table S	S32.	Spin-orbi	t coupling	g matrix	elements	for $(^{tB}$	$^{\mu}L3)_2Zn$	between	the fi	ive	lowest-ly	ying
excited	triple	et states w	ith the gro	ound stat	e and two	lowest-	lying ex	cited sing	let sta	ites (calculate	ed in
toluene	at th	e optimize	ed ground	state ge	ometry.							

Root		<t h<sub>S0 S> (Re, Im) cm⁻¹</t h<sub>		
Т	S	Z	X	Y
1	0	(0.00, 0.06)	(0.00, -2.78)	(-0.00, 0.72)
1	1	(0.00, -0.04)	(0.00, 0.00)	(-0.00, 0.01)
1	2	(0.00, -0.00)	(0.00, 0.78)	(-0.00, -0.70)
2	0	(0.00, 1.59)	(0.00, 0.10)	(-0.00, -0.03)
2	1	(0.00, 0.00)	(0.00, 0.04)	(-0.00, 0.16)
2	2	(0.00, -0.13)	(0.00, -0.03)	(-0.00, 0.03)
3	0	(0.00, 1.33)	(0.00, -0.01)	(-0.00, -0.00)
3	1	(0.00, 0.00)	(0.00, -3.52)	(-0.00, 0.17)
3	2	(0.00, 0.18)	(0.00, -0.00)	(-0.00, 0.02)
4	0	(0.00, 0.01)	(0.00, 3.45)	(-0.00, 0.83)
4	1	(0.00, -0.06)	(0.00, -0.01)	(-0.00, -0.00)
4	2	(0.00, 0.00)	(0.00, 1.51)	(-0.00, -4.91)
5	0	(0.00, -0.01)	(0.00, 0.96)	(-0.00, -0.44)
5	1	(0.00, 0.28)	(0.00, -0.02)	(-0.00, 0.01)
5	2	(0.00, -0.01)	(0.00, -0.22)	(-0.00, 0.40)

Table S33. Spin-orbit coupling matrix elements for $({}^{tBu}L3)_2Zn$ between the five lowest-lying excited triplet states with the ground state and two lowest-lying excited singlet states calculated in n-hexane at the optimized ground state geometry.

Root		<	<t h<sub>SO S> (Re, Im) cm</t h<sub>	-1
Т	S	Z	X	Y
1	0	(0.00, -0.08)	(0.00, 2.83)	(-0.00, -0.73)
1	1	(0.00, -0.04)	(0.00, 0.00)	(-0.00, 0.01)
1	2	(0.00, -0.01)	(0.00, 0.79)	(-0.00, -0.71)
2	0	(0.00, -1.59)	(0.00, -0.15)	(-0.00, 0.04)
2	1	(0.00, 0.00)	(0.00, 0.03)	(-0.00, 0.21)
2	2	(0.00, -0.13)	(0.00, -0.04)	(-0.00, 0.04)
3	0	(0.00, -1.31)	(0.00, 0.01)	(-0.00, 0.00)
3	1	(0.00, 0.00)	(0.00, -3.55)	(-0.00, 0.20)
3	2	(0.00, 0.16)	(0.00, 0.00)	(-0.00, 0.01)
4	0	(0.00, 0.00)	(0.00, 3.43)	(-0.00, 0.91)
4	1	(0.00, 0.07)	(0.00, 0.01)	(-0.00, 0.01)
4	2	(0.00, -0.00)	(0.00, -1.51)	(-0.00, 4.93)
5	0	(0.00, 0.00)	(0.00, -1.51)	(-0.00, 0.43)
5	1	(0.00, 0.27)	(0.00, -0.01)	(-0.00, 0.00)
5	2	(0.00, -0.00)	(0.00, -0.20)	(-0.00, 0.33)

Figure S25. NBO results for complexes of varying N_{amido} character.

^{*a*} For all functionals, gas phase/ def2-tzvpp def2/j

Figure S27. Atomic labels for NBO tables. Top, from left to right: $(^{CF3}L1)ZnCl_2$, $(^{fBu}L1)ZnCl_2$, $(^{CF3}L2)_2Zn$, $(^{rBu}L3)_2Zn$. Bottom, from left to right: $(^{Me^{Me}L3})_2Zn$, $(^{CF3}L4)_2Zn$, $(^{rBu}L4)_2Zn$, $(^{Me}L4)_2Zn$.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83456	$sp^{2.30}$	s(30.32%)p(69.60%)
σ(N1-C5)	1.98066	$sp^{1.84}$ at N1	N1 (59.03%): s(35.06%)p(64.62%)
		$sp^{1.85}$ at C5	C5 (40.97%): s(35.11%)p(64.80%)
π(N1-C5)	1.85196	n/a	N1 (74.22%): s(0.12%)p(99.74%)
			C5 (25.78%): <i>s</i> (0.29%) <i>p</i> (99.50%)
σ(N1-C11)	1.98049	<i>sp</i> ^{2.15} at N1	N1 (58.87%): <i>s</i> (34.38%) <i>p</i> (65.33%)
		<i>sp</i> ^{1.90} at C11	C11 (41.13%): s(31.69%)p(68.22%)
Lone pair 1 (N2)	1.68044	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98077	$sp^{2.08}$ at N2	N2 (61.40%): s(35.64%)p(64.20%)
		$sp^{1.80}$ at C5	C5 (38.60%): s(32.39%)p(67.51%)
σ(N2-C6a)	1.98313	$sp^{2.10}$ at N2	N2 (62.19%): s(32.22%)p(67.67%)
		$sp^{2.89}$ at C6a	C6a (37.81%): s(25.71%)p(74.22%)
σ(N2-C6b)	1.98404	<i>sp</i> ^{2.12} at N2	N2 (61.62%): s(32.01%)p(67.88%)
		$sp^{2.78}$ at C6b	C6b (38.38%): <i>s</i> (26.47%) <i>p</i> (73.46%)
Lone pair 1 (N3)	1.65321	n/a	s(2.78%)p(97.15%)
σ(N3-C5)	1.97954	$sp^{2.11}$ at N3	N3 (61.19%): s(35.49%)p(64.32%)
		$sp^{1.81}$ at C5	C5 (38.81%): s(32.13%)p(67.77%)
σ(N3-C7a)	1.97996	$sp^{2.28}$ at N3	N3 (61.98%): s(30.46%)p(69.42%)
		$sp^{2.87}$ at C7a	C7a (38.02%): s(25.80%)p(74.13%)
σ(N3-C7b)	1.98497	<i>sp</i> ^{2.21} at N3	N3 (62.23%): s(31.13%)p(68.75%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.77%): <i>s</i> (25.50%) <i>p</i> (74.43%)
σ(C11-C12)	1.97853	<i>sp</i> ^{1.76} at C11	C11 (50.60%): s(36.24%)p(63.64%)
		<i>sp</i> ^{1.77} at C12	C12 (49.40%): s(36.09%)p(63.74%)
π(C11-C12)	1.65401	n/a	C11 (46.89%): <i>s</i> (0.02%) <i>p</i> (99.88%)
			C12 (53.11%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97226	<i>sp</i> ^{1.94} at C10	C10 (50.67%): <i>s</i> (34.01%) <i>p</i> (65.86%)
		$sp^{2.12}$ at C11	C11 (49.33%): s(31.99%)p(67.88%)
Lone pair 1 (N4)	1.87149	$sp^{2.42}$	s(29.19%)p(70.78%)
σ(N4-C9)	1.98871	$sp^{1.65}$ at N4	N4 (59.91%): <i>s</i> (37.63%) <i>p</i> (62.03%)
		<i>sp</i> ^{1.91} at C9	C9 (40.09%): <i>s</i> (34.28%) <i>p</i> (65.62%)
π(N4-C9)	1.84705	n/a	N4 (63.43%): s(0.00%)p(99.82%)
			C9 (36.57%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98163	<i>sp</i> ^{2.02} at N4	N4 (58.91%): s(33.04%)p(66.65%)
		<i>sp</i> ^{2.29} at C10	C10 (41.09%): s(30.38%)p(69.54%)

Table S34. NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the M06-L functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83499	$sp^{2.50}$	s(28.58%)p(71.34%)
σ(N1-C5)	1.98116	$sp^{1.76}$ at N1	N1 (58.85%): s(36.05%)p(63.59%)
		$sp^{1.85}$ at C5	C5 (41.15%): s(35.05%)p(64.84%)
π(N1-C5)	1.85365	n/a	N1 (74.39%): s(0.11%)p(99.75%)
			C5 (25.61%): s(0.24%)p(99.56%)
σ(N1-C11)	1.98091	$sp^{2.14}$ at N1	N1 (58.59%): s(35.14%)p(64.55%)
		$sp^{1.84}$ at C11	C11 (41.41%): s(31.82%)p(68.08%)
Lone pair 1 (N2)	1.68049	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98089	<i>sp</i> ^{2.07} at N2	N2 (61.27%): s(35.65%)p(64.17%)
		$sp^{1.80}$ at C5	C5 (38.73%): s(32.50%)p(67.38%)
σ(N2-C6a)	1.98342	$sp^{2.10}$ at N2	N2 (62.44%): s(32.20%)p(67.68%)
		$sp^{2.91}$ at C6a	C6a (37.56%): s(25.58%)p(74.33%)
σ(N2-C6b)	1.98439	$sp^{2.12}$ at N2	N2 (61.83%): s(31.99%)p(67.88%)
		$sp^{2.79}$ at C6b	C6b (38.17%): s(26.37%)p(73.54%)
Lone pair 1 (N3)	1.65192	n/a	s(2.51%)p(97.43%)
σ(N3-C5)	1.97956	$sp^{2.11}$ at N3	N3 (61.06%): s(35.57%)p(64.22%)
		$sp^{1.81}$ at C5	C5 (38.94%): s(32.11%)p(67.77%)
σ(N3-C7a)	1.98064	<i>sp</i> ^{2.27} at N3	N3 (62.21%): s(30.54%)p(69.33%)
		$sp^{2.89}$ at C7a	C7a (37.79%): s(25.67%)p(74.24%)
σ(N3-C7b)	1.98547	<i>sp</i> ^{2.20} at N3	N3 (62.49%): s(31.22%)p(68.66%)
		$sp^{2.94}$ at C7b	C7b (37.51%): s(25.37%)p(74.54%)
σ(C11-C12)	1.97790	<i>sp</i> ^{1.76} at C11	C11 (50.75%): s(36.25%)p(63.64%)
		$sp^{1.78}$ at C12	C12 (49.25%): s(35.97%)p(63.86%)
π(C11-C12)	1.65477	n/a	C11 (47.41%): s(0.02%)p(99.90%)
			C12 (52.59%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97223	<i>sp</i> ^{1.94} at C10	C10 (50.71%): s(33.96%)p(65.93%)
		$sp^{2.14}$ at C11	C11 (49.29%): s(31.85%)p(68.02%)
Lone pair 1 (N4)	1.87196	$sp^{2.45}$	s(27.99%)p(71.99%)
σ(N4-C9)	1.98877	$sp^{1.61}$ at N4	N4 (59.84%): s(38.22%)p(61.41%)
		$sp^{1.92}$ at C9	C9 (40.16%): s(34.25%)p(65.63%)
π(N4-C9)	1.84686	n/a	N4 (63.55%): s(0.00%)p(99.82%)
			C9 (36.45%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98235	<i>sp</i> ^{1.96} at N4	N4 (58.67%): s(33.65%)p(66.03%)
		$sp^{2.28}$ at C10	C10 (41.33%): s(30.46%)p(69.44%)

Table S35. NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the TPSSh functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83262	$sp^{2.52}$	s(28.40%)p(71.51%)
σ(N1-C5)	1.98112	$sp^{1.76}$ at N1	N1 (58.69%): s(36.15%)p(63.50%)
		$sp^{1.85}$ at C5	C5 (41.31%): s(35.02%)p(64.87%)
π(N1-C5)	1.85224	n/a	N1 (74.20%): s(0.10%)p(99.77%)
			C5 (25.80%): <i>s</i> (0.23%) <i>p</i> (99.58%)
σ(N1-C11)	1.98082	<i>sp</i> ^{2.13} at N1	N1 (58.43%): s(35.23%)p(64.47%)
		<i>sp</i> ^{1.83} at C11	C11 (41.57%): s(31.87%)p(68.04%)
Lone pair 1 (N2)	1.67790	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98070	$sp^{2.07}$ at N2	N2 (61.12%): s(35.59%)p(64.24%)
		$sp^{1.81}$ at C5	C5 (38.88%): s(32.56%)p(67.33%)
σ(N2-C6a)	1.98358	$sp^{2.10}$ at N2	N2 (62.18%): s(32.22%)p(67.67%)
		$sp^{2.89}$ at C6a	C6a (37.82%): s(25.67%)p(74.24%)
σ(N2-C6b)	1.98457	$sp^{2.12}$ at N2	N2 (61.59%): s(32.04%)p(67.84%)
		$sp^{2.78}$ at C6b	C6b (38.41%): <i>s</i> (26.45%) <i>p</i> (73.47%)
Lone pair 1 (N3)	1.64944	n/a	s(2.42%)p(97.52%)
σ(N3-C5)	1.97947	$sp^{2.11}$ at N3	N3 (60.92%): s(35.53%)p(64.27%)
		$sp^{1.81}$ at C5	C5 (39.08%): s(32.10%)p(67.79%)
σ(N3-C7a)	1.98103	$sp^{2.26}$ at N3	N3 (61.95%): s(30.63%)p(69.25%)
, , ,		$sp^{2.88}$ at C7a	C7a (38.05%): s(25.75%)p(74.16%)
σ(N3-C7b)	1.98551	$sp^{2.20}$ at N3	N3 (62.23%): s(31.25%)p(68.62%)
		$sp^{2.92}$ at C7b	C7b (37.77%): s(25.46%)p(74.45%)
σ(C11-C12)	1.97748	<i>sp</i> ^{1.76} at C11	C11 (50.75%): s(36.24%)p(63.65%)
		$sp^{1.78}$ at C12	C12 (49.25%): s(35.92%)p(63.92%)
π(C11-C12)	1.65331	n/a	C11 (47.42%): s(0.01%)p(99.90%)
			C12 (52.58%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97177	<i>sp</i> ^{1.95} at C10	C10 (50.69%): s(33.91%)p(65.98%)
		$sp^{2.14}$ at C11	C11 (49.31%): s(31.81%)p(68.08%)
Lone pair 1 (N4)	1.86998	$sp^{2.45}$	s(27.87%)p(72.11%)
σ(N4-C9)	1.98860	$sp^{1.60}$ at N4	N4 (59.72%): s(38.32%)p(61.31%)
. ,		<i>sp</i> ^{1.92} at C9	C9 (40.28%): s(34.24%)p(65.63%)
π(N4-C9)	1.84779	n/a	N4 (63.49%): s(0.00%)p(99.82%)
			C9 (36.51%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98214	<i>sp</i> ^{1.96} at N4	N4 (58.51%): s(33.67%)p(66.01%)
		$sp^{2.27}$ at C10	C10 (41.49%): s(30.53%)p(69.38%)

Table S36. NBO analysis^a of (CF3L1)ZnCl₂ with the O3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83797	$sp^{2.56}$	s(28.05%)p(71.86%)
σ(N1-C5)	1.98138	$sp^{1.75}$ at N1	N1 (58.81%): s(36.29%)p(63.34%)
		<i>sp</i> ^{1.85} at C5	C5 (41.19%): s(35.00%)p(64.88%)
π(N1-C5)	1.85799	n/a	N1 (74.92%): s(0.10%)p(99.76%)
			C5 (25.08%): <i>s</i> (0.22%) <i>p</i> (99.59%)
σ(N1-C11)	1.98121	<i>sp</i> ^{2.14} at N1	N1 (58.56%): <i>s</i> (35.43%) <i>p</i> (64.25%)
		<i>sp</i> ^{1.81} at C11	C11 (41.44%): <i>s</i> (31.84%) <i>p</i> (68.05%)
Lone pair 1 (N2)	1.68743	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98103	$sp^{2.07}$ at N2	N2 (61.24%): s(35.55%)p(64.26%)
		$sp^{1.81}$ at C5	C5 (38.76%): s(32.57%)p(67.31%)
σ(N2-C6a)	1.98389	$sp^{2.10}$ at N2	N2 (62.32%): s(32.23%)p(67.65%)
, , ,		$sp^{2.88}$ at C6a	C6a (37.68%) : $s(25.73\%)p(74.17\%)$
σ(N2-C6b)	1.98482	$sp^{2.12}$ at N2	N2 (61.75%): s(32.06%)p(67.81%)
		$sp^{2.77}$ at C6b	C6b (38.25%): <i>s</i> (26.50%) <i>p</i> (73.41%)
Lone pair 1 (N3)	1.65887	n/a	s(2.34%)p(97.60%)
σ(N3-C5)	1.97978	$sp^{2.11}$ at N3	N3 (61.03%): s(35.51%)p(64.27%)
		$sp^{1.81}$ at C5	C5 (38.97%): s(32.12%)p(67.76%)
σ(N3-C7a)	1.98152	$sp^{2.26}$ at N3	N3 (62.11%): s(30.68%)p(69.19%)
		$sp^{2.87}$ at C7a	C7a (37.89%): s(25.81%)p(74.09%)
σ(N3-C7b)	1.98584	<i>sp</i> ^{2.19} at N3	N3 (62.40%): s(31.30%)p(68.57%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.60%): <i>s</i> (25.53%) <i>p</i> (74.37%)
σ(C11-C12)	1.97783	<i>sp</i> ^{1.76} at C11	C11 (50.73%): s(36.24%)p(63.64%)
		<i>sp</i> ^{1.77} at C12	C12 (49.27%): s(35.98%)p(63.84%)
π(C11-C12)	1.65602	n/a	C11 (47.08%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (52.92%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97229	<i>sp</i> ^{1.95} at C10	C10 (50.72%): <i>s</i> (33.91%) <i>p</i> (65.97%)
		$sp^{2.14}$ at C11	C11 (49.28%): s(31.82%)p(68.05%)
Lone pair 1 (N4)	1.87462	$sp^{2.45}$	s(27.39%)p(72.59%)
σ(N4-C9)	1.98855	$sp^{1.58}$ at N4	N4 (59.81%): s(38.54%)p(61.07%)
		<i>sp</i> ^{1.91} at C9	C9 (40.19%): <i>s</i> (34.29%) <i>p</i> (65.58%)
π(N4-C9)	1.85028	n/a	N4 (63.66%): s(0.00%)p(99.82%)
			C9 (36.34%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98237	<i>sp</i> ^{1.94} at N4	N4 (58.68%): s(33.93%)p(65.73%)
		$sp^{2.27}$ at C10	C10 (41.32%): s(30.52%)p(69.38%)

Table S37. NBO analysis^{*a*} of (CF3L1)ZnCl₂ with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83982	$sp^{2.57}$	s(27.99%)p(71.92%)
σ(N1-C5)	1.98150	$sp^{1.74}$ at N1	N1 (58.83%): s(36.35%)p(63.27%)
		$sp^{1.85}$ at C5	C5 (41.17%): s(34.99%)p(64.89%)
π(N1-C5)	1.85878	n/a	N1 (75.22%): s(0.11%)p(99.75%)
			C5 (24.78%): s(0.23%)p(99.56%)
σ(N1-C11)	1.98127	$sp^{2.13}$ at N1	N1 (58.49%): s(35.42%)p(64.25%)
		$sp^{1.81}$ at C11	C11 (41.51%): s(31.87%)p(68.03%)
Lone pair 1 (N2)	1.68825	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98111	<i>sp</i> ^{2.07} at N2	N2 (61.25%): s(35.59%)p(64.22%)
		$sp^{1.80}$ at C5	C5 (38.75%): s(32.56%)p(67.32%)
σ(N2-C6a)	1.98393	$sp^{2.10}$ at N2	N2 (62.30%): s(32.22%)p(67.65%)
, , ,		$sp^{2.89}$ at C6a	C6a (37.70%): s(25.68%)p(74.23%)
σ(N2-C6b)	1.98488	$sp^{2.12}$ at N2	N2 (61.70%): s(32.02%)p(67.85%)
		$sp^{2.78}$ at C6b	C6b (38.30%): s(26.46%)p(73.45%)
Lone pair 1 (N3)	1.66022	n/a	s(2.38%)p(97.56%)
σ(N3-C5)	1.97984	$sp^{2.11}$ at N3	N3 (61.04%): s(35.54%)p(64.24%)
		$sp^{1.81}$ at C5	C5 (38.96%): s(32.12%)p(67.76%)
σ(N3-C7a)	1.98150	$sp^{2.26}$ at N3	N3 (62.07%): s(30.66%)p(69.21%)
, , ,		$sp^{2.88}$ at C7a	C7a (37.93%): s(25.76%)p(74.15%)
σ(N3-C7b)	1.98589	<i>sp</i> ^{2.20} at N3	N3 (62.34%): s(31.25%)p(68.61%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.66%): <i>s</i> (25.48%) <i>p</i> (74.42%)
σ(C11-C12)	1.97794	<i>sp</i> ^{1.76} at C11	C11 (50.71%): s(36.24%)p(63.64%)
		$sp^{1.78}$ at C12	C12 (49.29%): s(35.96%)p(63.86%)
π(C11-C12)	1.65719	n/a	C11 (47.10%): s(0.01%)p(99.90%)
			C12 (52.90%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97250	<i>sp</i> ^{1.94} at C10	C10 (50.74%): s(33.94%)p(65.94%)
		$sp^{2.14}$ at C11	C11 (49.26%): s(31.80%)p(68.07%)
Lone pair 1 (N4)	1.87641	$sp^{2.63}$	s(27.52%)p(72.46%)
σ(N4-C9)	1.98876	<i>sp</i> ^{1.59} at N4	N4 (59.76%): s(38.45%)p(61.16%)
		<i>sp</i> ^{1.91} at C9	C9 (40.24%): s(34.28%)p(65.59%)
π(N4-C9)	1.85124	n/a	N4 (63.77%): s(0.00%)p(99.81%)
			C9 (36.23%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98253	<i>sp</i> ^{1.94} at N4	N4 (58.58%): s(33.89%)p(65.77%)
		<i>sp</i> ^{2.27} at C10	C10 (41.42%): s(30.51%)p(69.40%)

Table S38. NBO analysis^{*a*} of (CF3L1)ZnCl₂ with the PBE0 functional.

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

 c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83617	$sp^{2.54}$	s(28.23%)p(71.66%)
σ(N1-C5)	1.98120	$sp^{1.76}$ at N1	N1 (59.04%): s(36.13%)p(63.56%)
		$sp^{1.85}$ at C5	C5 (40.96%): s(35.01%)p(64.90%)
π(N1-C5)	1.86288	n/a	N1 (75.62%): s(0.14%)p(99.70%)
			C5 (24.38%): <i>s</i> (0.24%) <i>p</i> (99.53%)
σ(N1-C11)	1.98091	<i>sp</i> ^{2.14} at N1	N1 (58.82%): <i>s</i> (35.39%) <i>p</i> (64.34%)
		$sp^{1.82}$ at C11	C11 (41.18%): s(31.78%)p(68.14%)
Lone pair 1 (N2)	1.69707	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98082	$sp^{2.07}$ at N2	N2 (61.42%): s(35.58%)p(64.28%)
		$sp^{1.81}$ at C5	C5 (38.58%): s(32.55%)p(67.36%)
σ(N2-C6a)	1.98350	$sp^{2.10}$ at N2	N2 (62.46%): s(32.24%)p(67.66%)
		$sp^{2.89}$ at C6a	C6a (37.54%): s(25.70%)p(74.23%)
σ(N2-C6b)	1.98439	$sp^{2.12}$ at N2	N2 (61.88%): s(32.04%)p(67.86%)
		$sp^{2.78}$ at C6b	C6b (38.12%): <i>s</i> (26.46%) <i>p</i> (73.47%)
Lone pair 1 (N3)	1.66908	n/a	s(2.32%)p(97.60%)
σ(N3-C5)	1.97943	$sp^{2.11}$ at N3	N3 (61.21%): s(35.54%)p(64.29%)
		$sp^{1.81}$ at C5	C5 (38.79%): s(32.12%)p(67.79%)
σ(N3-C7a)	1.98112	$sp^{2.26}$ at N3	N3 (62.26%): s(30.69%)p(69.21%)
		$sp^{2.88}$ at C7a	C7a (37.74%): s(25.78%)p(74.15%)
σ(N3-C7b)	1.98550	<i>sp</i> ^{2.19} at N3	N3 (62.53%): s(31.30%)p(68.60%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.47%): <i>s</i> (25.51%) <i>p</i> (74.42%)
σ(C11-C12)	1.97768	<i>sp</i> ^{1.76} at C11	C11 (50.63%): s(36.26%)p(63.64%)
		<i>sp</i> ^{1.77} at C12	C12 (49.37%): s(36.03%)p(63.76%)
π(C11-C12)	1.65789	n/a	C11 (46.62%): <i>s</i> (0.02%) <i>p</i> (99.89%)
			C12 (53.38%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97190	<i>sp</i> ^{1.94} at C10	C10 (50.71%): <i>s</i> (33.96%) <i>p</i> (65.93%)
		$sp^{2.13}$ at C11	C11 (49.29%): s(31.88%)p(68.00%)
Lone pair 1 (N4)	1.87264	$sp^{2.63}$	s(27.53%)p(72.43%)
σ(N4-C9)	1.98857	$sp^{1.60}$ at N4	N4 (59.87%): s(38.38%)p(61.29%)
		<i>sp</i> ^{1.91} at C9	C9 (40.13%): s(34.38%)p(65.52%)
π(N4-C9)	1.85486	n/a	N4 (64.35%): s(0.00%)p(99.79%)
			C9 (35.65%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(N4-C10)	1.98198	<i>sp</i> ^{1.94} at N4	N4 (58.90%): s(33.96%)p(65.75%)
		$sp^{2.28}$ at C10	C10 (41.10%): s(30.45%)p(69.47%)

Table S39. NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the M06 functional.

^a Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

 c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85336	$sp^{2.65}$	s(27.36%)p(72.54%)
σ(N1-C5)	1.98161	$sp^{1.72}$ at N1	N1 (58.94%): s(36.67%)p(62.97%)
		$sp^{1.86}$ at C5	C5 (41.06%): s(34.96%)p(64.95%)
π(N1-C5)	1.86651	n/a	N1 (76.02%): s(0.11%)p(99.73%)
			C5 (23.98%): <i>s</i> (0.24%) <i>p</i> (99.54%)
σ(N1-C11)	1.98125	<i>sp</i> ^{2.14} at N1	N1 (58.59%): <i>s</i> (35.72%) <i>p</i> (63.96%)
		<i>sp</i> ^{1.79} at C11	C11 (41.41%): s(31.84%)p(68.08%)
Lone pair 1 (N2)	1.69821	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98108	$sp^{2.06}$ at N2	N2 (61.44%): s(35.51%)p(64.31%)
		$sp^{1.81}$ at C5	C5 (38.56%): s(32.61%)p(67.29%)
σ(N2-C6a)	1.98373	$sp^{2.10}$ at N2	N2 (62.64%): s(32.26%)p(67.62%)
, , ,		$sp^{2.90}$ at C6a	C6a (37.36%) : $s(25.65\%)p(74.27\%)$
σ(N2-C6b)	1.98461	$sp^{2.12}$ at N2	N2 (62.02%): s(32.06%)p(67.82%)
		$sp^{2.78}$ at C6b	C6b (37.98%): s(26.42%)p(73.51%)
Lone pair 1 (N3)	1.67034	n/a	s(2.27%)p(97.65%)
σ(N3-C5)	1.97986	$sp^{2.11}$ at N3	N3 (61.23%): s(35.50%)p(64.30%)
		$sp^{1.81}$ at C5	C5 (38.77%): s(32.12%)p(67.78%)
σ(N3-C7a)	1.98146	$sp^{2.25}$ at N3	N3 (62.42%): s(30.75%)p(69.12%)
		$sp^{2.89}$ at C7a	C7a (37.58%): s(25.71%)p(74.21%)
σ(N3-C7b)	1.98583	<i>sp</i> ^{2.19} at N3	N3 (62.66%): s(31.30%)p(68.57%)
		<i>sp</i> ^{2.93} at C7b	C7b (37.34%): <i>s</i> (25.45%) <i>p</i> (74.47%)
σ(C11-C12)	1.97829	<i>sp</i> ^{1.75} at C11	C11 (50.72%): s(36.30%)p(63.59%)
		$sp^{1.77}$ at C12	C12 (49.28%): s(36.00%)p(63.82%)
π(C11-C12)	1.66363	n/a	C11 (46.88%): s(0.02%)p(99.90%)
			C12 (53.12%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97303	<i>sp</i> ^{1.94} at C10	C10 (50.78%): <i>s</i> (33.94%) <i>p</i> (65.95%)
		$sp^{2.14}$ at C11	C11 (49.22%): s(31.78%)p(68.10%)
Lone pair 1 (N4)	1.88916	$sp^{2.71}$	s(26.95%)p(73.02%)
σ(N4-C9)	1.98869	<i>sp</i> ^{1.57} at N4	N4 (59.92%): s(38.71%)p(60.91%)
		<i>sp</i> ^{1.92} at C9	C9 (40.08%): s(34.23%)p(65.65%)
π(N4-C9)	1.85752	n/a	N4 (63.69%): s(0.00%)p(99.79%)
			C9 (36.31%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98248	<i>sp</i> ^{1.91} at N4	N4 (58.78%): s(34.20%)p(65.47%)
. ,		$sp^{2.28}$ at C10	C10 (41.22%): s(30.47%)p(69.44%)

Table S40. NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the M06-2X functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84523	$sp^{2.68}$	s(27.16%)p(72.75%)
σ(N1-C5)	1.98181	$sp^{1.71}$ at N1	N1 (58.87%): s(36.73%)p(62.89%)
		$sp^{1.86}$ at C5	C5 (41.13%): s(34.94%)p(64.94%)
π(N1-C5)	1.86885	n/a	N1 (76.13%): s(0.13%)p(99.73%)
			C5 (23.87%): s(0.21%)p(99.57%)
σ(N1-C11)	1.98156	<i>sp</i> ^{2.14} at N1	N1 (58.54%): <i>s</i> (35.85%) <i>p</i> (63.81%)
		$sp^{1.78}$ at C11	C11 (41.46%): s(31.82%)p(68.07%)
Lone pair 1 (N2)	1.69995	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98149	$sp^{2.06}$ at N2	N2 (61.30%): s(35.52%)p(64.28%)
		$sp^{1.81}$ at C5	C5 (38.70%): s(32.61%)p(67.27%)
σ(N2-C6a)	1.98436	$sp^{2.10}$ at N2	N2 (62.38%): s(32.24%)p(67.63%)
		$sp^{2.89}$ at C6a	C6a (37.62%): <i>s</i> (25.71%) <i>p</i> (74.19%)
σ(N2-C6b)	1.98526	<i>sp</i> ^{2.11} at N2	N2 (61.80%): s(32.07%)p(67.79%)
		$sp^{2.78}$ at C6b	C6b (38.20%): <i>s</i> (26.46%) <i>p</i> (73.44%)
Lone pair 1 (N3)	1.67140	n/a	s(2.18%)p(97.75%)
σ(N3-C5)	1.98015	$sp^{2.11}$ at N3	N3 (61.08%): s(35.51%)p(64.27%)
		$sp^{1.81}$ at C5	C5 (38.92%): s(32.13%)p(67.74%)
σ(N3-C7a)	1.98233	<i>sp</i> ^{2.24} at N3	N3 (62.18%): s(30.79%)p(69.07%)
		$sp^{2.88}$ at C7a	C7a (37.82%): s(25.78%)p(74.12%)
σ(N3-C7b)	1.98632	<i>sp</i> ^{2.19} at N3	N3 (62.45%): s(31.35%)p(68.51%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.55%): <i>s</i> (25.51%) <i>p</i> (74.39%)
σ(C11-C12)	1.97797	<i>sp</i> ^{1.75} at C11	C11 (50.69%): s(36.28%)p(63.60%)
		$sp^{1.77}$ at C12	C12 (49.31%): s(36.01%)p(63.80%)
π(C11-C12)	1.66410	n/a	C11 (46.69%): <i>s</i> (0.01%) <i>p</i> (99.89%)
			C12 (53.31%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97308	<i>sp</i> ^{1.94} at C10	C10 (50.78%): <i>s</i> (33.95%) <i>p</i> (65.92%)
		$sp^{2.14}$ at C11	C11 (49.22%): s(31.80%)p(68.06%)
Lone pair 1 (N4)	1.88134	$sp^{2.45}$	s(26.72%)p(73.26%)
σ(N4-C9)	1.98852	$sp^{1.57}$ at N4	N4 (59.79%): <i>s</i> (38.81%) <i>p</i> (60.79%)
		<i>sp</i> ^{1.91} at C9	C9 (40.21%): <i>s</i> (34.28%) <i>p</i> (65.59%)
π(N4-C9)	1.85902	n/a	N4 (63.96%): <i>s</i> (0.00%) <i>p</i> (99.81%)
			C9 (36.04%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98272	<i>sp</i> ^{1.90} at N4	N4 (58.71%): <i>s</i> (34.33%) <i>p</i> (65.32%)
		$sp^{2.28}$ at C10	C10 (41.29%): s(30.45%)p(69.45%)

Table S41. NBO analysis^{*a*} of (CF3L1)ZnCl₂ with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83271	$sp^{2.34}$	s(29.95%)p(69.97%)
σ(N1-C5)	1.98087	$sp^{1.83}$ at N1	N1 (59.17%): s(35.22%)p(64.47%)
		$sp^{1.85}$ at C5	C5 (40.83%): s(35.04%)p(64.87%)
π(N1-C5)	1.85422	n/a	N1 (74.96%): s(0.11%)p(99.75%)
			C5 (25.04%): <i>s</i> (0.26%) <i>p</i> (99.53%)
σ(N1-C11)	1.98075	$sp^{1.88}$ at N1	N1 (58.98%): s(34.60%)p(65.12%)
		$sp^{2.15}$ at C11	C11 (41.02%): <i>s</i> (31.69%) <i>p</i> (68.23%)
Lone pair 1 (N2)	1.67085	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98059	$sp^{1.82}$ at N2	N2 (61.20%): s(35.41%)p(64.42%)
		$sp^{2.07}$ at C5	C5 (38.80%): <i>s</i> (32.55%) <i>p</i> (67.35%)
σ(N2-C6a)	1.98313	$sp^{2.11}$ at N2	N2 (62.14%): s(32.16%)p(67.73%)
		$sp^{2.88}$ at C6a	C6a (37.86%): <i>s</i> (25.75%) <i>p</i> (74.18%)
σ(N2-C6b)	1.98339	<i>sp</i> ^{2.09} at N2	N2 (62.03%): s(32.30%)p(67.58%)
		$sp^{2.81}$ at C6b	C6b (37.97%): <i>s</i> (26.26%) <i>p</i> (73.67%)
Lone pair 1 (N3)	1.65168	n/a	s(2.84%)p(97.09%)
σ(N3-C5)	1.97970	$sp^{1.82}$ at N3	N3 (61.13%): s(35.41%)p(64.40%)
		$sp^{2.11}$ at C5	C5 (38.87%): s(32.08%)p(67.82%)
σ(N3-C7a)	1.97984	<i>sp</i> ^{2.27} at N3	N3 (62.13%): s(30.58%)p(69.30%)
		$sp^{2.89}$ at C7a	C7a (37.87%): s(25.70%)p(74.23%)
σ(N3-C7b)	1.98520	<i>sp</i> ^{2.22} at N3	N3 (62.05%): s(31.03%)p(68.86%)
		<i>sp</i> ^{2.90} at C7b	C7b (37.95%): <i>s</i> (25.64%) <i>p</i> (74.30%)
σ(C11-C12)	1.97814	<i>sp</i> ^{1.75} at C11	C11 (50.66%): <i>s</i> (36.29%) <i>p</i> (63.59%)
		$sp^{1.77}$ at C12	C12 (49.34%): s(36.02%)p(63.81%)
π(C11-C12)	1.65328	n/a	C11 (47.32%): <i>s</i> (0.01%) <i>p</i> (99.89%)
			C12 (52.68%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97254	<i>sp</i> ^{1.94} at C10	C10 (50.69%): <i>s</i> (33.98%) <i>p</i> (65.90%)
		$sp^{2.13}$ at C11	C11 (49.31%): s(31.94%)p(67.92%)
Lone pair 1 (N4)	1.86794	$sp^{2.46}$	s(28.93%)p(71.05%)
σ(N4-C9)	1.98873	$sp^{1.64}$ at N4	N4 (60.07%): <i>s</i> (37.71%) <i>p</i> (61.96%)
		<i>sp</i> ^{1.93} at C9	C9 (39.93%): <i>s</i> (34.12%) <i>p</i> (65.78%)
π(N4-C9)	1.85210	n/a	N4 (64.33%): s(0.00%)p(99.83%)
			C9 (35.67%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98192	<i>sp</i> ^{2.00} at N4	N4 (59.05%): s(33.23%)p(66.47%)
		$sp^{2.29}$ at C10	C10 (40.95%): s(30.34%)p(69.58%)

Table S42. Solvated NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the M06-L functional.

^a Calculated in solution at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

 c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83294	$sp^{2.54}$	s(28.21%)p(71.72%)
σ(N1-C5)	1.98135	$sp^{1.75}$ at N1	N1 (59.00%): s(36.21%)p(63.44%)
		$sp^{1.86}$ at C5	C5 (41.00%): s(34.96%)p(64.93%)
π(N1-C5)	1.85585	n/a	N1 (75.18%): s(0.12%)p(99.76%)
			C5 (24.82%): <i>s</i> (0.21%) <i>p</i> (99.59%)
σ(N1-C11)	1.98113	$sp^{1.82}$ at N1	N1 (58.69%): <i>s</i> (35.36%) <i>p</i> (64.34%)
		$sp^{2.14}$ at C11	C11 (41.31%): s(31.82%)p(68.08%)
Lone pair 1 (N2)	1.67009	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98071	$sp^{1.82}$ at N2	N2 (61.06%): s(35.42%)p(64.40%)
		$sp^{2.06}$ at C5	C5 (38.94%): s(32.67%)p(67.22%)
σ(N2-C6a)	1.98339	$sp^{2.11}$ at N2	N2 (62.39%): s(32.14%)p(67.74%)
		$sp^{2.90}$ at C6a	C6a (37.61%): <i>s</i> (25.61%) <i>p</i> (74.30%)
σ(N2-C6b)	1.98373	<i>sp</i> ^{2.09} at N2	N2 (62.26%): s(32.29%)p(67.59%)
		$sp^{2.82}$ at C6b	C6b (37.74%): <i>s</i> (26.14%) <i>p</i> (73.77%)
Lone pair 1 (N3)	1.65034	n/a	s(2.57%)p(97.37%)
σ(N3-C5)	1.97970	$sp^{1.81}$ at N3	N3 (60.99%): s(35.50%)p(64.30%)
		$sp^{2.11}$ at C5	C5 (39.01%): s(32.07%)p(67.82%)
σ(N3-C7a)	1.98047	$sp^{2.26}$ at N3	N3 (62.38%): s(30.67%)p(69.20%)
		$sp^{2.91}$ at C7a	C7a (37.62%): s(25.55%)p(74.35%)
σ(N3-C7b)	1.98569	<i>sp</i> ^{2.21} at N3	N3 (62.32%): s(31.10%)p(68.77%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.68%): <i>s</i> (25.50%) <i>p</i> (74.40%)
σ(C11-C12)	1.97750	<i>sp</i> ^{1.75} at C11	C11 (50.83%): <i>s</i> (36.31%) <i>p</i> (63.58%)
		$sp^{1.78}$ at C12	C12 (49.17%): s(35.89%)p(63.94%)
π(C11-C12)	1.65385	n/a	C11 (47.91%): s(0.01%)p(99.91%)
			C12 (52.09%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97251	<i>sp</i> ^{1.94} at C10	C10 (50.74%): <i>s</i> (33.92%) <i>p</i> (65.96%)
		$sp^{2.14}$ at C11	C11 (49.26%): s(31.80%)p(68.07%)
Lone pair 1 (N4)	1.86842	$sp^{2.61}$	s(27.72%)p(72.26%)
σ(N4-C9)	1.98880	$sp^{1.60}$ at N4	N4 (60.01%): <i>s</i> (38.30%) <i>p</i> (61.33%)
		<i>sp</i> ^{1.93} at C9	C9 (39.99%): <i>s</i> (34.07%) <i>p</i> (65.81%)
π(N4-C9)	1.85179	n/a	N4 (64.52%): s(0.00%)p(99.83%)
			C9 (35.48%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98264	<i>sp</i> ^{1.95} at N4	N4 (58.81%): s(33.84%)p(65.84%)
		$sp^{2.29}$ at C10	C10 (41.19%): s(30.41%)p(69.49%)

Table S43. Solvated NBO analysis^a of (CF3L1)ZnCl₂ with the TPSSh functional.

^{*a*} Calculated in solution at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83061	$sp^{2.56}$	s(28.03%)p(71.88%)
σ(N1-C5)	1.98131	$sp^{1.74}$ at N1	N1 (58.84%): s(36.32%)p(63.34%)
		$sp^{1.86}$ at C5	C5 (41.16%): s(34.94%)p(64.95%)
π(N1-C5)	1.85393	n/a	N1 (75.00%): s(0.10%)p(99.78%)
			C5 (25.00%): <i>s</i> (0.20%) <i>p</i> (99.60%)
σ(N1-C11)	1.98103	<i>sp</i> ^{1.81} at N1	N1 (58.52%): <i>s</i> (35.43%) <i>p</i> (64.27%)
		<i>sp</i> ^{2.13} at C11	C11 (41.48%): <i>s</i> (31.87%) <i>p</i> (68.03%)
Lone pair 1 (N2)	1.67734	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98051	$sp^{1.82}$ at N2	N2 (60.91%): <i>s</i> (35.36%) <i>p</i> (64.46%)
		$sp^{2.05}$ at C5	C5 (39.09%): <i>s</i> (32.72%) <i>p</i> (67.17%)
σ(N2-C6a)	1.98357	$sp^{2.11}$ at N2	N2 (62.13%): s(32.15%)p(67.74%)
		<i>sp</i> ^{2.89} at C6a	C6a (37.87%): <i>s</i> (25.70%) <i>p</i> (74.21%)
σ(N2-C6b)	1.98393	<i>sp</i> ^{2.09} at N2	N2 (62.01%): <i>s</i> (32.33%) <i>p</i> (67.55%)
		<i>sp</i> ^{2.81} at C6b	C6b (37.99%): <i>s</i> (26.23%) <i>p</i> (73.68%)
Lone pair 1 (N3)	1.64766	n/a	s(2.47%)p(97.47%)
σ(N3-C5)	1.97959	$sp^{1.81}$ at N3	N3 (60.85%): <i>s</i> (35.46%) <i>p</i> (64.34%)
		<i>sp</i> ^{2.12} at C5	C5 (39.15%): <i>s</i> (32.05%) <i>p</i> (67.84%)
σ(N3-C7a)	1.98086	$sp^{2.25}$ at N3	N3 (62.12%): <i>s</i> (30.76%) <i>p</i> (69.12%)
		<i>sp</i> ^{2.90} at C7a	C7a (37.88%): <i>s</i> (25.65%) <i>p</i> (74.27%)
σ(N3-C7b)	1.98573	$sp^{2.21}$ at N3	N3 (62.06%): s(31.14%)p(68.73%)
		<i>sp</i> ^{2.90} at C7b	C7b (37.94%): <i>s</i> (25.60%) <i>p</i> (74.31%)
σ(C11-C12)	1.97708	<i>sp</i> ^{1.75} at C11	C11 (50.83%): <i>s</i> (36.30%) <i>p</i> (63.60%)
		<i>sp</i> ^{1.79} at C12	C12 (49.17%): <i>s</i> (35.84%) <i>p</i> (64.00%)
π(C11-C12)	1.65192	n/a	C11 (47.90%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (52.10%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97206	<i>sp</i> ^{1.95} at C10	C10 (50.73%): <i>s</i> (33.88%) <i>p</i> (66.02%)
		<i>sp</i> ^{2.15} at C11	C11 (49.27%): s(31.76%)p(68.13%)
Lone pair 1 (N4)	1.86661	$sp^{2.62}$	s(27.60%)p(72.38%)
σ(N4-C9)	1.98863	<i>sp</i> ^{1.59} at N4	N4 (59.88%): <i>s</i> (38.40%) <i>p</i> (61.24%)
		<i>sp</i> ^{1.93} at C9	C9 (40.12%): s(34.07%)p(65.81%)
π(N4-C9)	1.85261	n/a	N4 (64.41%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (35.59%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98242	<i>sp</i> ^{1.94} at N4	N4 (58.64%): <i>s</i> (33.86%) <i>p</i> (65.83%)
		$sp^{2.28}$ at C10	C10 (41.36%): s(30.48%)p(69.43%)

Table S44. Solvated NBO analysis^a of (CF3L1)ZnCl₂ with the O3LYP functional.

^a Calculated in solution at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83578	$sp^{2.61}$	s(27.69%)p(72.22%)
σ(N1-C5)	1.98155	$sp^{1.73}$ at N1	N1 (58.95%): s(36.43%)p(63.20%)
		<i>sp</i> ^{1.86} at C5	C5 (41.05%): s(34.92%)p(64.96%)
π(N1-C5)	1.86028	n/a	N1 (75.69%): s(0.11%)p(99.77%)
			C5 (24.31%): <i>s</i> (0.19%) <i>p</i> (99.62%)
σ(N1-C11)	1.98140	$sp^{1.80}$ at N1	N1 (58.67%): <i>s</i> (35.65%) <i>p</i> (64.04%)
		$sp^{2.14}$ at C11	C11 (41.33%): s(31.84%)p(68.05%)
Lone pair 1 (N2)	1.67725	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98085	$sp^{1.83}$ at N2	N2 (61.03%): s(35.33%)p(64.48%)
		$sp^{2.05}$ at C5	C5 (38.97%): s(32.73%)p(67.15%)
σ(N2-C6a)	1.98387	$sp^{2.11}$ at N2	N2 (62.28%): s(32.16%)p(67.71%)
		$sp^{2.88}$ at C6a	C6a (37.72%): s(25.77%)p(74.13%)
σ(N2-C6b)	1.98422	<i>sp</i> ^{2.09} at N2	N2 (62.16%): s(32.34%)p(67.53%)
		<i>sp</i> ^{2.80} at C6b	C6b (37.84%): <i>s</i> (26.29%) <i>p</i> (73.61%)
Lone pair 1 (N3)	1.65761	n/a	s(2.39%)p(97.55%)
σ(N3-C5)	1.97992	$sp^{1.81}$ at N3	N3 (60.97%): s(35.45%)p(64.34%)
		$sp^{2.11}$ at C5	C5 (39.03%): s(32.07%)p(67.81%)
σ(N3-C7a)	1.98139	<i>sp</i> ^{2.24} at N3	N3 (62.28%): s(30.81%)p(69.06%)
		$sp^{2.89}$ at C7a	C7a (37.72%): s(25.71%)p(74.19%)
σ(N3-C7b)	1.98605	<i>sp</i> ^{2.20} at N3	N3 (62.21%): s(31.19%)p(68.68%)
		<i>sp</i> ^{2.89} at C7b	C7b (37.79%): <i>s</i> (25.68%) <i>p</i> (74.23%)
σ(C11-C12)	1.97744	<i>sp</i> ^{1.75} at C11	C11 (50.80%): s(36.29%)p(63.59%)
		$sp^{1.78}$ at C12	C12 (49.20%): s(35.91%)p(63.91%)
π(C11-C12)	1.65505	n/a	C11 (47.59%): s(0.01%)p(99.91%)
			C12 (52.41%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97255	<i>sp</i> ^{1.95} at C10	C10 (50.74%): <i>s</i> (33.87%) <i>p</i> (66.00%)
		$sp^{2.14}$ at C11	C11 (49.26%): s(31.78%)p(68.09%)
Lone pair 1 (N4)	1.87092	$sp^{2.69}$	s(27.13%)p(72.85%)
σ(N4-C9)	1.98857	$sp^{1.58}$ at N4	N4 (59.98%): s(38.62%)p(61.00%)
		<i>sp</i> ^{1.93} at C9	C9 (40.02%): <i>s</i> (34.12%) <i>p</i> (65.75%)
π(N4-C9)	1.85506	n/a	N4 (64.65%): s(0.00%)p(99.83%)
			C9 (35.35%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98262	<i>sp</i> ^{1.92} at N4	N4 (58.81%): s(34.11%)p(65.55%)
		$sp^{2.28}$ at C10	C10 (41.19%): s(30.47%)p(69.42%)

Table S45. Solvated NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the B3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83794	$sp^{2.61}$	s(27.62%)p(72.29%)
σ(N1-C5)	1.98168	$sp^{1.73}$ at N1	N1 (58.98%): s(36.51%)p(63.12%)
		$sp^{1.86}$ at C5	C5 (41.02%): s(34.91%)p(64.98%)
π(N1-C5)	1.86079	n/a	N1 (76.00%): s(0.12%)p(99.75%)
			C5 (24.00%): <i>s</i> (0.20%) <i>p</i> (99.59%)
σ(N1-C11)	1.98147	$sp^{1.80}$ at N1	N1 (58.59%): <i>s</i> (35.63%) <i>p</i> (64.04%)
		$sp^{2.13}$ at C11	C11 (41.41%): <i>s</i> (31.87%) <i>p</i> (68.03%)
Lone pair 1 (N2)	1.67812	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98093	$sp^{1.82}$ at N2	N2 (61.04%): s(35.36%)p(64.44%)
		$sp^{2.05}$ at C5	C5 (38.96%): <i>s</i> (32.73%) <i>p</i> (67.16%)
σ(N2-C6a)	1.98392	$sp^{2.11}$ at N2	N2 (62.24%): s(32.15%)p(67.72%)
		$sp^{2.89}$ at C6a	C6a (37.76%): <i>s</i> (25.71%) <i>p</i> (74.19%)
σ(N2-C6b)	1.98425	<i>sp</i> ^{2.09} at N2	N2 (62.12%): s(32.31%)p(67.56%)
		$sp^{2.81}$ at C6b	C6b (37.88%): <i>s</i> (26.24%) <i>p</i> (73.67%)
Lone pair 1 (N3)	1.65870	n/a	s(2.43%)p(97.50%)
σ(N3-C5)	1.97997	$sp^{1.81}$ at N3	N3 (60.97%): s(35.47%)p(64.31%)
		$sp^{2.11}$ at C5	C5 (39.03%): s(32.07%)p(67.81%)
σ(N3-C7a)	1.98135	$sp^{2.24}$ at N3	N3 (62.24%): s(30.79%)p(69.08%)
		$sp^{2.89}$ at C7a	C7a (37.76%): s(25.65%)p(74.25%)
σ(N3-C7b)	1.98610	<i>sp</i> ^{2.21} at N3	N3 (62.16%): s(31.14%)p(68.73%)
		<i>sp</i> ^{2.90} at C7b	C7b (37.84%): <i>s</i> (25.62%) <i>p</i> (74.29%)
σ(C11-C12)	1.97757	<i>sp</i> ^{1.75} at C11	C11 (50.79%): <i>s</i> (36.29%) <i>p</i> (63.59%)
		$sp^{1.78}$ at C12	C12 (49.21%): s(35.88%)p(63.93%)
π(C11-C12)	1.65628	n/a	C11 (47.62%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (52.38%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97277	<i>sp</i> ^{1.95} at C10	C10 (50.76%): <i>s</i> (33.90%) <i>p</i> (65.98%)
		$sp^{2.14}$ at C11	C11 (49.24%): <i>s</i> (31.76%) <i>p</i> (68.11%)
Lone pair 1 (N4)	1.87318	$sp^{2.67}$	s(27.26%)p(72.72%)
σ(N4-C9)	1.98879	<i>sp</i> ^{1.59} at N4	N4 (59.93%): s(38.53%)p(61.08%)
		$sp^{1.93}$ at C9	C9 (40.07%): s(34.10%)p(65.77%)
π(N4-C9)	1.85577	n/a	N4 (64.79%): s(0.00%)p(99.82%)
			C9 (35.21%): s(0.00%)p(99.85%)
σ(N4-C10)	1.98280	<i>sp</i> ^{1.93} at N4	N4 (58.71%): s(34.07%)p(65.59%)
		$sp^{2.28}$ at C10	C10 (41.29%): s(30.46%)p(69.44%)

Table S46. Solvated NBO analysis^a of (CF3L1)ZnCl₂ with the PBE0 functional.

^a Calculated in solution at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83409	$sp^{2.59}$	s(27.86%)p(72.04%)
σ(N1-C5)	1.98139	$sp^{1.75}$ at N1	N1 (59.18%): s(36.27%)p(63.42%)
		$sp^{1.86}$ at C5	C5 (40.82%): s(34.94%)p(64.97%)
π(N1-C5)	1.86533	n/a	N1 (76.39%): s(0.15%)p(99.71%)
			C5 (23.61%): <i>s</i> (0.21%) <i>p</i> (99.57%)
σ(N1-C11)	1.98114	$sp^{1.80}$ at N1	N1 (58.93%): s(35.62%)p(64.11%)
		$sp^{2.15}$ at C11	C11 (41.07%): <i>s</i> (31.77%) <i>p</i> (68.15%)
Lone pair 1 (N2)	1.68745	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98065	$sp^{1.82}$ at N2	N2 (61.22%): s(35.35%)p(64.50%)
		$sp^{2.05}$ at C5	C5 (38.78%): s(32.72%)p(67.19%)
σ(N2-C6a)	1.98348	$sp^{2.10}$ at N2	N2 (62.42%): s(32.18%)p(67.72%)
		$sp^{2.88}$ at C6a	C6a (37.58%): <i>s</i> (25.73%) <i>p</i> (74.19%)
σ(N2-C6b)	1.98374	$sp^{2.09}$ at N2	N2 (62.31%): s(32.33%)p(67.57%)
		<i>sp</i> ^{2.81} at C6b	C6b (37.69%): <i>s</i> (26.25%) <i>p</i> (73.68%)
Lone pair 1 (N3)	1.66770	n/a	s(2.37%)p(97.56%)
σ(N3-C5)	1.97959	$sp^{1.81}$ at N3	N3 (61.15%): s(35.47%)p(64.36%)
		<i>sp</i> ^{2.12} at C5	C5 (38.85%): s(32.07%)p(67.84%)
σ(N3-C7a)	1.98099	$sp^{2.24}$ at N3	N3 (62.43%): s(30.82%)p(69.08%)
		<i>sp</i> ^{2.89} at C7a	C7a (37.57%): <i>s</i> (25.67%) <i>p</i> (74.26%)
σ(N3-C7b)	1.98572	$sp^{2.20}$ at N3	N3 (62.35%): s(31.19%)p(68.70%)
		<i>sp</i> ^{2.90} at C7b	C7b (37.65%): <i>s</i> (25.64%) <i>p</i> (74.29%)
σ(C11-C12)	1.97729	<i>sp</i> ^{1.75} at C11	C11 (50.69%): <i>s</i> (36.31%) <i>p</i> (63.58%)
		<i>sp</i> ^{1.77} at C12	C12 (49.31%): s(36.02%)p(63.83%)
π (C11-C12)	1.65771	n/a	C11 (47.16%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (52.84%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97213	$sp^{1.94}$ at C10	C10 (50.72%): <i>s</i> (33.92%) <i>p</i> (65.97%)
		$sp^{2.14}$ at C11	C11 (49.28%): s(31.84%)p(68.04%)
Lone pair 1 (N4)	1.86877	<i>sp</i> ^{2.67}	s(27.27%)p(72.70%)
σ(N4-C9)	1.98860	<i>sp</i> ^{1.59} at N4	N4 (60.04%): s(38.46%)p(61.22%)
		<i>sp</i> ^{1.92} at C9	C9 (39.96%): s(34.21%)p(65.70%)
π(N4-C9)	1.85971	n/a	N4 (65.45%): <i>s</i> (0.00%) <i>p</i> (99.81%)
			C9 (34.55%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(N4-C10)	1.98255	$sp^{1.92}$ at N4	N4 (59.04%): s(34.15%)p(65.56%)
		<i>sp</i> ^{2.29} at C10	C10 (40.96%): s(30.40%)p(69.51%)

Table S47. Solvated NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the M06 functional.

^a Calculated in solution at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85205	$sp^{2.70}$	s(27.00%)p(72.91%)
σ(N1-C5)	1.98178	$sp^{1.71}$ at N1	N1 (59.09%): s(36.83%)p(62.81%)
		$sp^{1.87}$ at C5	C5 (40.91%): s(34.87%)p(65.04%)
π(N1-C5)	1.86873	n/a	N1 (76.78%): s(0.12%)p(99.74%)
			C5 (23.22%): <i>s</i> (0.21%) <i>p</i> (99.56%)
σ(N1-C11)	1.98142	<i>sp</i> ^{1.77} at N1	N1 (58.69%): s(35.93%)p(63.76%)
		<i>sp</i> ^{2.14} at C11	C11 (41.31%): s(31.84%)p(68.08%)
Lone pair 1 (N2)	1.68836	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98088	$sp^{1.83}$ at N2	N2 (61.23%): s(35.29%)p(64.53%)
		$sp^{2.05}$ at C5	C5 (38.77%): <i>s</i> (32.78%) <i>p</i> (67.13%)
σ(N2-C6a)	1.98370	$sp^{2.10}$ at N2	N2 (62.59%): s(32.19%)p(67.69%)
		$sp^{2.89}$ at C6a	C6a (37.41%): s(25.68%)p(74.24%)
σ(N2-C6b)	1.98397	<i>sp</i> ^{2.09} at N2	N2 (62.47%): s(32.35%)p(67.53%)
		$sp^{2.82}$ at C6b	C6b (37.53%): <i>s</i> (26.19%) <i>p</i> (73.73%)
Lone pair 1 (N3)	1.66902	n/a	s(2.32%)p(97.60%)
σ(N3-C5)	1.97996	$sp^{1.82}$ at N3	N3 (61.17%): s(35.43%)p(64.36%)
		$sp^{2.12}$ at C5	C5 (38.83%): s(32.07%)p(67.83%)
σ(N3-C7a)	1.98130	$sp^{2.23}$ at N3	N3 (62.60%): s(30.88%)p(68.99%)
		$sp^{2.90}$ at C7a	C7a (37.40%): s(25.60%)p(74.32%)
σ(N3-C7b)	1.98601	$sp^{2.20}$ at N3	N3 (62.49%): s(31.19%)p(68.68%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.65%): <i>s</i> (25.58%) <i>p</i> (74.34%)
σ(C11-C12)	1.97794	<i>sp</i> ^{1.75} at C11	C11 (50.80%): s(36.35%)p(63.54%)
		$sp^{1.78}$ at C12	C12 (49.20%): s(35.93%)p(63.90%)
π(C11-C12)	1.66333	n/a	C11 (47.40%): s(0.01%)p(99.91%)
			C12 (52.60%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97327	<i>sp</i> ^{1.95} at C10	C10 (50.79%): <i>s</i> (33.91%) <i>p</i> (65.99%)
		$sp^{2.15}$ at C11	C11 (49.21%): s(31.74%)p(68.14%)
Lone pair 1 (N4)	1.88658	$sp^{2.75}$	s(26.69%)p(73.29%)
σ(N4-C9)	1.98872	$sp^{1.57}$ at N4	N4 (60.11%): s(38.81%)p(60.82%)
		<i>sp</i> ^{1.93} at C9	C9 (39.89%): <i>s</i> (34.04%) <i>p</i> (65.85%)
π(N4-C9)	1.86154	n/a	N4 (64.78%): s(0.00%)p(99.80%)
			C9 (35.22%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(N4-C10)	1.98273	<i>sp</i> ^{1.90} at N4	N4 (58.90%): s(34.37%)p(65.30%)
		$sp^{2.28}$ at C10	C10 (41.10%): s(30.43%)p(69.48%)

Table S48. Solvated NBO analysis^a of (CF3L1)ZnCl₂ with the M06-2X functional.

^a Calculated in solution at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84325	$sp^{2.73}$	s(26.80%)p(73.11%)
σ(N1-C5)	1.98195	$sp^{1.70}$ at N1	N1 (59.01%): s(36.87%)p(62.75%)
		$sp^{1.87}$ at C5	C5 (40.99%): s(34.86%)p(65.02%)
π(N1-C5)	1.87117	n/a	N1 (76.90%): s(0.14%)p(99.73%)
			C5 (23.10%): <i>s</i> (0.18%) <i>p</i> (99.59%)
σ(N1-C11)	1.98172	<i>sp</i> ^{1.76} at N1	N1 (58.66%): s(36.07%)p(63.59%)
		$sp^{2.14}$ at C11	C11 (41.34%): s(31.81%)p(68.08%)
Lone pair 1 (N2)	1.68996	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98132	$sp^{1.83}$ at N2	N2 (61.09%): s(35.30%)p(64.50%)
		$sp^{2.05}$ at C5	C5 (38.91%): s(32.77%)p(67.10%)
σ(N2-C6a)	1.98434	$sp^{2.10}$ at N2	N2 (62.34%): s(32.17%)p(67.69%)
		$sp^{2.88}$ at C6a	C6a (37.66%): s(25.74%)p(74.15%)
σ(N2-C6b)	1.98469	<i>sp</i> ^{2.09} at N2	N2 (62.22%): s(32.35%)p(67.52%)
		$sp^{2.81}$ at C6b	C6b (37.78%): <i>s</i> (26.25%) <i>p</i> (73.65%)
Lone pair 1 (N3)	1.67036	n/a	s(2.22%)p(97.71%)
σ(N3-C5)	1.98028	$sp^{1.81}$ at N3	N3 (61.03%): s(35.45%)p(64.33%)
		$sp^{2.11}$ at C5	C5 (38.97%): s(32.08%)p(67.80%)
σ(N3-C7a)	1.98223	$sp^{2.23}$ at N3	N3 (62.34%): s(30.92%)p(68.94%)
		$sp^{2.89}$ at C7a	C7a (37.66%): s(25.68%)p(74.22%)
σ(N3-C7b)	1.98651	$sp^{2.20}$ at N3	N3 (62.26%): s(31.23%)p(68.62%)
		<i>sp</i> ^{2.89} at C7b	C7b (37.74%): <i>s</i> (25.65%) <i>p</i> (74.24%)
σ(C11-C12)	1.97762	<i>sp</i> ^{1.75} at C11	C11 (50.77%): s(36.33%)p(63.55%)
		$sp^{1.78}$ at C12	C12 (49.23%): s(35.94%)p(63.87%)
π(C11-C12)	1.66358	n/a	C11 (47.26%): s(0.01%)p(99.90%)
			C12 (52.74%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97330	<i>sp</i> ^{1.94} at C10	C10 (50.79%): <i>s</i> (33.92%) <i>p</i> (65.96%)
		<i>sp</i> ^{2.14} at C11	C11 (49.21%): s(31.77%)p(68.10%)
Lone pair 1 (N4)	1.87784	$sp^{2.78}$	s(26.46%)p(73.52%)
σ(N4-C9)	1.98854	$sp^{1.56}$ at N4	N1 (59.96%): <i>s</i> (38.89%) <i>p</i> (60.72%)
		<i>sp</i> ^{1.93} at C9	C5 (40.04%): <i>s</i> (34.09%) <i>p</i> (65.77%)
π(N4-C9)	1.86320	n/a	N1 (65.06%): s(0.00%)p(99.82%)
			C5 (34.94%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98294	<i>sp</i> ^{1.89} at N4	N4 (58.83%): s(34.51%)p(65.14%)
		$sp^{2.29}$ at C10	C10 (41.17%): s(30.41%)p(69.49%)

Table S49. Solvated NBO analysis^{*a*} of (^{CF3}L1)ZnCl₂ with the CAM-B3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.
NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83269	$sp^{2.29}$	s(30.35%)p(69.56%)
σ(N1-C5)	1.98071	$sp^{1.84}$ at N1	N1 (59.02%): s(35.14%)p(64.53%)
		$sp^{1.84}$ at C5	C5 (40.98%): s(35.20%)p(64.71%)
π(N1-C5)	1.86750	n/a	N1 (73.65%): s(0.19%)p(99.67%)
			C5 (26.35%): s(0.35%)p(99.44%)
σ(N1-C11)	1.97991	<i>sp</i> ^{1.92} at N1	N1 (59.03%): s(34.19%)p(65.53%)
		$sp^{2.21}$ at C11	C11 (40.97%): s(31.14%)p(68.77%)
Lone pair 1 (N2)	1.68704	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98083	$sp^{1.81}$ at N2	N2 (61.47%): s(35.57%)p(64.27%)
		$sp^{2.09}$ at C5	C5 (38.53%): s(32.29%)p(67.61%)
σ(N2-C6a)	1.98303	$sp^{2.10}$ at N2	N2 (62.12%): s(32.20%)p(67.69%)
		$sp^{2.88}$ at C6a	C6a (37.88%): s(25.78%)p(74.15%)
σ(N2-C6b)	1.98462	<i>sp</i> ^{2.11} at N2	N2 (61.49%): s(32.10%)p(67.78%)
		$sp^{2.75}$ at C6b	C6b (38.51%): s(26.64%)p(73.29%)
Lone pair 1 (N3)	1.65904	n/a	s(3.20%)p(96.73%)
σ(N3-C5)	1.97958	$sp^{1.82}$ at N3	N3 (61.23%): s(35.36%)p(64.45%)
		$sp^{2.11}$ at C5	C5 (38.77%): s(32.09%)p(67.82%)
σ(N3-C7a)	1.97991	$sp^{2.29}$ at N3	N3 (61.92%): s(30.33%)p(69.55%)
		$sp^{2.87}$ at C7a	C7a (38.08%): s(25.85%)p(74.09%)
σ(N3-C7b)	1.98482	<i>sp</i> ^{2.23} at N3	N3 (62.15%): s(30.96%)p(68.92%)
		$sp^{2.91}$ at C7b	C7b (37.85%): s(25.57%)p(74.36%)
σ(C11-C12)	1.97726	<i>sp</i> ^{1.71} at C11	C11 (50.84%): s(36.82%)p(63.07%)
, , , , ,		$sp^{1.82}$ at C12	C12 (49.16%): s(35.45%)p(64.37%)
π(C11-C12)	1.67213	n/a	C11 (46.62%): s(0.03%)p(99.88%)
, , ,			C12 (53.38%): s(0.02%)p(99.89%)
σ(C11-C10)	1.97156	<i>sp</i> ^{1.93} at C10	C10 (50.74%): s(34.08%)p(65.79%)
, , , , ,		$sp^{2.13}$ at C11	C11 (49.26%): s(31.95%)p(67.92%)
Lone pair 1 (N4)	1.87040	sp ^{2.44}	s(29.07%)p(70.91%)
σ(N4-C9)	1.98868	<i>sp</i> ^{1.65} at N4	N4 (59.91%): s(37.66%)p(62.00%)
, , , , , , , , , , , , , , , , , , ,		<i>sp</i> ^{1.91} at C9	C9 (40.09%): s(34.31%)p(65.59%)
π(N4-C9)	1.85216	n/a	N4 (64.03%): s(0.00%)p(99.82%)
			C9 (36.97%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98137	<i>sp</i> ^{2.01} at N4	N4 (58.97%): s(33.13%)p(66.58%)
		$sp^{2.29}$ at C10	C10 (41.03%): s(30.34%)p(69.57%)

Table S50. NBO analysis^{*a*} of (^{*t*Bu}L1)ZnCl₂ with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange. ¹⁹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83320	$sp^{2.49}$	s(28.61%)p(71.31%)
σ(N1-C5)	1.98120	$sp^{1.76}$ at N1	N1 (58.83%): s(36.14%)p(63.50%)
		$sp^{1.84}$ at C5	C5 (41.17%): s(35.15%)p(64.74%)
π(N1-C5)	1.86941	n/a	N1 (73.79%): <i>s</i> (0.18%) <i>p</i> (99.69%)
			C5 (26.21%): <i>s</i> (0.29%) <i>p</i> (99.51%)
σ(N1-C11)	1.98039	<i>sp</i> ^{1.85} at N1	N1 (58.76%): <i>s</i> (34.96%) <i>p</i> (64.73%)
		<i>sp</i> ^{2.20} at C11	C11 (41.24%): s(31.26%)p(68.64%)
Lone pair 1 (N2)	1.68732	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98098	$sp^{1.81}$ at N2	N2 (61.34%): s(35.58%)p(64.24%)
		$sp^{2.08}$ at C5	C5 (38.66%): s(32.40%)p(67.49%)
σ(N2-C6a)	1.98332	$sp^{2.10}$ at N2	N2 (62.37%): s(32.18%)p(67.70%)
		$sp^{2.90}$ at C6a	C6a (37.63%): <i>s</i> (25.65%) <i>p</i> (74.26%)
σ(N2-C6b)	1.98498	<i>sp</i> ^{2.11} at N2	N2 (61.68%): s(32.08%)p(67.79%)
		<i>sp</i> ^{2.76} at C6b	C6b (38.32%): <i>s</i> (26.54%) <i>p</i> (73.37%)
Lone pair 1 (N3)	1.65808	n/a	s(2.91%)p(97.03%)
σ(N3-C5)	1.97965	$sp^{1.81}$ at N3	N3 (61.09%): s(35.46%)p(64.34%)
		$sp^{2.11}$ at C5	C5 (38.91%): <i>s</i> (32.07%) <i>p</i> (67.82%)
σ(N3-C7a)	1.98062	$sp^{2.28}$ at N3	N3 (62.14%): s(30.42%)p(69.45%)
		$sp^{2.88}$ at C7a	C7a (37.86%): s(25.72%)p(74.19%)
σ(N3-C7b)	1.98534	<i>sp</i> ^{2.22} at N3	N3 (62.42%): <i>s</i> (31.06%) <i>p</i> (68.81%)
		<i>sp</i> ^{2.93} at C7b	C7b (37.58%): <i>s</i> (25.44%) <i>p</i> (74.47%)
σ(C11-C12)	1.97670	<i>sp</i> ^{1.71} at C11	C11 (50.98%): s(36.82%)p(63.07%)
		<i>sp</i> ^{1.83} at C12	C12 (49.02%): <i>s</i> (35.33%) <i>p</i> (64.49%)
π(C11-C12)	1.67280	n/a	C11 (47.19%): <i>s</i> (0.02%) <i>p</i> (99.89%)
			C12 (52.81%): s(0.02%)p(99.90%)
σ(C11-C10)	1.97149	<i>sp</i> ^{1.93} at C10	C10 (50.78%): <i>s</i> (34.04%) <i>p</i> (65.85%)
		<i>sp</i> ^{2.14} at C11	C11 (49.22%): s(31.82%)p(68.05%)
Lone pair 1 (N4)	1.87078	$sp^{2.59}$	s(27.87%)p(72.11%)
σ(N4-C9)	1.98873	$sp^{1.60}$ at N4	N4 (59.83%): s(38.25%)p(61.38%)
		<i>sp</i> ^{1.91} at C9	C9 (40.17%): <i>s</i> (34.29%) <i>p</i> (65.59%)
π(N4-C9)	1.85227	n/a	N4 (63.12%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (36.88%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98209	<i>sp</i> ^{1.95} at N4	N4 (58.74%): s(33.74%)p(65.94%)
		<i>sp</i> ^{2.28} at C10	C10 (41.26%): s(30.42%)p(69.48%)

Table S51. NBO analysis^{*a*} of (^{*t*Bu}L1)ZnCl₂ with the TPSSh functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83085	$sp^{2.51}$	s(28.43%)p(71.47%)
σ(N1-C5)	1.98116	<i>sp</i> ^{1.75} at N1	N1 (58.68%): s(36.23%)p(63.41%)
		$sp^{1.84}$ at C5	C5 (41.32%): s(35.12%)p(64.77%)
π(N1-C5)	1.86849	n/a	N1 (73.59%): <i>s</i> (0.16%) <i>p</i> (99.71%)
			C5 (26.41%): <i>s</i> (0.28%) <i>p</i> (99.53%)
σ(N1-C11)	1.98030	$sp^{1.84}$ at N1	N1 (58.59%): <i>s</i> (35.05%) <i>p</i> (64.65%)
		<i>sp</i> ^{2.19} at C11	C11 (41.41%): <i>s</i> (31.32%) <i>p</i> (68.59%)
Lone pair 1 (N2)	1.68491	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98081	$sp^{1.81}$ at N2	N2 (61.19%): s(35.52%)p(64.31%)
		$sp^{2.08}$ at C5	C5 (38.81%): <i>s</i> (32.46%) <i>p</i> (67.44%)
σ(N2-C6a)	1.98348	$sp^{2.10}$ at N2	N2 (62.11%): s(32.19%)p(67.69%)
		$sp^{2.88}$ at C6a	C6a (37.89%): s(25.74%)p(74.18%)
σ(N2-C6b)	1.98516	<i>sp</i> ^{2.11} at N2	N2 (61.45%): s(32.13%)p(67.75%)
		<i>sp</i> ^{2.75} at C6b	C6b (38.55%): <i>s</i> (26.62%) <i>p</i> (73.30%)
Lone pair 1 (N3)	1.65568	n/a	s(2.81%)p(97.13%)
σ(N3-C5)	1.97957	$sp^{1.82}$ at N3	N3 (60.96%): s(35.42%)p(64.38%)
		$sp^{2.12}$ at C5	C5 (39.04%): <i>s</i> (32.05%) <i>p</i> (67.84%)
σ(N3-C7a)	1.98101	$sp^{2.27}$ at N3	N3 (61.88%): s(30.51%)p(69.37%)
		$sp^{2.87}$ at C7a	C7a (38.12%): <i>s</i> (25.80%) <i>p</i> (74.11%)
σ(N3-C7b)	1.98538	<i>sp</i> ^{2.21} at N3	N3 (62.16%): s(31.10%)p(68.78%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.84%): <i>s</i> (25.53%) <i>p</i> (74.38%)
σ(C11-C12)	1.97630	<i>sp</i> ^{1.71} at C11	C11 (50.97%): s(36.80%)p(63.10%)
		<i>sp</i> ^{1.83} at C12	C12 (49.03%): s(35.28%)p(64.55%)
π(C11-C12)	1.67176	n/a	C11 (47.24%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (52.76%): <i>s</i> (0.02%) <i>p</i> (99.90%)
σ(C11-C10)	1.97106	<i>sp</i> ^{1.94} at C10	C10 (50.76%): <i>s</i> (33.99%) <i>p</i> (65.91%)
		<i>sp</i> ^{2.14} at C11	C11 (49.24%): <i>s</i> (31.79%) <i>p</i> (68.09%)
Lone pair 1 (N4)	1.86882	$sp^{2.60}$	s(27.75%)p(72.23%)
σ(N4-C9)	1.98856	$sp^{1.60}$ at N4	N4 (59.71%): <i>s</i> (38.35%) <i>p</i> (61.29%)
		<i>sp</i> ^{1.91} at C9	C9 (40.29%): <i>s</i> (34.29%) <i>p</i> (65.59%)
π(N4-C9)	1.85325	n/a	N4 (63.06%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (36.94%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98187	<i>sp</i> ^{1.95} at N4	N4 (58.58%): s(33.76%)p(65.93%)
		$sp^{2.28}$ at C10	C10 (41.42%): s(30.49%)p(69.42%)

Table S52. NBO analysis^{*a*} of (^{*t*Bu}L1)ZnCl₂ with the O3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83631	$sp^{2.56}$	s(28.07%)p(71.84%)
σ(N1-C5)	1.98142	$sp^{1.74}$ at N1	N1 (58.79%): s(36.38%)p(63.25%)
		<i>sp</i> ^{1.85} at C5	C5 (41.21%): s(35.10%)p(64.78%)
π(N1-C5)	1.87368	n/a	N1 (74.28%): s(0.17%)p(99.70%)
			C5 (25.72%): <i>s</i> (0.26%) <i>p</i> (99.55%)
σ(N1-C11)	1.98071	$sp^{1.83}$ at N1	N1 (58.73%): s(35.26%)p(64.42%)
		<i>sp</i> ^{2.19} at C11	C11 (41.27%): s(31.29%)p(68.60%)
Lone pair 1 (N2)	1.69436	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98113	$sp^{1.81}$ at N2	N2 (61.31%): s(35.48%)p(64.33%)
		$sp^{2.08}$ at C5	C5 (38.69%): s(32.47%)p(67.41%)
σ(N2-C6a)	1.98380	$sp^{2.10}$ at N2	N2 (62.25%): s(32.20%)p(67.67%)
		$sp^{2.87}$ at C6a	C6a (37.75%): s(25.80%)p(74.10%)
σ(N2-C6b)	1.98539	<i>sp</i> ^{2.11} at N2	N2 (61.60%): s(32.15%)p(67.72%)
		<i>sp</i> ^{2.75} at C6b	C6b (38.40%): <i>s</i> (26.67%) <i>p</i> (73.24%)
Lone pair 1 (N3)	1.66500	n/a	s(2.71%)p(97.23%)
σ(N3-C5)	1.97988	$sp^{1.82}$ at N3	N3 (61.07%): s(35.40%)p(64.39%)
		$sp^{2.11}$ at C5	C5 (38.93%): <i>s</i> (32.07%) <i>p</i> (67.81%)
σ(N3-C7a)	1.98151	$sp^{2.27}$ at N3	N3 (62.05%): s(30.57%)p(69.30%)
		$sp^{2.86}$ at C7a	C7a (37.95%): s(25.86%)p(74.04%)
σ(N3-C7b)	1.98572	<i>sp</i> ^{2.21} at N3	N3 (62.32%): <i>s</i> (31.15%) <i>p</i> (68.71%)
		<i>sp</i> ^{2.90} at C7b	C7b (37.68%): <i>s</i> (25.60%) <i>p</i> (74.30%)
σ(C11-C12)	1.97664	<i>sp</i> ^{1.71} at C11	C11 (50.96%): <i>s</i> (36.80%) <i>p</i> (63.09%)
		$sp^{1.82}$ at C12	C12 (49.04%): <i>s</i> (35.33%) <i>p</i> (64.47%)
π(C11-C12)	1.67459	n/a	C11 (46.87%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (53.13%): s(0.02%)p(99.90%)
σ(C11-C10)	1.97155	<i>sp</i> ^{1.94} at C10	C10 (50.79%): <i>s</i> (33.99%) <i>p</i> (65.89%)
		$sp^{2.14}$ at C11	C11 (49.21%): s(31.80%)p(68.07%)
Lone pair 1 (N4)	1.87345	$sp^{2.67}$	s(27.26%)p(72.72%)
σ(N4-C9)	1.98850	$sp^{1.58}$ at N4	N4 (59.80%): s(38.57%)p(61.04%)
		<i>sp</i> ^{1.91} at C9	C9 (40.20%): <i>s</i> (34.33%) <i>p</i> (65.53%)
π(N4-C9)	1.85575	n/a	N4 (63.20%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (36.80%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98210	<i>sp</i> ^{1.93} at N4	N4 (58.75%): s(34.02%)p(65.65%)
		<i>sp</i> ^{2.28} at C10	C10 (41.25%): s(30.47%)p(69.42%)

Table S53. NBO analysis^{*a*} of (*t*^{Bu}L1)ZnCl₂ with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83821	$sp^{2.57}$	s(28.00%)p(71.90%)
σ(N1-C5)	1.98154	$sp^{1.73}$ at N1	N1 (58.82%): s(36.43%)p(63.18%)
		$sp^{1.85}$ at C5	C5 (41.18%): s(35.10%)p(64.79%)
π(N1-C5)	1.87417	n/a	N1 (74.57%): s(0.18%)p(99.68%)
			C5 (25.43%): <i>s</i> (0.27%) <i>p</i> (99.52%)
σ(N1-C11)	1.98076	$sp^{1.83}$ at N1	N1 (58.66%): s(35.25%)p(64.42%)
		$sp^{2.19}$ at C11	C11 (41.34%): <i>s</i> (31.31%) <i>p</i> (68.59%)
Lone pair 1 (N2)	1.69507	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98121	$sp^{1.81}$ at N2	N2 (61.32%): s(35.52%)p(64.29%)
		$sp^{2.08}$ at C5	C5 (38.68%): s(32.46%)p(67.42%)
σ(N2-C6a)	1.98384	$sp^{2.10}$ at N2	N2 (62.23%): s(32.20%)p(67.67%)
		$sp^{2.88}$ at C6a	C6a (37.77%): <i>s</i> (25.74%) <i>p</i> (74.16%)
σ(N2-C6b)	1.98544	$sp^{2.11}$ at N2	N2 (61.55%): s(32.12%)p(67.75%)
		<i>sp</i> ^{2.75} at C6b	C6b (38.45%): <i>s</i> (26.63%) <i>p</i> (73.28%)
Lone pair 1 (N3)	1.66633	n/a	s(2.75%)p(97.18%)
σ(N3-C5)	1.97995	$sp^{1.82}$ at N3	N3 (61.08%): s(35.43%)p(64.35%)
		$sp^{2.11}$ at C5	C5 (38.92%): <i>s</i> (32.07%) <i>p</i> (67.81%)
σ(N3-C7a)	1.98149	$sp^{2.27}$ at N3	N3 (62.00%): s(30.55%)p(69.32%)
		$sp^{2.87}$ at C7a	C7a (38.00%): s(25.81%)p(74.10%)
σ(N3-C7b)	1.98577	$sp^{2.21}$ at N3	N3 (62.26%): s(31.10%)p(68.76%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.74%): <i>s</i> (25.55%) <i>p</i> (74.35%)
σ(C11-C12)	1.97672	<i>sp</i> ^{1.71} at C11	C11 (50.94%): <i>s</i> (36.82%) <i>p</i> (63.08%)
		$sp^{1.83}$ at C12	C12 (49.06%): s(35.31%)p(64.50%)
π(C11-C12)	1.67573	n/a	C11 (46.89%): s(0.02%)p(99.89%)
			C12 (53.11%): <i>s</i> (0.02%) <i>p</i> (99.90%)
σ(C11-C10)	1.97175	<i>sp</i> ^{1.94} at C10	C10 (50.81%): <i>s</i> (34.02%) <i>p</i> (65.87%)
		$sp^{2.14}$ at C11	C11 (49.19%): s(31.78%)p(68.09%)
Lone pair 1 (N4)	1.87532	$sp^{2.65}$	s(27.39%)p(72.59%)
σ(N4-C9)	1.98870	<i>sp</i> ^{1.59} at N4	N4 (59.75%): s(38.48%)p(61.13%)
		<i>sp</i> ^{1.91} at C9	C9 (40.25%): s(34.33%)p(65.55%)
π(N4-C9)	1.85662	n/a	N4 (63.30%): s(0.00%)p(99.82%)
			C9 (36.70%): s(0.00%)p(99.86%)
σ(N4-C10)	1.98225	<i>sp</i> ^{1.93} at N4	N4 (58.66%): s(33.98%)p(65.68%)
		$sp^{2.28}$ at C10	C10 (41.34%): s(30.46%)p(69.44%)

Table S54. NBO analysis^a of (*t*^{Bu}L1)ZnCl₂ with the PBE0 functional.

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83458	$sp^{2.54}$	s(28.24%)p(71.65%)
σ(N1-C5)	1.98124	$sp^{1.75}$ at N1	N1 (59.03%): s(36.21%)p(63.48%)
		<i>sp</i> ^{1.85} at C5	C5 (40.97%): s(35.12%)p(64.80%)
π(N1-C5)	1.87742	n/a	N1 (74.98%): s(0.22%)p(99.63%)
			C5 (25.02%): <i>s</i> (0.29%) <i>p</i> (99.49%)
σ(N1-C11)	1.98036	<i>sp</i> ^{1.83} at N1	N1 (59.00%): s(35.22%)p(64.51%)
		$sp^{2.20}$ at C11	C11 (41.00%): s(31.22%)p(68.70%)
Lone pair 1 (N2)	1.70357	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98088	$sp^{1.81}$ at N2	N2 (61.49%): s(35.50%)p(64.36%)
		$sp^{2.08}$ at C5	C5 (38.51%): <i>s</i> (32.45%) <i>p</i> (67.45%)
σ(N2-C6a)	1.98342	$sp^{2.10}$ at N2	N2 (62.40%): s(32.22%)p(67.68%)
		<i>sp</i> ^{2.88} at C6a	C6a (37.60%): <i>s</i> (25.77%) <i>p</i> (74.16%)
σ(N2-C6b)	1.98496	<i>sp</i> ^{2.11} at N2	N2 (61.74%): s(32.14%)p(67.76%)
		<i>sp</i> ^{2.75} at C6b	C6b (38.26%): <i>s</i> (26.63%) <i>p</i> (73.30%)
Lone pair 1 (N3)	1.67463	n/a	s(2.68%)p(97.24%)
σ(N3-C5)	1.97951	$sp^{1.82}$ at N3	N3 (61.25%): s(35.44%)p(64.40%)
		$sp^{2.12}$ at C5	C5 (38.75%): <i>s</i> (32.07%) <i>p</i> (67.84%)
σ(N3-C7a)	1.98112	$sp^{2.27}$ at N3	N3 (62.20%): s(30.58%)p(69.31%)
		<i>sp</i> ^{2.87} at C7a	C7a (37.80%): <i>s</i> (25.83%) <i>p</i> (74.10%)
σ(N3-C7b)	1.98539	<i>sp</i> ^{2.21} at N3	N3 (62.46%): s(31.15%)p(68.74%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.54%): <i>s</i> (25.57%) <i>p</i> (74.35%)
σ(C11-C12)	1.97640	<i>sp</i> ^{1.71} at C11	C11 (50.87%): <i>s</i> (36.85%) <i>p</i> (63.05%)
		<i>sp</i> ^{1.82} at C12	C12 (49.13%): s(35.40%)p(64.43%)
π(C11-C12)	1.67744	n/a	C11 (46.28%): <i>s</i> (0.03%) <i>p</i> (99.89%)
			C12 (53.72%): <i>s</i> (0.02%) <i>p</i> (99.89%)
σ(C11-C10)	1.97166	<i>sp</i> ^{1.93} at C10	C10 (50.77%): <i>s</i> (34.04%) <i>p</i> (65.85%)
		$sp^{2.14}$ at C11	C11 (49.23%): s(31.84%)p(68.04%)
Lone pair 1 (N4)	1.87149	$sp^{2.65}$	s(27.41%)p(72.56%)
σ(N4-C9)	1.98851	<i>sp</i> ^{1.59} at N4	N4 (59.86%): s(38.42%)p(61.26%)
		<i>sp</i> ^{1.90} at C9	C9 (40.14%): <i>s</i> (34.42%) <i>p</i> (65.48%)
π(N4-C9)	1.86011	n/a	N4 (63.85%): s(0.00%)p(99.80%)
			C9 (36.15%): s(0.00%)p(99.85%)
σ(N4-C10)	1.98169	<i>sp</i> ^{1.93} at N4	N4 (58.97%): s(34.05%)p(65.67%)
		<i>sp</i> ^{2.29} at C10	C10 (41.03%): s(30.41%)p(69.51%)

Table S55. NBO analysis^{*a*} of (^{*t*Bu}L1)ZnCl₂ with the M06 functional.

^a Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85191	$sp^{2.65}$	s(27.36%)p(72.54%)
σ(N1-C5)	1.98164	$sp^{1.71}$ at N1	N1 (58.92%): s(36.75%)p(62.88%)
		$sp^{1.85}$ at C5	C5 (41.08%): s(35.05%)p(64.85%)
π(N1-C5)	1.88150	n/a	N1 (75.31%): <i>s</i> (0.18%) <i>p</i> (99.66%)
			C5 (24.69%): <i>s</i> (0.29%) <i>p</i> (99.49%)
σ(N1-C11)	1.98073	$sp^{1.80}$ at N1	N1 (58.79%): s(35.58%)p(64.11%)
		$sp^{2.20}$ at C11	C11 (41.21%): s(31.26%)p(68.66%)
Lone pair 1 (N2)	1.70539	n/a	s(0.00%)p(99.94%)
σ(N2-C5)	1.98148	$sp^{1.82}$ at N2	N2 (61.51%): s(35.44%)p(64.38%)
		$sp^{2.07}$ at C5	C5 (38.49%): <i>s</i> (32.51%) <i>p</i> (67.39%)
σ(N2-C6a)	1.98365	$sp^{2.10}$ at N2	N2 (62.57%): s(32.24%)p(67.64%)
		$sp^{2.89}$ at C6a	C6a (37.43%): s(25.71%)p(74.21%)
σ(N2-C6b)	1.98517	<i>sp</i> ^{2.11} at N2	N2 (61.87%): s(32.15%)p(67.73%)
		$sp^{2.76}$ at C6b	C6b (38.13%): <i>s</i> (26.59%) <i>p</i> (73.33%)
Lone pair 1 (N3)	1.67668	n/a	s(2.63%)p(97.29%)
σ(N3-C5)	1.97999	$sp^{1.82}$ at N3	N3 (61.27%): s(35.39%)p(64.40%)
		$sp^{2.12}$ at C5	C5 (38.73%): s(32.07%)p(67.83%)
σ(N3-C7a)	1.98148	$sp^{2.26}$ at N3	N3 (62.35%): s(30.65%)p(69.23%)
		$sp^{2.88}$ at C7a	C7a (37.65%): s(25.76%)p(74.16%)
σ(N3-C7b)	1.98572	<i>sp</i> ^{2.21} at N3	N3 (62.58%): s(31.16%)p(68.72%)
		<i>sp</i> ^{2.92} at C7b	C7b (37.42%): <i>s</i> (25.52%) <i>p</i> (74.40%)
σ(C11-C12)	1.97699	<i>sp</i> ^{1.71} at C11	C11 (51.01%): s(36.91%)p(62.99%)
		$sp^{1.83}$ at C12	C12 (48.99%): s(35.28%)p(64.53%)
π(C11-C12)	1.68206	n/a	C11 (46.71%): s(0.02%)p(99.90%)
			C12 (53.29%): s(0.02%)p(99.90%)
σ(C11-C10)	1.97225	<i>sp</i> ^{1.94} at C10	C10 (50.85%): <i>s</i> (34.03%) <i>p</i> (65.87%)
		<i>sp</i> ^{2.15} at C11	C11 (49.15%): <i>s</i> (31.75%) <i>p</i> (68.13%)
Lone pair 1 (N4)	1.88835	$sp^{2.73}$	s(26.83%)p(73.14%)
σ(N4-C9)	1.98862	$sp^{1.57}$ at N4	N4 (59.90%): <i>s</i> (38.73%) <i>p</i> (60.89%)
		<i>sp</i> ^{1.91} at C9	C9 (40.10%): <i>s</i> (34.28%) <i>p</i> (65.61%)
π(N4-C9)	1.86271	n/a	N4 (63.19%): s(0.00%)p(99.79%)
			C9 (36.81%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98218	<i>sp</i> ^{1.90} at N4	N4 (58.86%): s(34.40%)p(65.38%)
		$sp^{2.28}$ at C10	C10 (41.14%): s(30.42%)p(69.50%)

Table S56. NBO analysis^{*a*} of (^{*t*Bu}L1)ZnCl₂ with the M06-2X functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84386	$sp^{2.68}$	s(27.16%)p(72.75%)
σ(N1-C5)	1.98184	$sp^{1.71}$ at N1	N1 (58.85%): s(36.81%)p(62.80%)
		$sp^{1.85}$ at C5	C5 (41.15%): s(35.05%)p(64.83%)
π(N1-C5)	1.88346	n/a	N1 (75.43%): s(0.21%)p(99.65%)
			C5 (24.57%): <i>s</i> (0.26%) <i>p</i> (99.53%)
σ(N1-C11)	1.98108	<i>sp</i> ^{1.79} at N1	N1 (58.74%): <i>s</i> (35.70%) <i>p</i> (63.97%)
		$sp^{2.20}$ at C11	C11 (41.26%): <i>s</i> (31.25%) <i>p</i> (68.64%)
Lone pair 1 (N2)	1.70690	n/a	s(0.00%)p(99.95%)
σ(N2-C5)	1.98159	$sp^{1.82}$ at N2	N2 (61.37%): s(35.45%)p(64.35%)
		$sp^{2.07}$ at C5	C5 (38.63%): <i>s</i> (32.51%) <i>p</i> (67.37%)
σ(N2-C6a)	1.98427	$sp^{2.10}$ at N2	N2 (62.31%): s(32.21%)p(67.65%)
		$sp^{2.88}$ at C6a	C6a (37.69%): <i>s</i> (25.77%) <i>p</i> (74.13%)
σ(N2-C6b)	1.98579	$sp^{2.11}$ at N2	N2 (61.65%): s(32.16%)p(67.70%)
		$sp^{2.75}$ at C6b	C6b (38.35%): <i>s</i> (26.63%) <i>p</i> (73.27%)
Lone pair 1 (N3)	1.67749	n/a	s(2.53%)p(97.40%)
σ(N3-C5)	1.98027	$sp^{1.82}$ at N3	N3 (61.12%): <i>s</i> (35.41%) <i>p</i> (64.37%)
		$sp^{2.11}$ at C5	C5 (38.88%): <i>s</i> (32.08%) <i>p</i> (67.79%)
σ(N3-C7a)	1.98234	$sp^{2.25}$ at N3	N3 (62.11%): <i>s</i> (30.69%) <i>p</i> (69.17%)
		$sp^{2.87}$ at C7a	C7a (37.89%): s(25.82%)p(74.07%)
σ(N3-C7b)	1.98622	$sp^{2.20}$ at N3	N3 (62.38%): s(31.20%)p(68.65%)
		<i>sp</i> ^{2.91} at C7b	C7b (37.62%): <i>s</i> (25.58%) <i>p</i> (74.32%)
σ(C11-C12)	1.97679	$sp^{1.71}$ at C11	C11 (50.94%): <i>s</i> (36.86%) <i>p</i> (63.03%)
		<i>sp</i> ^{1.82} at C12	C12 (49.06%): <i>s</i> (35.34%) <i>p</i> (64.46%)
π(C11-C12)	1.68288	n/a	C11 (46.46%): <i>s</i> (0.02%) <i>p</i> (99.89%)
			C12 (53.54%): s(0.02%)p(99.89%)
σ(C11-C10)	1.97232	$sp^{1.93}$ at C10	C10 (50.85%): <i>s</i> (34.03%) <i>p</i> (65.84%)
		<i>sp</i> ^{2.14} at C11	C11 (49.15%): s(31.78%)p(68.08%)
Lone pair 1 (N4)	1.88028	$sp^{2.76}$	s(26.59%)p(73.39%)
σ(N4-C9)	1.98844	$sp^{1.56}$ at N4	N4 (59.78%): s(38.84%)p(60.77%)
		<i>sp</i> ^{1.91} at C9	C9 (40.22%): s(34.32%)p(65.55%)
π(N4-C9)	1.86436	n/a	N4 (63.42%): <i>s</i> (0.00%) <i>p</i> (99.81%)
			C9 (36.58%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98243	$sp^{1.89}$ at N4	N4 (58.79%): <i>s</i> (34.43%) <i>p</i> (65.23%)
		$sp^{2.29}$ at C10	C10 (41.21%): s(30.39%)p(69.50%)

Table S57. NBO analysis^{*a*} of (*t*^{Bu}L1)ZnCl₂ with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82184	$sp^{2.60}$	s(27.78%)p(72.20%)
σ(N1-C5)	1.98430	$sp^{1.86}$ at N1	N1 (59.34%): s(34.85%)p(64.92%)
		$sp^{2.02}$ at C5	C5 (40.66%): s(33.14%)p(66.78%)
π(N1-C5)	1.81422	n/a	N1 (76.46%): s(0.00%)p(99.92%)
			C5 (23.54%): s(0.00%)p(99.80%)
σ(N1-C11)	1.98564	<i>sp</i> ^{1.68} at N1	N1 (59.03%): s(37.23%)p(62.54%)
		$sp^{2.11}$ at C11	C11 (40.97%): s(32.11%)p(67.81%)
Lone pair 1 (N2)	1.90026	$sp^{1.92}$	s(34.22%)p(65.60%)
σ(N2-C5)	1.98343	$sp^{2.20}$ at N2	N2 (57.68%): s(31.09%)p(68.48%)
		$sp^{1.91}$ at C5	C5 (42.32%): s(34.39%)p(65.52%)
σ(N2-C6)	1.98482	$sp^{1.88}$ at N2	N2 (58.81%): s(34.56%)p(64.98%)
		<i>sp</i> ^{1.99} at C6	C6 (41.19%): s(33.47%)p(66.44%)
π(N2-C6)	1.75322	n/a	N2 (63.60%): s(0.00%)p(99.68%)
			C6 (36.40%): <i>s</i> (0.00%) <i>p</i> (99.86%)
Lone pair 1 (N3)	1.89354	<i>sp</i> ^{1.94}	s(33.97%)p(65.88%)
σ(N3-C5)	1.98098	<i>sp</i> ^{2.33} at N3	N3 (58.01%): <i>s</i> (29.93%) <i>p</i> (69.67%)
		<i>sp</i> ^{1.96} at C5	C5 (41.99%): s(32.35%)p(67.57%)
σ(N3-C7)	1.98735	<i>sp</i> ^{1.77} at N3	N3 (58.91%): s(35.95%)p(63.60%)
		<i>sp</i> ^{1.96} at C7	C7 (41.09%): <i>s</i> (33.72%) <i>p</i> (66.18%)
π(N3-C7)	1.78624	n/a	N3 (63.29%): s(0.00%)p(99.70%)
			C7 (36.71%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(C6-C8)	1.98865	$sp^{1.84}$ at C8	C8 (50.54%): <i>s</i> (35.15%) <i>p</i> (64.67%)
		<i>sp</i> ^{1.62} at C6	C6 (49.46%): s(38.10%)p(61.74%)
σ(C7-C8)	1.98759	$sp^{1.88}$ at C8	C8 (50.35%): <i>s</i> (34.72%) <i>p</i> (65.10%)
		<i>sp</i> ^{1.77} at C7	C7 (49.65%): s(37.89%)p(61.95%)
σ(C11-C12)	1.97802	<i>sp</i> ^{1.73} at C11	C11 (50.99%): <i>s</i> (36.57%) <i>p</i> (63.32%)
		<i>sp</i> ^{1.85} at C12	C12 (49.01%): s(35.02%)p(64.81%)
π(C11-C12)	1.62363	n/a	C11 (47.33%): <i>s</i> (0.00%) <i>p</i> (99.90%)
			C12 (52.67%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97256	$sp^{2.20}$ at C11	C11 (49.31%): <i>s</i> (31.26%) <i>p</i> (68.62%)
		<i>sp</i> ^{1.95} at C10	C10 (50.69%): s(33.81%)p(66.07%)
Lone pair 1 (N4)	1.87739	<i>sp</i> ^{2.45}	s(28.96%)p(71.00%)
σ(N4-C9)	1.98810	$sp^{1.63}$ at N4	N4 (59.70%): <i>s</i> (37.82%) <i>p</i> (61.83%)
		<i>sp</i> ^{1.90} at C9	C9 (40.30%): s(34.46%)p(65.44%)
π(N4-C9)	1.85103	n/a	N4 (62.24%): s(0.00%)p(99.82%)
			C9 (37.76%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98075	$sp^{2.08}$ at N4	N4 (59.02%): <i>s</i> (32.09%) <i>p</i> (66.60%)
		$sp^{2.30}$ at C10	C10(40.98%); $s(30.30%)p(69.62%)$

Table S58. NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82187	$sp^{2.81}$	s(26.21%)p(73.77%)
σ(N1-C5)	1.98465	$sp^{1.80}$ at N1	N1 (59.12%): s(35.63%)p(64.12%)
		$sp^{2.02}$ at C5	C5 (40.88%): <i>s</i> (33.04%) <i>p</i> (66.86%)
π(N1-C5)	1.81683	n/a	N1 (76.56%): s(0.00%)p(99.93%)
			C5 (23.44%): <i>s</i> (0.00%) <i>p</i> (99.80%)
σ(N1-C11)	1.98547	$sp^{1.62}$ at N1	N1 (58.78%): s(38.02%)p(61.74%)
		$sp^{2.10}$ at C11	C11 (41.22%): s(32.19%)p(67.70%)
Lone pair 1 (N2)	1.90289	$sp^{2.04}$	s(32.82%)p(67.02%)
σ(N2-C5)	1.98447	$sp^{2.13}$ at N2	N2 (57.46%): <i>s</i> (31.79%) <i>p</i> (67.75%)
		<i>sp</i> ^{1.90} at C5	C5 (42.54%): s(34.47%)p(65.42%)
σ(N2-C6)	1.98568	$sp^{1.82}$ at N2	N2 (58.76%): s(35.26%)p(64.25%)
		$sp^{2.00}$ at C6	C6 (41.24%): <i>s</i> (33.34%) <i>p</i> (66.53%)
π(N2-C6)	1.75111	n/a	N2 (63.61%): s(0.00%)p(99.68%)
			C6 (36.39%): <i>s</i> (0.00%) <i>p</i> (99.86%)
Lone pair 1 (N3)	1.89464	$sp^{2.06}$	s(32.68%)p(67.18%)
σ(N3-C5)	1.98220	$sp^{2.26}$ at N3	N3 (57.77%): <i>s</i> (30.55%) <i>p</i> (69.02%)
		<i>sp</i> ^{2.09} at C5	C5 (42.23%): s(32.36%)p(67.55%)
σ(N3-C7)	1.98791	$sp^{1.72}$ at N3	N3 (58.86%): <i>s</i> (36.61%) <i>p</i> (62.92%)
		<i>sp</i> ^{1.97} at C7	C7 (41.14%): <i>s</i> (33.58%) <i>p</i> (66.29%)
π(N3-C7)	1.78412	n/a	N3 (63.19%): <i>s</i> (0.00%) <i>p</i> (99.71%)
			C7 (36.81%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(C6-C8)	1.98857	<i>sp</i> ^{1.85} at C8	C8 (50.54%): <i>s</i> (35.01%) <i>p</i> (64.79%)
		<i>sp</i> ^{1.63} at C6	C6 (49.46%): s(37.99%)p(61.84%)
σ(C7-C8)	1.98757	<i>sp</i> ^{1.89} at C8	C8 (50.37%): <i>s</i> (34.58%) <i>p</i> (65.23%)
		<i>sp</i> ^{1.64} at C7	C7 (49.63%): s(37.78%)p(62.05%)
σ(C11-C12)	1.97723	$sp^{1.73}$ at C11	C11 (51.16%): <i>s</i> (36.63%) <i>p</i> (63.26%)
		<i>sp</i> ^{1.86} at C12	C12 (48.84%): s(34.87%)p(64.95%)
π (C11-C12)	1.62402	n/a	C11 (47.85%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (52.15%): s(0.00%)p(99.90%)
σ(C11-C10)	1.97253	$sp^{2.21}$ at C11	C11 (49.28%): <i>s</i> (31.11%) <i>p</i> (68.78%)
		<i>sp</i> ^{1.96} at C10	C10 (50.72%): s(33.73%)p(66.15%)
Lone pair 1 (N4)	1.87776	$sp^{2.59}$	s(27.81%)p(72.16%)
σ(N4-C9)	1.98807	$sp^{1.60}$ at N4	N4 (59.60%): s(38.36%)p(61.27%)
		<i>sp</i> ^{1.90} at C9	C9 (40.40%): s(34.43%)p(65.45%)
π(N4-C9)	1.85065	n/a	N4 (62.24%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (37.56%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98158	$sp^{1.96}$ at N4	N4 (58.78%): <i>s</i> (33.69%) <i>p</i> (65.97%)
		$sp^{2.29}$ at C10	C10(41.22%); $s(30.39%)p(69.51%)$

Table S59. NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82080	$sp^{2.86}$	s(25.88%)p(74.10%)
σ(N1-C5)	1.98451	$sp^{1.79}$ at N1	N1 (59.01%): <i>s</i> (35.79%) <i>p</i> (63.96%)
		$sp^{2.03}$ at C5	C5 (40.99%): <i>s</i> (32.98%) <i>p</i> (66.92%)
π(N1-C5)	1.81607	n/a	N1 (76.42%): s(0.00%)p(99.93%)
			C11 (23.58%): <i>s</i> (0.00%) <i>p</i> (99.80%)
σ(N1-C11)	1.98525	$sp^{1.61}$ at N1	N1 (58.66%): s(38.18%)p(61.58%)
		$sp^{2.10}$ at C11	C11 (41.34%): s(32.24%)p(67.66%)
Lone pair 1 (N2)	1.89989	$sp^{2.06}$	s(32.61%)p(67.21%)
σ(N2-C5)	1.98442	$sp^{2.12}$ at N2	N2 (57.37%): s(31.87%)p(67.67%)
		$sp^{1.89}$ at C5	C5 (42.63%): s(34.55%)p(65.35%)
σ(N2-C6)	1.98558	$sp^{1.81}$ at N2	N2 (58.65%): s(35.39%)p(64.13%)
		$sp^{2.00}$ at C6	C6 (41.35%): s(33.34%)p(66.54%)
π(N2-C6)	1.75211	n/a	N2 (63.48%): s(0.00%)p(99.67%)
			C6 (36.52%): s(0.00%)p(99.87%)
Lone pair 1 (N3)	1.89241	$sp^{2.07}$	s(32.50%)p(67.35%)
σ(N3-C5)	1.98208	<i>sp</i> ^{2.25} at N3	N3 (57.65%): s(30.62%)p(68.96%)
		$sp^{2.09}$ at C5	C5 (42.35%): s(32.34%)p(67.57%)
σ(N3-C7)	1.98775	$sp^{1.71}$ at N3	N3 (58.74%): s(36.72%)p(62.81%)
		$sp^{1.98}$ at C7	C7 (41.26%): s(33.57%)p(66.31%)
π(N3-C7)	1.78465	n/a	N3 (63.05%): s(0.00%)p(99.70%)
			C7 (36.95%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(C6-C8)	1.98799	<i>sp</i> ^{1.85} at C8	C8 (50.55%): <i>s</i> (34.98%) <i>p</i> (64.84%)
		$sp^{1.63}$ at C6	C6 (49.45%): <i>s</i> (37.98%) <i>p</i> (61.86%)
σ(C7-C8)	1.98701	$sp^{1.89}$ at C8	C8 (50.39%): s(34.56%)p(65.26%)
		$sp^{1.64}$ at C7	C7 (49.61%): <i>s</i> (37.77%) <i>p</i> (62.08%)
σ(C11-C12)	1.97670	$sp^{1.73}$ at C11	C11 (51.14%): <i>s</i> (36.64%) <i>p</i> (63.25%)
		$sp^{1.87}$ at C12	C12 (48.86%): s(34.82%)p(65.01%)
π(C11-C12)	1.62356	n/a	C11 (47.89%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (52.11%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97207	<i>sp</i> ^{2.22} at C11	C11 (49.32%): <i>s</i> (31.05%) <i>p</i> (68.85%)
		<i>sp</i> ^{1.96} at C10	C10 (50.68%): <i>s</i> (33.69%) <i>p</i> (66.20%)
Lone pair 1 (N4)	1.87570	$sp^{2.61}$	s(27.68%)p(72.29%)
σ(N4-C9)	1.98786	<i>sp</i> ^{1.59} at N4	N4 (59.49%): s(38.47%)p(61.17%)
		<i>sp</i> ^{1.90} at C9	C9 (40.51%): <i>s</i> (34.42%) <i>p</i> (65.46%)
π(N4-C9)	1.85161	n/a	N4 (62.41%): s(0.00%)p(99.82%)
			C9 (37.59%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98136	<i>sp</i> ^{1.96} at N4	N4 (58.62%): <i>s</i> (33.72%) <i>p</i> (65.96%)
		$sp^{2.28}$ at C10	C10(41.38%): $s(30.46%)n(69.45%)$

Table S60. NBO analysis^{*a*} of (CF3L2)₂Zn with the O3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82542	$sp^{2.90}$	s(25.67%)p(74.32%)
σ(N1-C5)	1.98458	$sp^{1.78}$ at N1	N1 (59.07%): s(35.89%)p(63.85%)
		$sp^{2.03}$ at C5	C5 (40.93%): s(32.99%)p(66.90%)
π(N1-C5)	1.82035	n/a	N1 (77.22%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C11 (22.78%): <i>s</i> (0.00%) <i>p</i> (99.81%)
σ(N1-C11)	1.98533	$sp^{1.60}$ at N1	N1 (58.75%): s(38.31%)p(61.44%)
		$sp^{2.10}$ at C11	C11 (41.25%): s(32.25%)p(67.64%)
Lone pair 1 (N2)	1.90434	$sp^{2.13}$	s(31.91%)p(67.91%)
σ(N2-C5)	1.98457	<i>sp</i> ^{2.09} at N2	N2 (57.52%): s(32.19%)p(67.33%)
		$sp^{1.89}$ at C5	C5 (42.48%): s(34.52%)p(65.37%)
σ(N2-C6)	1.98609	<i>sp</i> ^{1.78} at N2	N2 (58.78%): s(35.77%)p(63.73%)
		$sp^{1.99}$ at C6	C6 (41.22%): s(33.39%)p(66.48%)
π(N2-C6)	1.75163	n/a	N2 (63.98%): s(0.00%)p(99.68%)
			C6 (36.02%): s(0.00%)p(99.87%)
Lone pair 1 (N3)	1.89692	$sp^{2.13}$	s(31.87%)p(67.99%)
σ(N3-C5)	1.98240	$sp^{2.22}$ at N3	N3 (57.81%): s(30.93%)p(68.62%)
		$sp^{2.09}$ at C5	C5 (42.19%): s(32.35%)p(67.55%)
σ(N3-C7)	1.98801	<i>sp</i> ^{1.69} at N3	N3 (58.85%): s(37.05%)p(62.47%)
		$sp^{1.97}$ at C7	C7 (41.15%): s(33.62%)p(66.24%)
π(N3-C7)	1.78543	n/a	N3 (63.50%): <i>s</i> (0.00%) <i>p</i> (99.71%)
			C7 (36.50%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(C6-C8)	1.98798	<i>sp</i> ^{1.85} at C8	C8 (50.51%): <i>s</i> (35.01%) <i>p</i> (64.78%)
		$sp^{1.62}$ at C6	C6 (49.49%): <i>s</i> (38.05%) <i>p</i> (61.78%)
σ(C7-C8)	1.98709	$sp^{1.88}$ at C8	C8 (50.35%): <i>s</i> (34.59%) <i>p</i> (65.20%)
		$sp^{1.64}$ at C7	C7 (49.65%): s(37.83%)p(62.00%)
σ(C11-C12)	1.97702	$sp^{1.73}$ at C11	C11 (51.13%): <i>s</i> (36.61%) <i>p</i> (63.28%)
		<i>sp</i> ^{1.86} at C12	C12 (48.87%): s(34.89%)p(64.92%)
π(C11-C12)	1.62598	n/a	C11 (47.44%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (52.56%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97261	$sp^{2.22}$ at C11	C11 (49.29%): <i>s</i> (31.06%) <i>p</i> (68.82%)
		$sp^{1.96}$ at C10	C10 (50.71%): <i>s</i> (33.70%) <i>p</i> (66.17%)
Lone pair 1 (N4)	1.88070	$sp^{2.67}$	s(27.21%)p(72.76%)
σ(N4-C9)	1.98779	$sp^{1.58}$ at N4	N4 (59.58%): <i>s</i> (38.68%) <i>p</i> (60.94%)
		<i>sp</i> ^{1.90} at C9	C9 (40.42%): s(34.47%)p(65.40%)
π(N4-C9)	1.85387	n/a	N4 (62.49%): s(0.00%)p(99.83%)
			C9 (37.51%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98159	$sp^{1.93}$ at N4	N4 (58.79%): <i>s</i> (33.98%) <i>p</i> (65.67%)
		$sp^{2.28}$ at C10	C10(41.21%); $s(30.45%)p(69.45%)$

Table S61. NBO analysis^{*a*} of (CF3L2)₂Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82844	$sp^{2.90}$	s(25.62%)p(74.37%)
σ(N1-C5)	1.98484	$sp^{1.78}$ at N1	N1 (59.08%): s(35.93%)p(63.80%)
		$sp^{2.03}$ at C5	C5 (40.92%): <i>s</i> (33.00%) <i>p</i> (66.90%)
π(N1-C5)	1.82213	n/a	N1 (77.56%): s(0.00%)p(99.92%)
			C11 (22.44%): <i>s</i> (0.00%) <i>p</i> (99.79%)
σ(N1-C11)	1.98545	$sp^{1.60}$ at N1	N1 (58.69%): <i>s</i> (38.31%) <i>p</i> (61.43%)
		$sp^{2.10}$ at C11	C11 (41.31%): s(32.26%)p(67.64%)
Lone pair 1 (N2)	1.90459	$sp^{2.10}$	s(32.22%)p(67.60%)
σ(N2-C5)	1.98479	$sp^{2.10}$ at N2	N2 (57.46%): <i>s</i> (32.08%) <i>p</i> (67.43%)
		<i>sp</i> ^{1.89} at C5	C5 (42.54%): <i>s</i> (34.52%) <i>p</i> (65.38%)
σ(N2-C6)	1.98610	<i>sp</i> ^{1.77} at N2	N2 (58.69%): s(35.55%)p(63.03%)
		<i>sp</i> ^{1.99} at C6	C6 (41.31%): <i>s</i> (33.36%) <i>p</i> (66.51%)
π(N2-C6)	1.75137	n/a	N2 (64.13%): s(0.00%)p(99.65%)
			C6 (35.87%): <i>s</i> (0.00%) <i>p</i> (99.85%)
Lone pair 1 (N3)	1.89734	$sp^{2.11}$	s(32.10%)p(67.75%)
σ(N3-C5)	1.98259	$sp^{2.23}$ at N3	N3 (57.75%): <i>s</i> (30.84%) <i>p</i> (68.70%)
		<i>sp</i> ^{2.09} at C5	C5 (42.25%): s(32.35%)p(67.56%)
σ(N3-C7)	1.98812	$sp^{1.70}$ at N3	N3 (58.79%): <i>s</i> (36.89%) <i>p</i> (62.61%)
		<i>sp</i> ^{1.97} at C7	C7 (41.21%): <i>s</i> (33.60%) <i>p</i> (66.27%)
π(N3-C7)	1.78515	n/a	N3 (63.67%): <i>s</i> (0.00%) <i>p</i> (99.68%)
			C7 (36.33%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(C6-C8)	1.98821	<i>sp</i> ^{1.85} at C8	C8 (50.57%): <i>s</i> (34.98%) <i>p</i> (64.82%)
		<i>sp</i> ^{1.63} at C6	C6 (49.43%): s(37.97%)p(61.86%)
σ(C7-C8)	1.98730	<i>sp</i> ^{1.89} at C8	C8 (50.40%): <i>s</i> (34.56%) <i>p</i> (65.25%)
		<i>sp</i> ^{1.64} at C7	C7 (49.60%): s(37.76%)p(62.08%)
σ(C11-C12)	1.97720	$sp^{1.73}$ at C11	C11 (51.10%): <i>s</i> (36.62%) <i>p</i> (63.27%)
		<i>sp</i> ^{1.86} at C12	C12 (48.90%): s(34.87%)p(64.94%)
π (C11-C12)	1.62749	n/a	C11 (47.39%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (52.61%): s(0.00%)p(99.90%)
σ(C11-C10)	1.97279	$sp^{2.22}$ at C11	C11 (49.27%): <i>s</i> (31.05%) <i>p</i> (68.83%)
		<i>sp</i> ^{1.96} at C10	C10 (50.73%): s(33.72%)p(66.16%)
Lone pair 1 (N4)	1.88191	$sp^{2.65}$	s(27.36%)p(72.61%)
σ(N4-C9)	1.98801	$sp^{1.58}$ at N4	N4 (59.52%): s(38.58%)p(61.03%)
		<i>sp</i> ^{1.90} at C9	C9 (40.48%): s(34.46%)p(65.41%)
π(N4-C9)	1.85470	n/a	N4 (62.64%): <i>s</i> (0.00%) <i>p</i> (99.81%)
			C9 (37.36%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98177	$sp^{1.94}$ at N4	N4 (58.69%): <i>s</i> (33.92%) <i>p</i> (65.72%)
		$sp^{2.28}$ at C10	C10(41.31%); $s(30.44%)p(69.46%)$

Table S62. NBO analysis^a of (CF3L2)₂Zn with the PBE0 functional.

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81960	$sp^{2.87}$	s(25.83%)p(74.15%)
Lone pair 2 (N1)	1.55936	n/a	s(0.00%)p(99.91%)
σ(N1-C5)	1.98445	<i>sp</i> ^{1.79} at N1	N1 (59.30%): s(35.80%)p(63.99%)
		$sp^{2.02}$ at C5	C5 (40.70%): s(33.06%)p(66.86%)
σ(N1-C11)	1.98535	$sp^{1.61}$ at N1	N1 (58.96%): s(38.24%)p(61.55%)
		$sp^{2.10}$ at C11	C11 (41.04%): s(32.22%)p(67.69%)
Lone pair 1 (N2)	1.90261	<i>sp</i> ^{2.08}	s(32.35%)p(67.43%)
σ(N2-C5)	1.98394	<i>sp</i> ^{2.10} at N2	N2 (57.74%): s(32.08%)p(67.50%)
		$sp^{1.90}$ at C5	C5 (42.26%): s(34.50%)p(65.42%)
σ(N2-C6)	1.98555	<i>sp</i> ^{1.81} at N2	N2 (58.83%): s(35.44%)p(64.11%)
		$sp^{1.99}$ at C6	C6 (41.17%): s(33.44%)p(66.47%)
π(N2-C6)	1.75275	n/a	N2 (64.89%): s(0.00%)p(99.64%)
			C6 (35.11%): s(0.00%)p(99.85%)
Lone pair 1 (N3)	1.89556	$sp^{2.09}$	s(32.29%)p(67.52%)
σ(N3-C5)	1.98177	<i>sp</i> ^{2.23} at N3	N3 (58.02%): s(30.85%)p(68.76%)
		$sp^{2.09}$ at C5	C5 (41.98%): s(32.34%)p(67.59%)
σ(N3-C7)	1.98771	<i>sp</i> ^{1.71} at N3	N3 (58.87%): s(36.71%)p(62.86%)
		<i>sp</i> ^{1.96} at C7	C7 (41.13%): <i>s</i> (33.71%) <i>p</i> (66.19%)
π(N3-C7)	1.78691	n/a	N3 (64.45%): <i>s</i> (0.00%) <i>p</i> (99.67%)
			C7 (35.55%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(C6-C8)	1.98778	$sp^{1.62}$ at C6	C6 (49.49%): <i>s</i> (38.09%) <i>p</i> (61.76%)
		<i>sp</i> ^{1.85} at C8	C8 (50.51%): s(35.05%)p(64.77%)
σ(C7-C8)	1.98679	$sp^{1.64}$ at C7	C7 (49.64%): <i>s</i> (37.84%) <i>p</i> (62.01%)
		<i>sp</i> ^{1.88} at C8	C8 (50.36%): s(34.64%)p(65.19%)
σ(C11-C12)	1.97678	<i>sp</i> ^{1.73} at C11	C11 (51.01%): <i>s</i> (36.59%) <i>p</i> (63.31%)
		<i>sp</i> ^{1.85} at C12	C12 (48.99%): s(35.00%)p(64.84%)
π (C11-C12)	1.62792	n/a	C11 (46.85%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.15%): s(0.00%)p(99.90%)
σ(C11-C10)	1.97228	$sp^{2.21}$ at C11	C11 (49.30%): <i>s</i> (31.12%) <i>p</i> (68.77%)
		<i>sp</i> ^{1.96} at C10	C10 (50.70%): s(33.74%)p(66.14%)
Lone pair 1 (N4)	1.87927	<i>sp</i> ^{2.66}	s(27.32%)p(72.63%)
σ(N4-C9)	1.98779	$sp^{1.59}$ at N4	N4 (59.65%): s(38.55%)p(61.12%)
		<i>sp</i> ^{1.89} at C9	C9 (40.35%): <i>s</i> (34.55%) <i>p</i> (65.36%)
π(N4-C9)	1.85836	n/a	N4 (63.10%): s(0.00%)p(99.80%)
			C9 (39.90%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98120	<i>sp</i> ^{1.93} at N4	N4 (59.01%): <i>s</i> (34.01%) <i>p</i> (65.69%)
		$sp^{2.29}$ at C10	C10 (40.99%): s(30.38%)p(69.54%)

Table S63. NBO analysi	is ^a of $(CF3L2)_2Z$	In with the M06	functional.
------------------------	---------------------------------	-----------------	-------------

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84913	$sp^{2.97}$	s(25.20%)p(74.78%)
Lone pair 2 (N1)	1.56422	n/a	s(0.00%)p(99.91%)
σ(N1-C5)	1.98480	$sp^{1.76}$ at N1	N1 (59.09%): s(36.19%)p(63.56%)
		$sp^{2.03}$ at C5	C5 (40.91%): s(32.96%)p(66.95%)
σ(N1-C11)	1.98507	<i>sp</i> ^{1.59} at N1	N1 (58.71%): s(38.49%)p(61.26%)
		$sp^{2.10}$ at C11	C11 (41.29%): s(32.27%)p(67.64%)
Lone pair 1 (N2)	1.90970	<i>sp</i> ^{2.16}	s(31.59%)p(68.22%)
σ(N2-C5)	1.98502	<i>sp</i> ^{2.07} at N2	N2 (57.59%): s(32.39%)p(67.13%)
		$sp^{1.89}$ at C5	C5 (42.41%): s(34.58%)p(65.34%)
σ(N2-C6)	1.98641	<i>sp</i> ^{1.77} at N2	N2 (58.86%): s(35.89%)p(63.61%)
		$sp^{1.99}$ at C6	C6 (41.14%): s(33.36%)p(66.52%)
π(N2-C6)	1.74943	n/a	N2 (64.38%): s(0.00%)p(99.62%)
			C6 (35.62%): s(0.00%)p(99.85%)
Lone pair 1 (N3)	1.90350	$sp^{2.18}$	s(31.38%)p(68.46%)
σ(N3-C5)	1.98290	<i>sp</i> ^{2.19} at N3	N3 (57.93%): s(31.22%)p(68.34%)
		$sp^{2.09}$ at C5	C5 (42.07%): s(32.35%)p(67.57%)
σ(N3-C7)	1.98826	<i>sp</i> ^{1.67} at N3	N3 (58.94%): s(37.25%)p(62.26%)
		$sp^{1.97}$ at C7	C7 (41.06%): <i>s</i> (33.59%) <i>p</i> (66.29%)
π(N3-C7)	1.78600	n/a	N3 (63.94%): <i>s</i> (0.00%) <i>p</i> (99.65%)
			C7 (36.06%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(C6-C8)	1.98822	$sp^{1.85}$ at C8	C8 (50.54%): <i>s</i> (34.96%) <i>p</i> (64.85%)
		<i>sp</i> ^{1.63} at C6	C6 (49.46%): s(38.01%)p(61.84%)
σ(C7-C8)	1.98735	$sp^{1.89}$ at C8	C8 (50.36%): <i>s</i> (34.53%) <i>p</i> (65.28%)
		<i>sp</i> ^{1.64} at C7	C7 (49.64%): s(37.79%)p(62.05%)
σ(C11-C12)	1.97763	$sp^{1.73}$ at C11	C11 (51.11%): <i>s</i> (36.63%) <i>p</i> (63.26%)
		<i>sp</i> ^{1.86} at C12	C12 (48.89%): s(34.94%)p(64.88%)
π (C11-C12)	1.63427	n/a	C11 (46.84%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (53.16%): s(0.00%)p(99.90%)
σ(C11-C10)	1.97340	$sp^{2.22}$ at C11	C11 (49.19%): <i>s</i> (31.04%) <i>p</i> (68.85%)
		<i>sp</i> ^{1.96} at C10	C10 (50.81%): s(33.75%)p(66.14%)
Lone pair 1 (N4)	1.89318	<i>sp</i> ^{2.73}	s(26.80%)p(73.16%)
σ(N4-C9)	1.98794	<i>sp</i> ^{1.57} at N4	N4 (59.68%): s(38.83%)p(60.79%)
		<i>sp</i> ^{1.90} at C9	C9 (40.32%): s(34.43%)p(65.46%)
π(N4-C9)	1.86067	n/a	N4 (62.56%): s(0.00%)p(99.79%)
			C9 (37.44%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98180	<i>sp</i> ^{1.91} at N4	N4 (58.91%): <i>s</i> (34.24%) <i>p</i> (65.42%)
		$sp^{2.29}$ at C10	C10 (41.09%): s(30.40%)p(69.52%)

Table S64. NBO ar	alysis ^a of	$(^{\mathbf{CF3}}\mathbf{L2})_2\mathbf{Zn}$	with the	M06-2X	functional.
-------------------	------------------------	---	----------	--------	-------------

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83248	$sp^{2.89}$	s(24.96%)p(75.02%)
Lone pair 2 (N1)	1.56898	n/a	s(0.00%)p(99.92%)
σ(N1-C5)	1.98489	$sp^{1.75}$ at N1	N1 (59.04%): s(36.25%)p(63.48%)
		$sp^{2.03}$ at C5	C5 (40.96%): <i>s</i> (32.97%) <i>p</i> (66.92%)
σ(N1-C11)	1.98526	$sp^{1.58}$ at N1	N1 (58.70%): s(38.66%)p(61.07%)
		$sp^{2.10}$ at C11	C11 (41.30%): <i>s</i> (32.24%) <i>p</i> (67.65%)
Lone pair 1 (N2)	1.90874	$sp^{2.20}$	s(31.17%)p(68.65%)
σ(N2-C5)	1.98512	<i>sp</i> ^{2.05} at N2	N2 (57.56%): s(32.58%)p(66.92%)
		$sp^{1.89}$ at C5	C5 (42.44%): <i>s</i> (34.53%) <i>p</i> (65.36%)
σ(N2-C6)	1.98655	<i>sp</i> ^{1.75} at N2	N2 (58.78%): s(36.12%)p(63.36%)
		$sp^{2.00}$ at C6	C6 (41.22%): <i>s</i> (33.34%) <i>p</i> (66.52%)
π(N2-C6)	1.75029	n/a	N2 (64.78%): s(0.00%)p(99.66%)
			C6 (35.22%): <i>s</i> (0.00%) <i>p</i> (99.85%)
Lone pair 1 (N3)	1.90193	$sp^{2.21}$	s(31.15%)p(68.70%)
σ(N3-C5)	1.98307	$sp^{2.18}$ at N3	N3 (57.84%): <i>s</i> (31.32%) <i>p</i> (68.22%)
		<i>sp</i> ^{2.09} at C5	C5 (42.16%): s(32.36%)p(67.54%)
σ(N3-C7)	1.98825	$sp^{1.66}$ at N3	N3 (58.84%): <i>s</i> (37.37%) <i>p</i> (62.12%)
		<i>sp</i> ^{1.97} at C7	C7 (41.16%): s(33.58%)p(66.28%)
π(N3-C7)	1.78608	n/a	N3 (64.24%): <i>s</i> (0.00%) <i>p</i> (99.68%)
			C7 (35.76%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(C6-C8)	1.98783	$sp^{1.85}$ at C8	C8 (50.51%): <i>s</i> (34.98%) <i>p</i> (64.81%)
		<i>sp</i> ^{1.62} at C6	C6 (49.49%): s(38.06%)p(61.76%)
σ(C7-C8)	1.98708	$sp^{1.89}$ at C8	C8 (50.35%): <i>s</i> (34.56%) <i>p</i> (65.23%)
		<i>sp</i> ^{1.64} at C7	C7 (49.65%): s(37.83%)p(61.99%)
σ(C11-C12)	1.97714	$sp^{1.73}$ at C11	C11 (51.09%): <i>s</i> (36.63%) <i>p</i> (63.26%)
		<i>sp</i> ^{1.86} at C12	C12 (48.91%): s(34.93%)p(64.87%)
π (C11-C12)	1.63466	n/a	C11 (46.75%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.25%): s(0.00%)p(99.90%)
σ(C11-C10)	1.97336	$sp^{2.22}$ at C11	C11 (49.22%): <i>s</i> (31.05%) <i>p</i> (68.82%)
		<i>sp</i> ^{1.96} at C10	C10 (50.78%): s(33.74%)p(66.13%)
Lone pair 1 (N4)	1.88705	<i>sp</i> ^{2.76}	s(26.60%)p(73.37%)
σ(N4-C9)	1.98770	$sp^{1.56}$ at N4	N4 (59.54%): s(38.91%)p(60.69%)
		<i>sp</i> ^{1.90} at C9	C9 (40.46%): s(34.46%)p(65.41%)
π(N4-C9)	1.86193	n/a	N4 (62.71%): <i>s</i> (0.00%) <i>p</i> (99.81%)
		1.00	C9 (37.29%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98194	$sp^{1.90}$ at N4	N4 (58.82%): <i>s</i> (34.35%) <i>p</i> (65.28%)
		$sp^{2.29}$ at C10	C10 (41.18%): $s(30.38\%)p(69.51\%)$

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82237	$sp^{2.60}$	s(27.75%)p(72.23%)
σ(N1-C5)	1.98439	$sp^{1.87}$ at N1	N1 (59.30%): <i>s</i> (34.79%) <i>p</i> (64.98%)
		$sp^{2.02}$ at C5	C5 (40.70%): <i>s</i> (33.08%) <i>p</i> (66.83%)
π(N1-C5)	1.81909	n/a	N1 (76.40%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C11 (23.60%): <i>s</i> (0.00%) <i>p</i> (99.80%)
σ(N1-C11)	1.98565	$sp^{1.67}$ at N1	N1 (59.07%): s(37.32%)p(62.46%)
		$sp^{2.12}$ at C11	C11 (40.93%): s(32.05%)p(67.87%)
Lone pair 1 (N2)	1.90248	$sp^{1.94}$	s(33.94%)p(65.88%)
σ(N2-C5)	1.98378	$sp^{2.19}$ at N2	N2 (57.76%): s(31.25%)p(68.32%)
		$sp^{1.90}$ at C5	C5 (42.24%): s(34.41%)p(65.51%)
σ(N2-C6)	1.98500	<i>sp</i> ^{1.87} at N2	N2 (58.99%): s(34.69%)p(64.86%)
		$sp^{2.00}$ at C6	C6 (41.01%): <i>s</i> (33.28%) <i>p</i> (66.62%)
π(N2-C6)	1.75701	n/a	N2 (64.49%): s(0.00%)p(99.69%)
			C6 (35.51%): <i>s</i> (0.00%) <i>p</i> (99.86%)
Lone pair 1 (N3)	1.89496	$sp^{1.96}$	s(33.77%)p(66.08%)
σ(N3-C5)	1.98144	$sp^{2.31}$ at N3	N3 (58.04%): <i>s</i> (30.07%) <i>p</i> (69.53%)
		$sp^{2.08}$ at C5	C5 (41.96%): <i>s</i> (32.39%) <i>p</i> (67.53%)
σ(N3-C7)	1.98749	$sp^{1.76}$ at N3	N3 (59.07%): <i>s</i> (36.02%) <i>p</i> (63.54%)
		$sp^{1.98}$ at C7	C7 (40.93%): <i>s</i> (33.54%) <i>p</i> (66.36%)
π(N3-C7)	1.78850	n/a	N3 (64.08%): <i>s</i> (0.00%) <i>p</i> (99.71%)
			C7 (35.92%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(C6-C8)	1.98873	$sp^{1.85}$ at C8	C8 (50.44%): <i>s</i> (34.97%) <i>p</i> (64.84%)
		<i>sp</i> ^{1.62} at C6	C6 (49.56%): s(38.08%)p(61.76%)
σ(C7-C8)	1.98758	$sp^{1.89}$ at C8	C8 (50.29%): <i>s</i> (34.55%) <i>p</i> (65.27%)
		<i>sp</i> ^{1.64} at C7	C7 (49.71%): s(37.84%)p(62.00%)
σ(C11-C12)	1.97779	$sp^{1.73}$ at C11	C11 (50.89%): <i>s</i> (36.55%) <i>p</i> (63.33%)
		<i>sp</i> ^{1.85} at C12	C12 (49.11%): s(35.07%)p(64.76%)
π (C11-C12)	1.63950	n/a	C11 (46.74%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.26%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97252	$sp^{2.19}$ at C11	C11 (49.48%): <i>s</i> (31.33%) <i>p</i> (68.55%)
		<i>sp</i> ^{1.96} at C10	C10 (50.52%): s(33.70%)p(66.18%)
Lone pair 1 (N4)	1.87718	$sp^{2.45}$	s(28.96%)p(71.00%)
σ(N4-C9)	1.98809	$sp^{1.63}$ at N4	N4 (59.84%): <i>s</i> (37.90%) <i>p</i> (61.76%)
		<i>sp</i> ^{1.92} at C9	C9 (40.16%): s(34.27%)p(65.63%)
π(N4-C9)	1.84913	n/a	N4 (63.34%): s(0.00%)p(99.82%)
			C9 (36.66%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.97252	$sp^{2.02}$ at N4	N4 (58.92%): <i>s</i> (33.01%) <i>p</i> (66.67%)
		$sp^{2.29}$ at C10	C10(41.08%); s(30.39%)p(69.53%)

Table S66. Solvated NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the M06-L functional.

^a Calculated in solution at the optimized S0 geometry using M06-L (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82218	$sp^{2.82}$	s(26.18%)p(73.80%)
σ(N1-C5)	1.98474	$sp^{1.80}$ at N1	N1 (59.08%): s(35.57%)p(64.17%)
		$sp^{2.03}$ at C5	C5 (40.92%): <i>s</i> (32.98%) <i>p</i> (66.92%)
π(N1-C5)	1.82168	n/a	N1 (76.52%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C11 (23.48%): <i>s</i> (0.00%) <i>p</i> (99.80%)
σ(N1-C11)	1.98548	$sp^{1.62}$ at N1	N1 (58.82%): <i>s</i> (38.10%) <i>p</i> (61.65%)
		$sp^{2.11}$ at C11	C11 (41.18%): s(32.14%)p(67.76%)
Lone pair 1 (N2)	1.90474	$sp^{2.06}$	s(32.58%)p(67.26%)
σ(N2-C5)	1.98472	$sp^{2.12}$ at N2	N2 (57.73%): s(31.91%)p(67.63%)
		$sp^{1.90}$ at C5	C5 (42.27%): s(34.49%)p(65.41%)
σ(N2-C6)	1.98586	$sp^{1.81}$ at N2	N2 (58.96%): s(35.39%)p(64.13%)
		$sp^{2.01}$ at C6	C6 (41.04%): s(33.14%)p(66.73%)
π(N2-C6)	1.75431	n/a	N2 (64.52%): s(0.00%)p(99.69%)
			C6 (35.48%): <i>s</i> (0.00%) <i>p</i> (99.85%)
Lone pair 1 (N3)	1.89582	$sp^{2.07}$	s(32.49%)p(67.38%)
σ(N3-C5)	1.98255	<i>sp</i> ^{2.25} at N3	N3 (57.79%): <i>s</i> (30.66%) <i>p</i> (68.91%)
		$sp^{2.08}$ at C5	C5 (42.21%): s(32.40%)p(67.51%)
σ(N3-C7)	1.98807	$sp^{1.71}$ at N3	N3 (59.05%): s(36.70%)p(62.84%)
		$sp^{1.99}$ at C7	C7 (40.95%): s(33.39%)p(66.48%)
π(N3-C7)	1.78626	n/a	N3 (64.03%): s(0.00%)p(99.72%)
			C7 (35.97%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(C6-C8)	1.98876	<i>sp</i> ^{1.86} at C8	C8 (50.44%): <i>s</i> (34.84%) <i>p</i> (64.97%)
		$sp^{1.63}$ at C6	C6 (49.56%): <i>s</i> (37.99%) <i>p</i> (61.84%)
σ(C7-C8)	1.98255	$sp^{1.90}$ at C8	C8 (50.29%): <i>s</i> (34.42%) <i>p</i> (65.39%)
		<i>sp</i> ^{1.64} at C7	C7 (49.71%): <i>s</i> (37.76%) <i>p</i> (62.08%)
σ(C11-C12)	1.97707	<i>sp</i> ^{1.73} at C11	C11 (51.07%): <i>s</i> (36.61%) <i>p</i> (63.28%)
		<i>sp</i> ^{1.86} at C12	C12 (48.93%): <i>s</i> (34.93%) <i>p</i> (64.89%)
π(C11-C12)	1.64008	n/a	C11 (47.31%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (52.69%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97250	$sp^{2.20}$ at C11	C11 (49.46%): <i>s</i> (31.18%) <i>p</i> (68.70%)
		<i>sp</i> ^{1.97} at C10	C10 (50.54%): <i>s</i> (33.62%) <i>p</i> (66.26%)
Lone pair 1 (N4)	1.87731	$sp^{2.60}$	s(27.80%)p(72.17%)
σ(N4-C9)	1.98811	$sp^{1.59}$ at N4	N4 (59.78%): <i>s</i> (38.46%) <i>p</i> (61.17%)
		<i>sp</i> ^{1.92} at C9	C9 (40.22%): <i>s</i> (34.22%) <i>p</i> (65.65%)
π(N4-C9)	1.84868	n/a	N4 (63.61%): s(0.00%)p(99.83%)
			C9 (36.39%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98190	<i>sp</i> ^{1.97} at N4	N4 (58.67%): <i>s</i> (33.60%) <i>p</i> (66.06%)
		$sp^{2.28}$ at C10	C10(41.33%): $s(30.48%)n(69.42%)$

Table S67. Solvated NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the TPSSh functional.

^a Calculated in solution at the optimized S0 geometry using TPSSh (SMD "dichloromethane"/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82122	$sp^{2.87}$	s(25.86%)p(74.13%)
σ(N1-C5)	1.98461	$sp^{1.79}$ at N1	N1 (58.97%): <i>s</i> (35.74%) <i>p</i> (64.01%)
		$sp^{2.03}$ at C5	C5 (41.03%): <i>s</i> (32.93%) <i>p</i> (66.97%)
π(N1-C5)	1.82080	n/a	N1 (76.36%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C11 (23.64%): <i>s</i> (0.00%) <i>p</i> (99.81%)
σ(N1-C11)	1.98526	$sp^{1.61}$ at N1	N1 (58.69%): s(38.26%)p(61.50%)
		$sp^{2.10}$ at C11	C11 (41.31%): s(32.19%)p(67.71%)
Lone pair 1 (N2)	1.90188	$sp^{2.08}$	s(32.38%)p(67.44%)
σ(N2-C5)	1.98469	$sp^{2.11}$ at N2	N2 (57.43%): s(31.99%)p(67.56%)
		$sp^{1.89}$ at C5	C5 (42.57%): s(34.56%)p(65.34%)
σ(N2-C6)	1.98576	$sp^{1.80}$ at N2	N2 (58.85%): s(35.51%)p(64.01%)
		$sp^{2.01}$ at C6	C6 (41.15%): s(33.14%)p(66.74%)
π(N2-C6)	1.75524	n/a	N2 (64.36%): s(0.00%)p(99.68%)
			C6 (35.64%): <i>s</i> (0.00%) <i>p</i> (99.86%)
Lone pair 1 (N3)	1.89378	$sp^{2.09}$	s(32.32%)p(67.53%)
σ(N3-C5)	1.98243	<i>sp</i> ^{2.24} at N3	N3 (57.68%): <i>s</i> (30.73%) <i>p</i> (68.85%)
		$sp^{2.09}$ at C5	C5 (42.32%): <i>s</i> (32.38%) <i>p</i> (67.53%)
σ(N3-C7)	1.98791	$sp^{1.70}$ at N3	N3 (58.92%): s(36.80%)p(62.74%)
		$sp^{1.99}$ at C7	C7 (41.08%): s(33.37%)p(66.50%)
π(N3-C7)	1.78670	n/a	N3 (63.85%): s(0.00%)p(99.71%)
			C7 (36.15%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(C6-C8)	1.98819	<i>sp</i> ^{1.87} at C8	C8 (50.45%): <i>s</i> (34.81%) <i>p</i> (65.01%)
		$sp^{1.63}$ at C6	C6 (49.55%): <i>s</i> (37.98%) <i>p</i> (61.87%)
σ(C7-C8)	1.98713	$sp^{1.90}$ at C8	C8 (50.31%): <i>s</i> (34.40%) <i>p</i> (65.43%)
		<i>sp</i> ^{1.65} at C7	C7 (49.69%): s(37.74%)p(62.11%)
σ(C11-C12)	1.97654	<i>sp</i> ^{1.73} at C11	C11 (51.05%): <i>s</i> (36.63%) <i>p</i> (63.27%)
		<i>sp</i> ^{1.86} at C12	C12 (48.95%): <i>s</i> (34.87%) <i>p</i> (64.96%)
π(C11-C12)	1.63934	n/a	C11 (47.38%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (52.62%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97204	$sp^{2.21}$ at C11	C11 (49.49%): <i>s</i> (31.12%) <i>p</i> (68.78%)
		<i>sp</i> ^{1.97} at C10	C10 (50.51%): <i>s</i> (33.58%) <i>p</i> (66.31%)
Lone pair 1 (N4)	1.87537	$sp^{2.61}$	s(27.67%)p(72.29%)
σ(N4-C9)	1.98791	$sp^{1.58}$ at N4	N4 (59.66%): <i>s</i> (38.57%) <i>p</i> (61.07%)
		<i>sp</i> ^{1.92} at C9	C9 (40.34%): <i>s</i> (34.21%) <i>p</i> (65.67%)
π(N4-C9)	1.84951	n/a	N4 (63.54%): s(0.00%)p(99.83%)
			C9 (36.46%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98168	$sp^{1.96}$ at N4	N4 (58.51%): <i>s</i> (33.62%) <i>p</i> (66.05%)
		$sp^{2.27}$ at C10	C10(41.49%): $s(30.54%)n(69.36%)$

Table S6. Solvated NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the O3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using O3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82588	$sp^{2.90}$	s(25.64%)p(74.34%)
σ(N1-C5)	1.98466	$sp^{1.78}$ at N1	N1 (59.03%): <i>s</i> (35.83%) <i>p</i> (63.91%)
		$sp^{2.03}$ at C5	C5 (40.97%): <i>s</i> (32.94%) <i>p</i> (66.95%)
π(N1-C5)	1.82511	n/a	N1 (77.14%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C11 (22.86%): <i>s</i> (0.00%) <i>p</i> (99.81%)
σ(N1-C11)	1.98534	$sp^{1.60}$ at N1	N1 (58.79%): <i>s</i> (38.39%) <i>p</i> (61.36%)
		$sp^{2.10}$ at C11	C11 (41.21%): s(32.19%)p(67.70%)
Lone pair 1 (N2)	1.90611	$sp^{2.15}$	s(31.69%)p(68.14%)
σ(N2-C5)	1.98479	$sp^{2.08}$ at N2	N2 (57.59%): <i>s</i> (32.31%) <i>p</i> (67.21%)
		$sp^{1.89}$ at C5	C5 (42.41%): s(34.53%)p(65.36%)
σ(N2-C6)	1.98624	<i>sp</i> ^{1.77} at N2	N2 (58.98%): s(35.88%)p(63.62%)
		$sp^{2.01}$ at C6	C6 (41.02%): s(33.20%)p(66.67%)
π(N2-C6)	1.75515	n/a	N2 (64.90%): s(0.00%)p(99.69%)
			C6 (35.10%): <i>s</i> (0.00%) <i>p</i> (99.87%)
Lone pair 1 (N3)	1.89808	$sp^{2.15}$	s(31.70%)p(68.16%)
σ(N3-C5)	1.98271	$sp^{2.21}$ at N3	N3 (57.84%): <i>s</i> (31.04%) <i>p</i> (68.52%)
		$sp^{2.08}$ at C5	C5 (42.16%): s(32.39%)p(67.51%)
σ(N3-C7)	1.98815	$sp^{1.68}$ at N3	N3 (59.03%): s(37.11%)p(62.40%)
		$sp^{1.99}$ at C7	C7 (40.97%): s(33.43%)p(66.43%)
π(N3-C7)	1.78761	n/a	N3 (64.34%): s(0.00%)p(99.72%)
			C7 (35.66%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(C6-C8)	1.98816	<i>sp</i> ^{1.86} at C8	C8 (50.41%): <i>s</i> (34.85%) <i>p</i> (64.94%)
		$sp^{1.62}$ at C6	C6 (49.59%): <i>s</i> (38.05%) <i>p</i> (61.78%)
σ(C7-C8)	1.98721	$sp^{1.90}$ at C8	C8 (50.28%): <i>s</i> (34.44%) <i>p</i> (65.36%)
		<i>sp</i> ^{1.64} at C7	C7 (49.72%): s(37.80%)p(62.02%)
σ(C11-C12)	1.97685	<i>sp</i> ^{1.73} at C11	C11 (51.03%): <i>s</i> (36.59%) <i>p</i> (63.29%)
		<i>sp</i> ^{1.86} at C12	C12 (48.97%): <i>s</i> (34.95%) <i>p</i> (64.85%)
π(C11-C12)	1.64238	n/a	C11 (46.89%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (53.11%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97257	$sp^{2.21}$ at C11	C11 (49.47%): <i>s</i> (31.13%) <i>p</i> (68.75%)
		<i>sp</i> ^{1.97} at C10	C10 (50.53%): <i>s</i> (33.59%) <i>p</i> (66.29%)
Lone pair 1 (N4)	1.88023	$sp^{2.67}$	s(27.21%)p(72.76%)
σ(N4-C9)	1.98784	$sp^{1.57}$ at N4	N4 (59.74%): <i>s</i> (38.78%) <i>p</i> (60.84%)
		<i>sp</i> ^{1.91} at C9	C9 (40.26%): <i>s</i> (34.27%) <i>p</i> (65.60%)
π(N4-C9)	1.85177	n/a	N4 (63.69%): s(0.00%)p(99.83%)
			C9 (36.31%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98188	<i>sp</i> ^{1.94} at N4	N4 (58.68%): s(33.89%)p(65.77%)
		$sp^{2.27}$ at C10	C10(41.32%): $s(30.54%)n(69.36%)$

Table S69. Solvated NBO analysis^{*a*} of (^{CF3}L2)₂Zn with the B3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

The general formulation of a signa natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\%p}{\%s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82887	$sp^{2.91}$	s(25.59%)p(74.39%)
Lone pair 2 (N1)	1.55029	n/a	s(0.00%)p(99.92%)
σ(N1-C5)	1.98493	$sp^{1.78}$ at N1	N1 (59.04%): s(35.88%)p(63.85%)
		$sp^{2.03}$ at C5	C5 (40.96%): s(32.95%)p(66.95%)
σ(N1-C11)	1.98545	$sp^{1.60}$ at N1	N1 (58.72%): s(38.39%)p(61.35%)
		$sp^{2.10}$ at C11	C11 (41.28%): s(32.20%)p(67.70%)
Lone pair 1 (N2)	1.90638	$sp^{2.12}$	s(32.00%)p(67.82%)
σ(N2-C5)	1.98503	<i>sp</i> ^{2.09} at N2	N2 (57.52%): s(32.19%)p(67.32%)
		$sp^{1.89}$ at C5	C5 (42.48%): <i>s</i> (34.54%) <i>p</i> (65.36%)
σ(N2-C6)	1.98626	<i>sp</i> ^{1.79} at N2	N2 (58.90%): s(35.67%)p(63.81%)
		<i>sp</i> ^{2.01} at C6	C6 (41.10%): <i>s</i> (33.16%) <i>p</i> (66.71%)
π(N2-C6)	1.75429	n/a	N2 (65.07%): s(0.00%)p(99.67%)
			C6 (34.93%): <i>s</i> (0.00%) <i>p</i> (99.85%)
Lone pair 1 (N3)	1.89349	$sp^{2.13}$	s(31.92%)p(67.93%)
σ(N3-C5)	1.98503	<i>sp</i> ^{2.09} at N3	N3 (57.52%): <i>s</i> (32.19%) <i>p</i> (67.32%)
		<i>sp</i> ^{1.89} at C5	C5 (42.48%): s(34.54%)p(65.36%)
σ(N3-C7)	1.98827	$sp^{1.69}$ at N3	N3 (58.97%): s(36.97%)p(62.53%)
		<i>sp</i> ^{1.99} at C7	C7 (41.03%): s(33.39%)p(66.47%)
π(N3-C7)	1.78714	n/a	N3 (64.54%): <i>s</i> (0.00%) <i>p</i> (99.69%)
			C7 (35.46%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(C6-C8)	1.98841	$sp^{1.87}$ at C8	C8 (50.46%): <i>s</i> (34.80%) <i>p</i> (65.00%)
		<i>sp</i> ^{1.63} at C6	C6 (49.54%): s(37.97%)p(61.86%)
σ(C7-C8)	1.98743	$sp^{1.90}_{1.65}$ at C8	C8 (50.33%): <i>s</i> (34.39%) <i>p</i> (65.42%)
		$sp^{1.65}$ at C7	C7 (49.67%): s(37.73%)p(62.10%)
σ(C11-C12)	1.97704	$sp_{1.73}^{1.73}$ at C11	C11 (51.01%): <i>s</i> (36.60%) <i>p</i> (63.29%)
		<i>sp</i> ^{1.86} at C12	C12 (48.99%): s(34.93%)p(64.89%)
π (C11-C12)	1.64397	n/a	C11 (46.89%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.11%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97277	$sp^{2.21}$ at C11	C11 (49.45%): <i>s</i> (31.13%) <i>p</i> (68.76%)
		<i>sp</i> ^{1.97} at C10	C10 (50.55%): s(33.60%)p(66.28%)
Lone pair 1 (N4)	1.88150	<i>sp</i> ^{2.66}	s(27.35%)p(72.62%)
σ(N4-C9)	1.98807	$sp^{1.57}$ at N4	N4 (59.70%): s(38.68%)p(60.92%)
		<i>sp</i> ^{1.92} at C9	C9 (40.30%): s(34.25%)p(65.62%)
π(N4-C9)	1.85266	n/a	N4 (63.87%): s(0.00%)p(99.82%)
		1.02	C9 (36.13%): s(0.00%)p(99.85%)
σ(N4-C10)	1.98208	$sp^{1.95}$ at N4	N4 (58.57%): <i>s</i> (33.83%) <i>p</i> (65.82%)
		$sp^{2.27}$ at C10	C10 (41.43%): s(30.53%)p(69.37%)

Table S70. Solvated NBO analysis ^{<i>a</i>} of	(^{CF3} L2) ₂ Zn with the PBE0 functional
--	---

^a Calculated in solution at the optimized S0 geometry using PBE0 (SMD "dichloromethane"/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82004	$sp^{2.88}$	s(25.79%)p(74.19%)
Lone pair 2 (N1)	1.56231	n/a	s(0.00%)p(99.91%)
σ(N1-C5)	1.98452	$sp^{1.79}$ at N1	N1 (59.27%): s(35.74%)p(64.05%)
		$sp^{2.03}$ at C5	C5 (40.73%): <i>s</i> (33.00%) <i>p</i> (66.92%)
σ(N1-C11)	1.98536	$sp^{1.60}$ at N1	N1 (59.00%): s(38.34%)p(61.45%)
		<i>sp</i> ^{2.11} at C11	C11 (41.00%): <i>s</i> (32.16%) <i>p</i> (67.76%)
Lone pair 1 (N2)	1.90455	$sp^{2.11}$	s(32.13%)p(67.66%)
σ(N2-C5)	1.98417	<i>sp</i> ^{2.09} at N2	N2 (57.80%): s(32.20%)p(67.39%)
		$sp^{1.90}$ at C5	C5 (42.20%): <i>s</i> (34.51%) <i>p</i> (65.41%)
σ(N2-C6)	1.98570	$sp^{1.80}$ at N2	N2 (59.03%): s(35.56%)p(64.00%)
		$sp^{2.00}$ at C6	C6 (40.97%): <i>s</i> (33.25%) <i>p</i> (66.66%)
π(N2-C6)	1.75575	n/a	N2 (65.86%): <i>s</i> (0.00%) <i>p</i> (99.66%)
			C6 (34.14%): <i>s</i> (0.00%) <i>p</i> (99.84%)
Lone pair 1 (N3)	1.89679	$sp^{2.11}$	s(32.11%)p(67.72%)
σ(N3-C5)	1.98212	<i>sp</i> ^{2.22} at N3	N3 (58.05%): s(30.97%)p(68.64%)
		<i>sp</i> ^{2.09} at C5	C5 (41.95%): s(32.38%)p(67.55%)
σ(N3-C7)	1.98786	$sp^{1.70}$ at N3	N3 (59.05%): s(36.97%)p(62.79%)
		<i>sp</i> ^{1.98} at C7	C7 (40.95%): s(33.53%)p(66.37%)
π(N3-C7)	1.78919	n/a	N3 (65.38%): <i>s</i> (0.00%) <i>p</i> (99.68%)
			C7 (34.62%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(C6-C8)	1.98797	$sp^{1.86}$ at C8	C8 (50.42%): <i>s</i> (34.89%) <i>p</i> (64.94%)
		<i>sp</i> ^{1.62} at C6	C6 (49.58%): s(38.09%)p(61.77%)
σ(C7-C8)	1.98690	$sp^{1.90}$ at C8	C8 (50.28%): <i>s</i> (34.48%) <i>p</i> (65.35%)
		<i>sp</i> ^{1.64} at C7	C7 (49.72%): s(37.81%)p(62.04%)
σ(C11-C12)	1.97661	$sp^{1.73}$ at C11	C11 (50.92%): <i>s</i> (36.59%) <i>p</i> (63.31%)
		<i>sp</i> ^{1.85} at C12	C12 (49.08%): s(35.06%)p(64.78%)
π (C11-C12)	1.64542	n/a	C11 (46.33%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.67%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97221	$sp^{2.20}$ at C11	C11 (49.48%): s(31.19%)p(68.70%)
		<i>sp</i> ^{1.97} at C10	C10 (50.52%): <i>s</i> (33.63%) <i>p</i> (66.26%)
Lone pair 1 (N4)	1.87873	<i>sp</i> ^{2.66}	s(27.31%)p(72.64%)
σ(N4-C9)	1.98785	$sp^{1.58}$ at N4	N4 (59.81%): s(38.65%)p(61.03%)
		<i>sp</i> ^{1.91} at C9	C9 (40.19%): <i>s</i> (34.35%) <i>p</i> (65.55%)
π(N4-C9)	1.85680	n/a	N4 (64.40%): <i>s</i> (0.00%) <i>p</i> (99.80%)
		1.04	C9 (35.60%): <i>s</i> (0.00%) <i>p</i> (99.84%)
σ(N4-C10)	1.98152	$sp^{1.94}$ at N4	N4 (58.90%): s(33.93%)p(65.77%)
		$sp^{2.28}$ at C10	C10 (41.10%): $s(30.47\%)p(69.45\%)$

Table S71. Solvated NBC) anal	ysis ^a o	of ($^{CF3}L2)_{2}Zn$	with	the	M06	functional	Ι.
-------------------------	--------	---------------------	------	-------------------	------	-----	-----	------------	----

^{*a*} Calculated in solution at the optimized S0 geometry using M06 (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84978	<i>sp</i> ^{2.97}	s(25.17%)p(74.81%)
Lone pair 2 (N1)	1.56655	n/a	s(0.00%)p(99.91%)
σ(N1-C5)	1.98488	$sp^{1.76}$ at N1	N1 (59.06%): s(36.13%)p(63.61%)
		$sp^{2.04}$ at C5	C5 (40.94%): s(32.90%)p(67.01%)
σ(N1-C11)	1.98507	<i>sp</i> ^{1.59} at N1	N1 (58.74%): s(38.57%)p(61.18%)
		$sp^{2.10}$ at C11	C11 (41.26%): s(32.20%)p(67.71%)
Lone pair 1 (N2)	1.91136	$sp^{2.18}$	s(31.36%)p(68.45%)
σ(N2-C5)	1.98523	<i>sp</i> ^{2.06} at N2	N2 (57.64%): s(32.49%)p(67.03%)
		<i>sp</i> ^{1.89} at C5	C5 (42.36%): <i>s</i> (34.60%) <i>p</i> (65.32%)
σ(N2-C6)	1.98656	$sp^{1.76}$ at N2	N2 (59.09%): s(36.02%)p(63.48%)
		<i>sp</i> ^{2.01} at C6	C6 (40.91%): <i>s</i> (33.14%) <i>p</i> (66.74%)
π(N2-C6)	1.75212	n/a	N2 (65.38%): <i>s</i> (0.00%) <i>p</i> (99.63%)
			C6 (34.62%): <i>s</i> (0.00%) <i>p</i> (99.84%)
Lone pair 1 (N3)	1.90447	$sp^{2.20}$	s(31.19%)p(68.65%)
σ(N3-C5)	1.98320	$sp^{2.18}$ at N3	N3 (57.95%): <i>s</i> (31.32%) <i>p</i> (68.24%)
		<i>sp</i> ^{2.08} at C5	C5 (42.05%): s(32.39%)p(67.53%)
σ(N3-C7)	1.98839	$sp^{1.66}$ at N3	N3 (59.15%): <i>s</i> (37.34%) <i>p</i> (62.17%)
		<i>sp</i> ^{1.99} at C7	C7 (40.85%): s(33.37%)p(66.51%)
π(N3-C7)	1.78784	n/a	N3 (64.86%): <i>s</i> (0.00%) <i>p</i> (99.66%)
			C7 (35.14%): <i>s</i> (0.00%) <i>p</i> (99.83%)
σ(C6-C8)	1.98844	$sp^{1.87}$ at C8	C8 (50.43%): s(34.78%)p(65.02%)
		<i>sp</i> ^{1.63} at C6	C6 (49.57%): s(38.00%)p(61.84%)
σ(C7-C8)	1.98750	$sp^{1.90}$ at C8	C8 (50.28%): s(34.36%)p(65.45%)
		$sp^{1.64}$ at C7	C7 (49.72%): s(37.76%)p(62.08%)
σ(C11-C12)	1.97746	$sp^{1.73}$ at C11	C11 (51.01%): <i>s</i> (36.61%) <i>p</i> (63.28%)
		$sp^{1.85}$ at C12	C12 (48.99%): s(34.99%)p(64.83%)
π (C11-C12)	1.65133	n/a	C11 (46.37%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (53.63%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97338	$sp^{2.21}$ at C11	C11 (49.39%): <i>s</i> (31.12%) <i>p</i> (68.77%)
		<i>sp</i> ^{1.97} at C10	C10 (50.61%): s(33.62%)p(66.27%)
Lone pair 1 (N4)	1.89290	<i>sp</i> ^{2.73}	s(26.79%)p(73.17%)
σ(N4-C9)	1.98800	$sp^{1.56}$ at N4	N4 (59.87%): s(38.95%)p(60.67%)
		<i>sp</i> ^{1.92} at C9	C9 (40.13%): s(34.20%)p(65.68%)
π(N4-C9)	1.85866	n/a	N4 (63.85%): <i>s</i> (0.00%) <i>p</i> (99.79%)
			C9 (36.15%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98209	<i>sp</i> ^{1.92} at N4	N4 (58.77%): <i>s</i> (34.14%) <i>p</i> (65.52%)
		$sp^{2.28}$ at C10	C10 (41.23%): $s(30.50\%)p(69.41\%)$

Table S72. Solvated NBO analysis^{*a*} of (CF3L2)₂Zn with the M06-2X functional.

^a Calculated in solution at the optimized S0 geometry using M06-2X (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83300	$sp^{3.01}$	s(24.93%)p(75.05%)
Lone pair 2 (N1)	1.57089	n/a	s(0.00%)p(99.92%)
σ(N1-C5)	1.98497	$sp^{1.76}$ at N1	N1 (59.00%): s(36.18%)p(63.54%)
		$sp^{2.03}$ at C5	C5 (41.00%): s(32.92%)p(66.97%)
σ(N1-C11)	1.98526	<i>sp</i> ^{1.57} at N1	N1 (58.74%): s(38.75%)p(60.98%)
		$sp^{2.10}$ at C11	C11 (41.26%): s(32.18%)p(67.71%)
Lone pair 1 (N2)	1.91037	sp ^{2.22}	s(30.96%)p(68.86%)
σ(N2-C5)	1.98532	<i>sp</i> ^{2.04} at N2	N2 (57.62%): s(32.69%)p(66.82%)
		$sp^{1.89}$ at C5	C5 (42.38%): s(34.54%)p(65.35%)
σ(N2-C6)	1.98668	<i>sp</i> ^{1.75} at N2	N2 (58.99%): s(36.23%)p(63.25%)
		$sp^{2.01}$ at C6	C6 (41.01%): s(33.14%)p(66.72%)
π(N2-C6)	1.75344	n/a	N2 (65.77%): s(0.00%)p(99.67%)
			C6 (34.23%): s(0.00%)p(99.85%)
Lone pair 1 (N3)	1.90294	<i>sp</i> ^{2.22}	s(30.99%)p(68.87%)
σ(N3-C5)	1.98335	<i>sp</i> ^{2.17} at N3	N3 (57.86%): s(31.42%)p(68.12%)
		$sp^{2.08}$ at C5	C5 (42.14%): s(32.40%)p(67.50%)
σ(N3-C7)	1.98838	$sp^{1.66}$ at N3	N3 (59.03%): s(37.44%)p(62.06%)
		$sp^{1.99}$ at C7	C7 (40.97%): s(33.38%)p(66.48%)
π(N3-C7)	1.78815	n/a	N3 (65.15%): s(0.00%)p(99.70%)
			C7 (34.85%): s(0.00%)p(99.84%)
σ(C6-C8)	1.98802	<i>sp</i> ^{1.87} at C8	C8 (50.41%): s(34.81%)p(64.97%)
		$sp^{1.62}$ at C6	C6 (49.59%): s(38.06%)p(61.77%)
σ(C7-C8)	1.98721	<i>sp</i> ^{1.90} at C8	C8 (50.28%): s(34.40%)p(65.40%)
		$sp^{1.64}$ at C7	C7 (49.72%): s(37.80%)p(62.02%)
σ(C11-C12)	1.97697	$sp^{1.73}$ at C11	C11 (50.99%): s(36.61%)p(63.27%)
		$sp^{1.85}$ at C12	C12 (49.01%): s(34.99%)p(64.81%)
π(C11-C12)	1.65180	n/a	C11 (46.27%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (53.73%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97332	$sp^{2.21}$ at C11	C11 (49.42%): <i>s</i> (31.13%) <i>p</i> (68.75%)
		<i>sp</i> ^{1.97} at C10	C10 (50.58%): <i>s</i> (33.62%) <i>p</i> (66.25%)
Lone pair 1 (N4)	1.88647	$sp^{2.76}$	s(26.59%)p(73.38%)
σ(N4-C9)	1.98777	<i>sp</i> ^{1.55} at N4	N4 (59.72%): <i>s</i> (39.03%) <i>p</i> (60.58%)
		<i>sp</i> ^{1.92} at C9	C9 (40.28%): <i>s</i> (34.25%) <i>p</i> (65.61%)
π(N4-C9)	1.85990	n/a	N4 (64.03%): s(0.00%)p(99.81%)
			C9 (35.97%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98221	<i>sp</i> ^{1.91} at N4	N4 (58.69%): <i>s</i> (34.25%) <i>p</i> (65.39%)
		$sp^{2.28}$ at C10	C10 (41.31%): s(30.48%)p(69.41%)

Table S73. Solvated NBO anal	vsis ^a of	^{(CF3} L2) ₂ Zn with the	e CAM-B3LYP functional.
------------------------------	----------------------	--	-------------------------

^a Calculated in solution at the optimized S0 geometry using CAM-B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.80939	$sp^{2.18}$	s(31.48%)p(68.50%)
Lone pair 2 (N1)	1.60384	n/a	s(0.07%)p(99.88%)
σ(N1-C5)	1.98378	<i>sp</i> ^{1.97} at N1	N1 (59.22%): s(33.65%)p(66.15%)
		$sp^{2.23}$ at C5	C5 (40.78%): s(30.94%)p(68.98%)
σ(N1-C11)	1.98288	<i>sp</i> ^{1.88} at N1	N1 (58.51%): s(34.68%)p(65.09%)
		$sp^{2.08}$ at C11	C11 (41.49%): $s(32.41\%)p(67.50\%)$
σ(C2-C5)	1.97772	<i>sp</i> ^{1.84} at C2	C2 (49.60%): s(35.10%)p(64.73%)
		$sp^{1.87}$ at C5	C5 (50.40%): s(34.76%)p(65.13%)
σ(C2-C6)	1.98213	<i>sp</i> ^{1.74} at C2	C2 (50.23%): s(36.50%)p(63.33%)
		$sp^{1.75}$ at C6	C6 (49.77%): s(36.25%)p(63.60%)
π(C2-C6)	1.70484	n/a	C2 (52.02%) : $s(0.01\%)p(99.92\%)$
			C6 (47.98%) : $s(0.00\%)p(99.92\%)$
σ(C3-C5)	1.97754	<i>sp</i> ^{1.83} at C3	C3 (49.45%): s(35.32%)p(64.50%)
		$sp^{1.93}$ at C5	C5 (50.55%) : $s(34.20\%)p(65.86\%)$
π(C3-C5)	1.62648	n/a	C3 (52.77%): s(0.00%)p(99.92%)
			C5 (47.23%): $s(0.01\%)p(99.91\%)$
σ(C3-C7)	1.98321	<i>sp</i> ^{1.74} at C3	C3 (50.25%): s(36.43%)p(63.39%)
		$sp^{1.77}$ at C7	C7 (49.75%): $s(36.08\%)p(63.76\%)$
σ(C6-C8)	1.98417	<i>sp</i> ^{1.77} at C6	C6 (50.15%): s(36.01%)p(63.82%)
		$sp^{1.79}$ at C8	C8 (49.85%): s(35.73%)p(64.11%)
σ(C7-C8)	1.98402	<i>sp</i> ^{1.77} at C7	C7 (50.10%): s(36.02%)p(63.81%)
		$sp^{1.79}$ at C8	C8 (49.90%): s(35.74%)p(64.10%)
π(C7-C8)	1.67304	n/a	C7 (48.16%): s(0.00%)p(99.92%)
			C8 (51.84%): s(0.00%)p(99.92%)
σ(C11-C12)	1.97698	<i>sp</i> ^{1.75} at C11	C11 (50.94%): s(36.30%)p(63.59%)
		$sp^{1.87}$ at C12	C12 (49.06%): s(34.76%)p(65.06%)
π(C11-C12)	1.63613	n/a	C11 (44.36%): s(0.00%)p(99.90%)
			C12 (55.64%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97095	<i>sp</i> ^{2.20} at C11	C11 (49.09%): s(31.21%)p(68.66%)
		<i>sp</i> ^{1.94} at C10	C10 (50.91%): s(34.01%)p(65.87%)
Lone pair 1 (N4)	1.86702	<i>sp</i> ^{2.43}	s(29.12%)p(70.86%)
σ(N4-C9)	1.98844	<i>sp</i> ^{1.66} at N4	N4 (59.97%): s(37.45%)p(62.24%)
		$sp^{1.94}$ at C9	C9 (40.03%): s(34.02%)p(65.89%)
π(N4-C9)	1.86261	n/a	N4 (62.68%): s(0.00%)p(99.86%)
			C9 (37.32%) : $s(0.00\%)p(99.87\%)$
σ(N4-C10)	1.98149	<i>sp</i> ^{1.99} at N4	N4 (59.48%): s(33.31%)p(66.42%)
		$sp^{2.34}$ at C10	C10 (40.52%): $s(29.90\%)p(70.03\%)$

Table S74. NBO analysis^{*a*} of (^{*t*Bu}L3)₂Zn with the M06-L functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.80893	$sp^{2.37}$	s(29.70%)p(70.27%)
Lone pair 2 (N1)	1.61047	n/a	s(0.07%)p(99.88%)
σ(N1-C5)	1.98428	<i>sp</i> ^{1.89} at N1	N1 (59.00%): s(34.50%)p(65.28%)
		$sp^{2.22}$ at C5	C5 (41.00%): s(31.02%)p(68.88%)
σ(N1-C11)	1.98325	$sp^{1.80}$ at N1	N1 (58.25%): s(35.61%)p(64.15%)
		$sp^{2.08}$ at C11	C11 (41.75%): s(32.48%)p(67.41%)
σ(C2-C5)	1.97775	<i>sp</i> ^{1.86} at C2	C2 (49.47%): s(34.94%)p(64.88%)
		$sp^{1.87}$ at C5	C5 (50.53%): s(34.76%)p(65.13%)
σ(C2-C6)	1.98200	<i>sp</i> ^{1.74} at C2	C2 (50.24%): s(36.40%)p(63.42%)
		$sp^{1.76}$ at C6	C6 (49.76%): s(36.11%)p(63.72%)
π(C2-C6)	1.70324	n/a	C2 (51.83%): s(0.01%)p(99.92%)
			C6 (48.17%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97766	<i>sp</i> ^{1.84} at C3	C3 (49.30%): s(35.18%)p(64.64%)
		$sp^{1.93}$ at C5	C5 (50.70%): s(34.12%)p(65.77%)
π(C3-C5)	1.62719	n/a	C3 (52.29%): s(0.00%)p(99.93%)
			C5 (47.71%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98307	<i>sp</i> ^{1.75} at C3	C3 (50.27%): s(36.31%)p(63.51%)
		$sp^{1.78}$ at C7	C7 (49.73%): s(35.93%)p(63.90%)
σ(C6-C8)	1.98432	<i>sp</i> ^{1.78} at C6	C6 (50.14%): s(35.88%)p(63.94%)
		$sp^{1.80}$ at C8	C8 (49.86%): s(35.61%)p(64.21%)
σ(C7-C8)	1.98364	$sp^{1.78}$ at C7	C7 (50.08%): s(35.96%)p(63.86%)
		$sp^{1.80}$ at C8	C8 (49.92%): s(35.70%)p(64.12%)
π(C7-C8)	1.67297	n/a	C7 (48.20%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (51.80%): s(0.00%)p(99.93%)
σ(C11-C12)	1.97605	<i>sp</i> ^{1.75} at C11	C11 (51.10%): <i>s</i> (36.35%) <i>p</i> (63.54%)
		$sp^{1.88}$ at C12	C12 (48.90%): <i>s</i> (34.66%) <i>p</i> (65.15%)
π(C11-C12)	1.63577	n/a	C11 (44.82%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.18%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97063	<i>sp</i> ^{2.22} at C11	C11 (49.08%): <i>s</i> (31.00%) <i>p</i> (68.88%)
		<i>sp</i> ^{1.94} at C10	C10 (50.92%): <i>s</i> (33.96%) <i>p</i> (65.93%)
Lone pair 1 (N4)	1.86723	$sp^{2.58}$	s(27.91%)p(72.07%)
σ(N4-C9)	1.98843	$sp^{1.60}$ at N4	N4 (59.91%): s(38.40%)p(61.25%)
		<i>sp</i> ^{1.93} at C9	C9 (40.09%): <i>s</i> (34.11%) <i>p</i> (65.77%)
π(N4-C9)	1.86265	n/a	N4 (62.80%): s(0.00%)p(99.87%)
			C9 (37.20%): s(0.00%)p(99.88%)
σ(N4-C10)	1.98196	<i>sp</i> ^{1.92} at N4	N4 (59.27%): s(34.14%)p(65.56%)
		<i>sp</i> ^{2.33} at C10	C10 (40.73%): s(29.98%)p(69.92%)

Table S75. NBO analysis^{*a*} of (^{*t*Bu}L3)₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.80815	$sp^{2.40}$	s(29.41%)p(70.56%)
Lone pair 2 (N1)	1.60716	n/a	s(0.06%)p(99.89%)
σ(N1-C5)	1.98429	$sp^{1.88}$ at N1	N1 (58.85%): s(34.65%)p(65.14%)
		$sp^{2.22}$ at C5	C5 (41.15%): s(31.06%)p(68.84%)
σ(N1-C11)	1.98316	<i>sp</i> ^{1.79} at N1	N1 (58.13%): s(35.74%)p(64.01%)
		$sp^{2.07}$ at C11	C11 (41.87%): s(32.53%)p(67.36%)
σ(C2-C5)	1.97733	<i>sp</i> ^{1.86} at C2	C2 (49.47%): s(34.90%)p(64.93%)
		$sp^{1.87}$ at C5	C5 (50.53%): s(34.77%)p(65.13%)
σ(C2-C6)	1.98150	<i>sp</i> ^{1.74} at C2	C2 (50.23%): s(36.38%)p(63.45%)
		$sp^{1.77}$ at C6	C6 (49.77%): s(36.09%)p(63.75%)
π(C2-C6)	1.70356	n/a	C2 (51.77%): s(0.01%)p(99.93%)
			C6 (48.23%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97717	<i>sp</i> ^{1.84} at C3	C3 (49.31%): s(35.15%)p(64.69%)
		<i>sp</i> ^{1.93} at C5	C5 (50.69%): s(34.07%)p(65.82%)
π(C3-C5)	1.62685	n/a	C3 (52.28%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (47.72%): s(0.02%)p(99.92%)
σ(C3-C7)	1.98256	<i>sp</i> ^{1.75} at C3	C3 (50.27%): <i>s</i> (36.30%) <i>p</i> (63.53%)
		$sp^{1.78}$ at C7	C7 (49.73%): <i>s</i> (35.90%) <i>p</i> (63.94%)
σ(C6-C8)	1.98374	<i>sp</i> ^{1.78} at C6	C6 (50.14%): <i>s</i> (35.87%) <i>p</i> (63.96%)
		<i>sp</i> ^{1.81} at C8	C8 (49.86%): <i>s</i> (35.59%) <i>p</i> (64.24%)
σ(C7-C8)	1.98360	$sp^{1.78}$ at C7	C7 (50.08%): <i>s</i> (35.88%) <i>p</i> (63.96%)
		<i>sp</i> ^{1.80} at C8	C8 (49.92%): s(35.61%)p(64.23%)
$\pi(C7-C8)$	1.67379	n/a	C7 (48.30%): <i>s</i> (0.00%) <i>p</i> (99.94%)
			C8 (51.70%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97605	<i>sp</i> ^{1.75} at C11	C11 (51.08%): <i>s</i> (36.34%) <i>p</i> (63.56%)
		<i>sp</i> ^{1.89} at C12	C12 (48.92%): s(34.58%)p(65.25%)
π(C11-C12)	1.63506	n/a	C11 (45.02%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (54.98%): s(0.01%)p(99.92%)
σ(C11-C10)	1.97062	$sp^{2.22}$ at C11	C11 (49.11%): <i>s</i> (31.06%) <i>p</i> (68.83%)
		<i>sp</i> ^{1.95} at C10	C10 (50.89%): s(33.90%)p(66.00%)
Lone pair 1 (N4)	1.86538	$sp^{2.60}$	s(27.77%)p(72.22%)
σ(N4-C9)	1.98834	$sp^{1.61}$ at N4	N4 (59.76%): s(38.13%)p(61.54%)
		<i>sp</i> ^{1.94} at C9	C9 (40.24%): s(34.01%)p(65.88%)
π(N4-C9)	1.86369	n/a	N4 (62.78%): s(0.00%)p(99.87%)
			C9 (37.22%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98204	$sp^{1.93}$ at N4	N4 (59.10%): <i>s</i> (33.98%) <i>p</i> (65.72%)
		$sp^{2.32}$ at C10	C10 (40.90%): $s(30.06\%)p(69.85\%)$

Table S76. NBO analysis^{*a*} of $({}^{tBu}L3)_2Zn$ with the O3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81183	$sp^{2.44}$	s(29.08%)p(70.89%)
Lone pair 2 (N1)	1.62131	n/a	s(0.07%)p(99.88%)
σ(N1-C5)	1.98457	$sp^{1.86}$ at N1	N1 (58.94%): s(34.83%)p(64.94%)
		$sp^{2.21}$ at C5	C5 (41.06%): s(31.09%)p(68.80%)
σ(N1-C11)	1.98343	$sp^{1.78}$ at N1	N1 (58.22%): s(35.90%)p(63.84%)
		$sp^{2.07}$ at C11	C11 (41.78%): s(32.55%)p(67.33%)
σ(C2-C5)	1.97752	<i>sp</i> ^{1.85} at C2	C2 (49.50%): s(34.96%)p(64.85%)
		$sp^{1.88}$ at C5	C5 (50.50%): s(34.72%)p(65.16%)
σ(C2-C6)	1.98185	$sp^{1.74}$ at C2	C2 (50.23%): s(36.43%)p(63.38%)
		$sp^{1.76}$ at C6	C6 (49.77%): s(36.13%)p(63.69%)
π(C2-C6)	1.70328	n/a	C2 (51.94%): s(0.01%)p(99.93%)
			C6 (48.06%): $s(0.00\%)p(99.93\%)$
σ(C3-C5)	1.97750	<i>sp</i> ^{1.84} at C3	C3 (49.33%): s(35.20%)p(64.60%)
		$sp^{1.93}$ at C5	C5 (50.67%) : $s(34.06\%)p(65.82\%)$
π (C3-C5)	1.62671	n/a	C3 (52.66%): s(0.00%)p(99.93%)
			C5 (47.34%): $s(0.02\%)p(99.91\%)$
σ(C3-C7)	1.98284	<i>sp</i> ^{1.75} at C3	C3 (50.25%): s(36.34%)p(63.47%)
		$sp^{1.78}$ at C7	C7 (49.75%): $s(35.96\%)p(63.86\%)$
σ(C6-C8)	1.98384	<i>sp</i> ^{1.78} at C6	C6 (50.14%): s(35.91%)p(63.90%)
		$sp^{1.80}$ at C8	C8 (49.86%): s(35.64%)p(64.18%)
σ(C7-C8)	1.98371	<i>sp</i> ^{1.78} at C7	C7 (50.08%): s(35.92%)p(63.89%)
		$sp^{1.80}$ at C8	C8 (49.92%): s(35.65%)p(64.17%)
π(C7-C8)	1.67455	n/a	C7 (48.13%): s(0.00%)p(99.94%)
			C8 (51.87%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97634	$sp^{1.75}$ at C11	C11 (51.07%): <i>s</i> (36.31%) <i>p</i> (63.58%)
		$sp^{1.88}$ at C12	C12 (48.93%): <i>s</i> (34.64%) <i>p</i> (65.16%)
π(C11-C12)	1.63757	n/a	C11 (44.36%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.64%): <i>s</i> (0.00%) <i>p</i> (99.92%)
σ(C11-C10)	1.97118	<i>sp</i> ^{2.22} at C11	C11 (49.06%): <i>s</i> (31.04%) <i>p</i> (68.83%)
		<i>sp</i> ^{1.95} at C10	C10 (50.94%): <i>s</i> (33.91%) <i>p</i> (65.97%)
Lone pair 1 (N4)	1.87037	$sp^{2.66}$	s(27.31%)p(72.68%)
σ(N4-C9)	1.98827	$sp^{1.60}$ at N4	N4 (59.84%): <i>s</i> (38.33%) <i>p</i> (61.32%)
		<i>sp</i> ^{1.93} at C9	C9 (40.16%): <i>s</i> (34.06%) <i>p</i> (65.81%)
π(N4-C9)	1.86588	n/a	N4 (62.85%): s(0.00%)p(99.87%)
			C9 (37.15%): s(0.00%)p(99.88%)
σ(N4-C10)	1.98226	$sp^{1.91}$ at N4	N4 (59.27%): s(34.24%)p(65.44%)
		$sp^{2.32}$ at C10	C10 (40.73%): s(30.05%)p(69.85%)

Table S77. NBO analysis^{*a*} of $({}^{tBu}L3)_2$ Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses

20 % Hartree-Fock exchange.²² ^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.20

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.20

^d Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})$.²⁰ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81558	$sp^{2.44}$	s(29.03%)p(70.94%)
Lone pair 2 (N1)	1.62561	n/a	s(0.07%)p(99.88%)
σ(N1-C5)	1.98475	$sp^{1.86}$ at N1	N1 (58.90%): s(34.87%)p(64.90%)
		$sp^{2.21}$ at C5	C5 (41.10%): s(31.09%)p(68.80%)
σ(N1-C11)	1.98357	$sp^{1.78}$ at N1	N1 (58.16%): s(35.91%)p(63.83%)
		$sp^{2.07}$ at C11	C11 (41.84%): s(32.56%)p(67.33%)
σ(C2-C5)	1.97780	<i>sp</i> ^{1.86} at C2	C2 (49.53%): s(34.94%)p(64.88%)
		$sp^{1.88}$ at C5	C5 (50.47%): s(34.73%)p(65.16%)
σ(C2-C6)	1.98194	$sp^{1.74}$ at C2	C2 (50.24%): s(36.37%)p(63.45%)
		$sp^{1.77}$ at C6	C6 (49.76%): s(36.10%)p(63.73%)
π(C2-C6)	1.70297	n/a	C2 (51.98%): s(0.01%)p(99.93%)
			C6 (48.02%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97776	<i>sp</i> ^{1.84} at C3	C3 (49.35%): s(35.18%)p(64.63%)
		$sp^{1.93}$ at C5	C5 (50.65%): s(34.06%)p(65.82%)
π(C3-C5)	1.62719	n/a	C3 (52.67%): s(0.00%)p(99.93%)
			C5 (47.33%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98296	<i>sp</i> ^{1.75} at C3	C3 (50.27%): s(36.29%)p(63.53%)
		$sp^{1.78}$ at C7	C7 (49.73%): s(35.92%)p(63.91%)
σ(C6-C8)	1.98407	<i>sp</i> ^{1.78} at C6	C6 (50.14%): s(35.86%)p(63.96%)
		$sp^{1.80}$ at C8	C8 (49.86%): <i>s</i> (35.59%) <i>p</i> (64.23%)
σ(C7-C8)	1.98394	$sp^{1.78}$ at C7	C7 (50.07%): <i>s</i> (35.87%) <i>p</i> (63.95%)
		<i>sp</i> ^{1.80} at C8	C8 (49.93%): s(35.60%)p(64.22%)
π(C7-C8)	1.67432	n/a	C7 (48.10%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (51.90%): <i>s</i> (0.00%) <i>p</i> (99.94%)
σ(C11-C12)	1.97648	$sp^{1.75}$ at C11	C11 (51.04%): <i>s</i> (36.33%) <i>p</i> (63.56%)
		<i>sp</i> ^{1.88} at C12	C12 (48.96%): <i>s</i> (34.60%) <i>p</i> (65.20%)
π(C11-C12)	1.63888	n/a	C11 (44.30%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.70%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97135	<i>sp</i> ^{2.22} at C11	C11 (49.03%): <i>s</i> (31.03%) <i>p</i> (68.85%)
		<i>sp</i> ^{1.94} at C10	C10 (50.97%): <i>s</i> (33.93%) <i>p</i> (65.95%)
Lone pair 1 (N4)	1.87229	$sp^{2.64}$	s(27.45%)p(72.53%)
σ(N4-C9)	1.98850	$sp^{1.61}$ at N4	N4 (59.78%): <i>s</i> (38.23%) <i>p</i> (61.41%)
		<i>sp</i> ^{1.93} at C9	C9 (40.22%): s(34.05%)p(65.83%)
π(N4-C9)	1.86650	n/a	N4 (62.98%): s(0.00%)p(99.86%)
			C9 (37.02%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98243	$sp^{1.92}$ at N4	N4 (59.17%): <i>s</i> (34.19%) <i>p</i> (65.49%)
		$sp^{2.33}$ at C10	C10 (40.83%): s(30.03%)p(69.87%)

Table S78. NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the PBE0 functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.80780	$sp^{2.42}$	s(29.26%)p(70.72%)
Lone pair 2 (N1)	1.63460	n/a	s(0.08%)p(99.85%)
σ(N1-C5)	1.98440	<i>sp</i> ^{1.87} at N1	N1 (59.23%): s(34.80%)p(65.01%)
		$sp^{2.22}$ at C5	C5 (40.77%): s(31.06%)p(68.85%)
σ(N1-C11)	1.98333	<i>sp</i> ^{1.79} at N1	N1 (58.43%): s(35.75%)p(64.04%)
		$sp^{2.07}$ at C11	C11 (41.57%): s(32.52%)p(67.38%)
σ(C2-C5)	1.97705	<i>sp</i> ^{1.85} at C2	C2 (49.59%): s(35.08%)p(64.76%)
		$sp^{1.88}$ at C5	C5 (50.41%): s(34.73%)p(65.16%)
σ(C2-C6)	1.98156	<i>sp</i> ^{1.74} at C2	C2 (50.20%): s(36.41%)p(63.42%)
		$sp^{1.76}$ at C6	C6 (49.80%): s(36.21%)p(63.64%)
π(C2-C6)	1.70283	n/a	C2 (52.25%): s(0.01%)p(99.92%)
			C6 (47.75%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97710	<i>sp</i> ^{1.83} at C3	C3 (49.41%): s(35.32%)p(64.51%)
		$sp^{1.93}$ at C5	C5 (50.59%): s(34.09%)p(65.80%)
π(C3-C5)	1.62772	n/a	C3 (53.02%): s(0.00%)p(99.93%)
			C5 (46.98%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98263	<i>sp</i> ^{1.75} at C3	C3 (50.22%): s(36.32%)p(63.52%)
		$sp^{1.77}$ at C7	C7 (49.78%): s(36.03%)p(63.81%)
σ(C6-C8)	1.98350	<i>sp</i> ^{1.78} at C6	C6 (50.15%): s(35.93%)p(63.91%)
		$sp^{1.80}$ at C8	C8 (49.85%): <i>s</i> (35.67%) <i>p</i> (64.18%)
σ(C7-C8)	1.98339	<i>sp</i> ^{1.78} at C7	C7 (50.09%): <i>s</i> (35.94%) <i>p</i> (63.90%)
		$sp^{1.80}$ at C8	C8 (49.91%): s(35.68%)p(64.17%)
π(C7-C8)	1.67390	n/a	C7 (47.91%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.09%): s(0.00%)p(99.93%)
σ(C11-C12)	1.97604	$sp^{1.75}$ at C11	C11 (50.98%): <i>s</i> (36.32%) <i>p</i> (63.58%)
		$sp^{1.88}$ at C12	C12 (49.02%): <i>s</i> (34.69%) <i>p</i> (65.13%)
π(C11-C12)	1.64011	n/a	C11 (43.42%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (56.58%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97086	<i>sp</i> ^{2.21} at C11	C11 (49.07%): <i>s</i> (31.07%) <i>p</i> (68.81%)
		<i>sp</i> ^{1.94} at C10	C10 (50.93%): <i>s</i> (33.96%) <i>p</i> (65.93%)
Lone pair 1 (N4)	1.86833	$sp^{2.64}$	s(27.44%)p(72.53%)
σ(N4-C9)	1.98829	$sp^{1.61}$ at N4	N4 (59.92%): <i>s</i> (38.19%) <i>p</i> (61.52%)
		<i>sp</i> ^{1.93} at C9	C9 (40.08%): <i>s</i> (34.14%) <i>p</i> (65.77%)
π(N4-C9)	1.87004	n/a	N4 (63.44%): s(0.00%)p(99.84%)
			C9 (36.56%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98194	$sp^{1.91}$ at N4	N4 (59.50%): <i>s</i> (34.26%) <i>p</i> (65.47%)
		$sp^{2.33}$ at C10	C10 (40.50%): s(29.98%)p(69.94%)

Table S79. NBO analysis^{*a*} of (^{*t*Bu}L3)₂Zn with the M06 functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83539	$sp^{2.51}$	s(28.47%)p(71.50%)
Lone pair 2 (N1)	1.64322	n/a	s(0.04%)p(99.89%)
σ(N1-C5)	1.98488	$sp^{1.83}$ at N1	N1 (58.94%): s(35.22%)p(64.56%)
		$sp^{2.21}$ at C5	C5 (41.06%): s(31.13%)p(68.79%)
σ(N1-C11)	1.98351	<i>sp</i> ^{1.76} at N1	N1 (58.21%): s(36.15%)p(63.60%)
		$sp^{2.07}$ at C11	C11 (41.79%): s(32.58%)p(67.32%)
σ(C2-C5)	1.97800	<i>sp</i> ^{1.85} at C2	C2 (49.52%): s(34.97%)p(64.86%)
		$sp^{1.88}$ at C5	C5 (50.48%): s(34.71%)p(65.19%)
σ(C2-C6)	1.98224	<i>sp</i> ^{1.75} at C2	C2 (50.23%): s(36.36%)p(63.46%)
		$sp^{1.77}$ at C6	C6 (49.77%): s(36.10%)p(63.74%)
π(C2-C6)	1.70225	n/a	C2 (52.06%) : $s(0.01\%)p(99.93\%)$
			C6 (47.94%) : $s(0.00\%)p(99.93\%)$
σ(C3-C5)	1.97800	<i>sp</i> ^{1.83} at C3	C3 (49.31%): s(35.21%)p(64.61%)
		$sp^{1.93}$ at C5	C5 (50.69%) : $s(34.06\%)p(65.83\%)$
π(C3-C5)	1.62899	n/a	C3 (52.91%): s(0.00%)p(99.93%)
			C5 (47.09%) : $s(0.02\%)p(99.92\%)$
σ(C3-C7)	1.98319	<i>sp</i> ^{1.75} at C3	C3 (50.25%): s(36.26%)p(63.56%)
		$sp^{1.78}$ at C7	C7 (49.75%): $s(35.93\%)p(63.90\%)$
σ(C6-C8)	1.98421	$sp^{1.78}$ at C6	C6 (50.14%): s(35.86%)p(63.97%)
		$sp^{1.81}$ at C8	C8 (49.86%): s(35.59%)p(64.25%)
σ(C7-C8)	1.98407	$sp^{1.78}$ at C7	C7 (50.07%): s(35.85%)p(63.97%)
		$sp^{1.80}$ at C8	C8 (49.93%): s(35.60%)p(64.23%)
π(C7-C8)	1.67529	n/a	C7 (48.01%): s(0.00%)p(99.94%)
			C8 (51.99%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97674	$sp^{1.75}$ at C11	C11 (51.08%): s(36.38%)p(63.52%)
, , ,		$sp^{1.88}$ at C12	C12 (48.92%): s(34.60%)p(65.21%)
π(C11-C12)	1.64397	n/a	C11 (43.70%): s(0.00%)p(99.91%)
			C12 (56.30%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97194	<i>sp</i> ^{2.23} at C11	C11 (48.94%): s(30.97%)p(68.91%)
		$sp^{1.94}$ at C10	C10 (51.06%): s(33.97%)p(65.93%)
Lone pair 1 (N4)	1.88594	<i>sp</i> ^{2.71}	s(26.92%)p(73.06%)
σ(N4-C9)	1.98841	<i>sp</i> ^{1.59} at N4	N4 (59.91%): s(38.46%)p(61.19%)
		$sp^{1.94}$ at C9	C9 (40.09%): s(34.03%)p(65.86%)
π(N4-C9)	1.87186	n/a	N4 (62.85%): s(0.00%)p(99.84%)
			C9 (37.15%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98240	<i>sp</i> ^{1.89} at N4	N4 (59.39%): s(34.50%)p(65.19%)
		$sp^{2.33}$ at C10	C10 (40.61%): s(29.99%)p(69.93%)

Table S80. NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the M06-2X functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

 b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81921	$sp^{2.55}$	s(28.15%)p(71.82%)
Lone pair 2 (N1)	1.64835	n/a	s(0.07%)p(99.88%)
σ(N1-C5)	1.98511	<i>sp</i> ^{1.82} at N1	N1 (58.90%): s(35.33%)p(64.43%)
		$sp^{2.21}$ at C5	C5 (41.10%): $s(31.10\%)p(68.79\%)$
σ(N1-C11)	1.98375	<i>sp</i> ^{1.75} at N1	N1 (58.16%): s(36.33%)p(63.40%)
, , ,		$sp^{2.07}$ at C11	C11 (41.84%): s(32.55%)p(67.33%)
σ(C2-C5)	1.97802	<i>sp</i> ^{1.85} at C2	C2 (49.55%): s(34.97%)p(64.83%)
		$sp^{1.88}$ at C5	C5 (50.45%): s(34.73%)p(65.16%)
σ(C2-C6)	1.98192	<i>sp</i> ^{1.74} at C2	C2 (50.23%): s(36.41%)p(63.39%)
· · · ·		$sp^{1.76}$ at C6	C6 (49.77%): s(36.11%)p(63.71%)
π(C2-C6)	1.70191	n/a	C2 (52.18%): s(0.01%)p(99.93%)
			C6 (47.82%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C3-C5)	1.97803	<i>sp</i> ^{1.83} at C3	C3 (49.36%): <i>s</i> (35.22%) <i>p</i> (64.59%)
		<i>sp</i> ^{1.93} at C5	C5 (50.64%): <i>s</i> (34.05%) <i>p</i> (65.83%)
π(C3-C5)	1.62730	n/a	C3 (53.12%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C5 (46.88%): <i>s</i> (0.02%) <i>p</i> (99.91%)
σ(C3-C7)	1.98285	<i>sp</i> ^{1.75} at C3	C3 (50.25%): <i>s</i> (36.31%) <i>p</i> (63.50%)
		$sp^{1.78}$ at C7	C7 (49.75%): <i>s</i> (35.94%) <i>p</i> (63.88%)
σ(C6-C8)	1.98382	$sp^{1.78}$ at C6	C6 (50.14%): <i>s</i> (35.89%) <i>p</i> (63.92%)
		<i>sp</i> ^{1.80} at C8	C8 (49.86%): s(35.62%)p(64.20%)
σ(C7-C8)	1.98373	$sp^{1.78}$ at C7	C7 (50.07%): <i>s</i> (35.89%) <i>p</i> (63.92%)
		<i>sp</i> ^{1.80} at C8	C8 (49.93%): s(35.63%)p(64.18%)
π (C7-C8)	1.67570	n/a	C7 (47.90%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.10%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97653	$sp^{1.75}$ at C11	C11 (51.04%): <i>s</i> (36.34%) <i>p</i> (63.55%)
		<i>sp</i> ^{1.88} at C12	C12 (48.96%): s(34.65%)p(65.15%)
π (C11-C12)	1.64470	n/a	C11 (43.35%): <i>s</i> (0.00%) <i>p</i> (99.90%)
			C12 (56.65%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97203	$sp^{2.22}$ at C11	C11 (48.98%): <i>s</i> (31.01%) <i>p</i> (68.86%)
		<i>sp</i> ^{1.94} at C10	C10 (51.02%): s(33.97%)p(65.91%)
Lone pair 1 (N4)	1.87748	$sp^{2.75}$	s(26.68%)p(73.31%)
σ(N4-C9)	1.98823	$sp^{1.58}$ at N4	N4 (59.79%): s(38.56%)p(61.08%)
		<i>sp</i> ^{1.93} at C9	C9 (40.21%): s(34.07%)p(65.81%)
π(N4-C9)	1.87353	n/a	N4 (62.98%): s(0.00%)p(99.86%)
		1.00	C9 (37.02%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98260	$sp^{1.88}$ at N4	N4 (59.31%): <i>s</i> (34.64%) <i>p</i> (65.03%)
		$sp^{2.33}$ at C10	C10 (40.69%): $s(29.97\%)p(69.92\%)$

Table S81. NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81111	$sp^{2.18}$	s(31.41%)p(68.57%)
Lone pair 2 (N1)	1.60880	n/a	s(0.10%)p(99.84%)
σ(N1-C5)	1.98383	<i>sp</i> ^{1.97} at N1	N1 (59.11%): s(33.58%)p(66.22%)
		$sp^{2.22}$ at C5	C5 (40.89%): s(31.02%)p(68.90%)
σ(N1-C11)	1.98283	<i>sp</i> ^{1.87} at N1	N1 (58.58%): s(34.80%)p(64.97%)
, , ,		$sp^{2.09}$ at C11	C11 (41.42%): s(32.33%)p(67.58%)
σ(C2-C5)	1.97805	<i>sp</i> ^{1.85} at C2	C2 (49.59%): s(35.00%)p(64.82%)
		$sp^{1.88}$ at C5	C5 (50.41%): s(34.72%)p(65.16%)
σ(C2-C6)	1.98224	<i>sp</i> ^{1.74} at C2	C2 (50.22%): s(36.43%)p(63.40%)
		$sp^{1.76}$ at C6	C6 (49.78%): s(36.14%)p(63.70%)
π(C2-C6)	1.70514	n/a	C2 (51.93%): s(0.01%)p(99.91%)
			C6 (48.07%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97785	<i>sp</i> ^{1.83} at C3	C3 (49.49%): s(35.26%)p(64.56%)
		$sp^{1.92}$ at C5	C5 (50.51%): s(34.16%)p(65.72%)
π(C3-C5)	1.62661	n/a	C3 (53.06%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C5 (46.94%): s(0.01%)p(99.91%)
σ(C3-C7)	1.98329	<i>sp</i> ^{1.75} at C3	C3 (50.26%): <i>s</i> (36.36%) <i>p</i> (63.46%)
		$sp^{1.77}$ at C7	C7 (49.74%): <i>s</i> (35.98%) <i>p</i> (63.86%)
σ(C6-C8)	1.98437	<i>sp</i> ^{1.78} at C6	C6 (50.12%): <i>s</i> (35.91%) <i>p</i> (63.91%)
		$sp^{1.80}$ at C8	C8 (49.88%): <i>s</i> (35.64%) <i>p</i> (64.20%)
σ(C7-C8)	1.98423	$sp^{1.78}$ at C7	C7 (50.11%): <i>s</i> (35.94%) <i>p</i> (63.88%)
		<i>sp</i> ^{1.80} at C8	C8 (49.89%): s(35.65%)p(64.19%)
π (C7-C8)	1.67794	n/a	C7 (48.02%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C8 (51.98%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C11-C12)	1.97700	<i>sp</i> ^{1.75} at C11	C11 (50.96%): <i>s</i> (36.33%) <i>p</i> (63.57%)
		<i>sp</i> ^{1.88} at C12	C12 (49.04%): <i>s</i> (34.65%) <i>p</i> (65.17%)
π(C11-C12)	1.64755	n/a	C11 (44.36%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.64%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97095	$sp^{2.19}$ at C11	C11 (49.20%): <i>s</i> (31.27%) <i>p</i> (68.60%)
		<i>sp</i> ^{1.94} at C10	C10 (50.80%): <i>s</i> (33.93%) <i>p</i> (65.95%)
Lone pair 1 (N4)	1.86668	$sp^{2.43}$	s(29.15%)p(70.83%)
σ(N4-C9)	1.98848	$sp^{1.66}$ at N4	N4 (60.08%): s(37.50%)p(62.19%)
		<i>sp</i> ^{1.95} at C9	C9 (39.92%): s(33.84%)p(66.06%)
π(N4-C9)	1.86174	n/a	N4 (63.51%): <i>s</i> (0.00%) <i>p</i> (99.86%)
			C9 (36.49%): s(0.00%)p(99.86%)
σ(N4-C10)	1.98183	$sp^{2.00}$ at N4	N4 (59.37%): s(33.22%)p(66.50%)
		<i>sp</i> ^{2.34} at C10	C10 (40.63%): s(29.95%)p(69.97%)

Table S82. Solvated NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the M06-L functional.

^{*a*} Calculated in solution at the optimized S0 geometry using M06-L (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_Ah_A + c_Bh_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81076	$sp^{2.38}$	s(29.62%)p(70.35%)
Lone pair 2 (N1)	1.61582	n/a	s(0.10%)p(99.85%)
σ(N1-C5)	1.98436	$sp^{1.90}$ at N1	N1 (58.89%): s(34.43%)p(65.35%)
		$sp^{2.21}$ at C5	C5 (41.11%): s(31.10%)p(68.80%)
σ(N1-C11)	1.98322	<i>sp</i> ^{1.79} at N1	N1 (58.32%): <i>s</i> (35.73%) <i>p</i> (64.03%)
		$sp^{2.08}$ at C11	C11 (41.68%): s(32.40%)p(67.49%)
σ(C2-C5)	1.97825	$sp^{1.87}$ at C2	C2 (49.44%): <i>s</i> (34.82%) <i>p</i> (65.00%)
		$sp^{1.89}$ at C5	C5 (50.56%): <i>s</i> (34.74%) <i>p</i> (65.15%)
σ(C2-C6)	1.98212	$sp^{1.75}$ at C2	C2 (50.24%): <i>s</i> (36.32%) <i>p</i> (63.49%)
		<i>sp</i> ^{1.77} at C6	C6 (49.76%): <i>s</i> (35.99%) <i>p</i> (63.84%)
π(C2-C6)	1.70270	n/a	C2 (51.69%): s(0.01%)p(99.92%)
			C6 (48.31%): <i>s</i> (0.00%) <i>p</i> (99.92%)
σ(C3-C5)	1.97796	<i>sp</i> ^{1.84} at C3	C3 (49.33%): <i>s</i> (35.10%) <i>p</i> (64.72%)
		<i>sp</i> ^{1.93} at C5	C5 (50.67%): s(34.07%)p(65.82%)
σ(C3-C7)	1.98316	n/a	C3 (50.28%): <i>s</i> (36.24%) <i>p</i> (63.58%)
			C7 (49.72%): <i>s</i> (35.82%) <i>p</i> (64.00%)
π(C3-C7)	1.69983	n/a	C3 (51.73%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C7 (48.27%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C6-C8)	1.98455	<i>sp</i> ^{1.79} at C6	C6 (50.11%): <i>s</i> (35.76%) <i>p</i> (64.05%)
		$sp^{1.81}$ at C8	C8 (49.89%): <i>s</i> (35.51%) <i>p</i> (64.31%)
σ(C7-C8)	1.98442	<i>sp</i> ^{1.79} at C7	C7 (50.10%): <i>s</i> (35.80%) <i>p</i> (64.02%)
		$sp^{1.81}$ at C8	C8 (49.90%): <i>s</i> (35.52%) <i>p</i> (64.31%)
Lone pair 1 (C31)	1.04616	n/a	s(0.00%)p(99.95%)
σ(C11-C12)	1.97651	$sp^{1.75}$ at C11	C11 (51.14%): <i>s</i> (36.38%) <i>p</i> (63.51%)
		<i>sp</i> ^{1.89} at C12	C12 (48.86%): <i>s</i> (34.49%) <i>p</i> (65.32%)
π(C11-C12)	1.64701	n/a	C11 (45.00%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (55.00%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97106	<i>sp</i> ^{2.21} at C11	C11 (49.17%): <i>s</i> (31.14%) <i>p</i> (68.74%)
		<i>sp</i> ^{1.95} at C10	C10 (50.83%): <i>s</i> (33.88%) <i>p</i> (66.01%)
Lone pair 1 (N4)	1.86686	$sp^{2.58}$	s(27.93%)p(72.06%)
σ(N4-C9)	1.98858	$sp^{1.62}$ at N4	N4 (60.01%): <i>s</i> (38.07%) <i>p</i> (61.59%)
		<i>sp</i> ^{1.95} at C9	C9 (39.99%): <i>s</i> (33.81%) <i>p</i> (66.07%)
π(N4-C9)	1.86186	n/a	N4 (63.72%): <i>s</i> (0.00%) <i>p</i> (99.87%)
			C9 (36.28%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98257	<i>sp</i> ^{1.94} at N4	N4 (59.15%): s(33.88%)p(65.82%)
		$sp^{2.33}$ at C10	C10 (40.85%): s(30.03%)p(69.88%)

Table S83. Solvated NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the TPSSh functional.

^{*a*} Calculated in solution at the optimized S0 geometry using TPSSh (SMD "dichloromethane"/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81000	$sp^{2.41}$	s(29.34%)p(70.63%)
Lone pair 2 (N1)	1.61221	n/a	s(0.09%)p(99.86%)
σ(N1-C5)	1.98434	$sp^{1.88}$ at N1	N1 (58.74%): s(34.59%)p(65.20%)
		$sp^{2.21}$ at C5	C5 (41.26%): s(31.13%)p(68.77%)
σ(N1-C11)	1.98313	<i>sp</i> ^{1.78} at N1	N1 (58.19%): s(35.85%)p(63.90%)
		$sp^{2.08}$ at C11	C11 (41.81%): s(32.42%)p(67.44%)
σ(C2-C5)	1.97770	<i>sp</i> ^{1.87} at C2	C2 (49.44%): s(34.78%)p(65.05%)
		$sp^{1.88}$ at C5	C5 (50.56%): s(34.73%)p(65.16%)
σ(C2-C6)	1.98163	<i>sp</i> ^{1.75} at C2	C2 (50.23%): s(36.30%)p(63.53%)
		$sp^{1.78}$ at C6	C6 (49.77%): s(35.97%)p(63.88%)
π(C2-C6)	1.70301	n/a	C2 (51.60%): s(0.01%)p(99.93%)
			C6 (48.40%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C3-C5)	1.97754	<i>sp</i> ^{1.85} at C3	C3 (49.34%): <i>s</i> (35.06%) <i>p</i> (64.77%)
		<i>sp</i> ^{1.94} at C5	C5 (50.66%): <i>s</i> (34.03%) <i>p</i> (65.87%)
π(C3-C5)	1.62735	n/a	C3 (52.50%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (47.50%): <i>s</i> (0.02%) <i>p</i> (99.91%)
σ(C3-C7)	1.98265	<i>sp</i> ^{1.76} at C3	C3 (50.28%): <i>s</i> (36.22%) <i>p</i> (63.61%)
		<i>sp</i> ^{1.79} at C7	C7 (49.72%): <i>s</i> (35.80%) <i>p</i> (64.04%)
σ(C6-C8)	1.98400	<i>sp</i> ^{1.79} at C6	C6 (50.11%): <i>s</i> (35.75%) <i>p</i> (64.08%)
		<i>sp</i> ^{1.81} at C8	C8 (49.89%): <i>s</i> (35.49%) <i>p</i> (64.35%)
σ(C7-C8)	1.98387	$sp^{1.79}$ at C7	C7 (50.09%): <i>s</i> (35.79%) <i>p</i> (64.04%)
		<i>sp</i> ^{1.81} at C8	C8 (49.91%): s(35.50%)p(64.34%)
π(C7-C8)	1.67905	n/a	C7 (48.21%): <i>s</i> (0.00%) <i>p</i> (99.94%)
			C8 (51.79%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97608	<i>sp</i> ^{1.75} at C11	C11 (51.13%): <i>s</i> (36.37%) <i>p</i> (63.53%)
		<i>sp</i> ^{1.90} at C12	C12 (48.87%): s(34.44%)p(65.39%)
π (C11-C12)	1.64562	n/a	C11 (45.19%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (54.81%): s(0.00%)p(99.92%)
σ(C11-C10)	1.97068	$sp^{2.21}$ at C11	C11 (49.20%): <i>s</i> (31.10%) <i>p</i> (68.79%)
		<i>sp</i> ^{1.95} at C10	C10 (50.80%): s(33.83%)p(66.07%)
Lone pair 1 (N4)	1.86514	$sp^{2.60}$	s(27.78%)p(72.20%)
σ(N4-C9)	1.98840	$sp^{1.61}$ at N4	N4 (59.89%): s(38.19%)p(61.48%)
		<i>sp</i> ^{1.95} at C9	C9 (40.11%): s(33.81%)p(66.07%)
π(N4-C9)	1.86292	n/a	N4 (63.64%): <i>s</i> (0.00%) <i>p</i> (99.87%)
			C9 (36.36%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98238	<i>sp</i> ^{1.94} at N4	N4 (58.98%): <i>s</i> (33.90%) <i>p</i> (65.80%)
		$sp^{2.32}$ at C10	C10 (41.02%): s(30.10%)p(69.81%)

Table S84. Solvated NBO analysis^{*a*} of (^{*t*Bu}L3)₂Zn with the O3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using O3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bool orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81367	$sp^{2.45}$	s(29.02%)p(70.96%)
Lone pair 2 (N1)	1.62637	n/a	s(0.10%)p(99.85%)
σ(N1-C5)	1.98460	$sp^{1.87}$ at N1	N1 (58.82%): s(34.75%)p(65.03%)
		$sp^{2.20}$ at C5	C5 (41.18%): s(31.17%)p(68.72%)
σ(N1-C11)	1.98340	<i>sp</i> ^{1.77} at N1	N1 (58.29%): s(36.02%)p(63.72%)
		$sp^{2.08}$ at C11	C11 (41.71%): s(32.47%)p(67.41%)
σ(C2-C5)	1.97784	$sp^{1.86}$ at C2	C2 (49.48%): s(34.84%)p(64.96%)
		$sp^{1.88}$ at C5	C5 (50.52%): s(34.69%)p(65.20%)
σ(C2-C6)	1.98196	$sp^{1.75}$ at C2	C2 (50.22%): s(36.35%)p(63.46%)
		<i>sp</i> ^{1.77} at C6	C6 (49.78%): s(36.02%)p(63.81%)
π(C2-C6)	1.70278	n/a	C2 (51.78%): s(0.01%)p(99.93%)
			C6 (48.22%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C3-C5)	1.97782	<i>sp</i> ^{1.84} at C3	C3 (49.37%): <i>s</i> (35.13%) <i>p</i> (64.67%)
		<i>sp</i> ^{1.94} at C5	C5 (50.63%): <i>s</i> (34.01%) <i>p</i> (65.86%)
π(C3-C5)	1.62686	n/a	C3 (52.93%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (47.07%): <i>s</i> (0.02%) <i>p</i> (99.91%)
σ(C3-C7)	1.98291	<i>sp</i> ^{1.75} at C3	C3 (50.26%): <i>s</i> (36.27%) <i>p</i> (63.55%)
		$sp^{1.78}$ at C7	C7 (49.74%): <i>s</i> (35.86%) <i>p</i> (63.96%)
σ(C6-C8)	1.98405	<i>sp</i> ^{1.79} at C6	C6 (50.11%): <i>s</i> (35.81%) <i>p</i> (64.00%)
		<i>sp</i> ^{1.81} at C8	C8 (49.89%): <i>s</i> (35.54%) <i>p</i> (64.28%)
σ(C7-C8)	1.98393	$sp^{1.78}$ at C7	C7 (50.09%): <i>s</i> (35.84%) <i>p</i> (63.97%)
		<i>sp</i> ^{1.81} at C8	C8 (49.91%): s(35.55%)p(64.27%)
π(C7-C8)	1.67996	n/a	C7 (48.01%): <i>s</i> (0.00%) <i>p</i> (99.94%)
			C8 (51.99%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97635	$sp^{1.75}$ at C11	C11 (51.11%): <i>s</i> (36.34%) <i>p</i> (63.55%)
		<i>sp</i> ^{1.89} at C12	C12 (48.89%): s(34.51%)p(65.29%)
π (C11-C12)	1.64854	n/a	C11 (44.51%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (55.49%): s(0.00%)p(99.92%)
σ(C11-C10)	1.97119	$sp^{2.21}$ at C11	C11 (49.17%): s(31.10%)p(68.77%)
		<i>sp</i> ^{1.95} at C10	C10 (50.83%): s(33.84%)p(66.05%)
Lone pair 1 (N4)	1.86995	$sp^{2.66}$	s(27.33%)p(72.66%)
σ(N4-C9)	1.98834	$sp^{1.60}$ at N4	N4 (59.97%): s(38.40%)p(61.25%)
		$sp^{1.95}$ at C9	C9 (40.03%): s(33.88%)p(65.99%)
π(N4-C9)	1.86510	n/a	N4 (63.78%): <i>s</i> (0.00%) <i>p</i> (99.87%)
		4.02	C9 (36.22%): s(0.00%)p(99.88%)
σ(N4-C10)	1.98257	$sp^{1.92}$ at N4	N4 (59.15%): <i>s</i> (34.16%) <i>p</i> (65.53%)
	1	$sp^{2.32}$ at C10	C10 (40.85%) : $s(30.10\%)p(69.80\%)$

Table S85. Solvated NBO analysis^{*a*} of $({}^{tBu}L3)_2Zn$ with the B3LYP functional.

^a Calculated in solution at the optimized S0 geometry using B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^d Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.
NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81745	$sp^{2.45}$	s(28.96%)p(71.01%)
Lone pair 2 (N1)	1.63057	n/a	s(0.09%)p(99.85%)
σ(N1-C5)	1.98479	$sp^{1.87}$ at N1	N1 (58.79%): s(34.80%)p(64.97%)
		$sp^{2.21}$ at C5	C5 (41.21%): s(31.17%)p(68.73%)
σ(N1-C11)	1.98355	<i>sp</i> ^{1.77} at N1	N1 (58.22%): s(36.03%)p(63.71%)
		$sp^{2.08}$ at C11	C11 (41.78%): s(32.47%)p(67.41%)
σ(C2-C5)	1.97813	<i>sp</i> ^{1.87} at C2	C2 (49.50%): s(34.81%)p(65.00%)
		$sp^{1.88}$ at C5	C5 (50.50%): s(34.70%)p(65.19%)
σ(C2-C6)	1.98207	<i>sp</i> ^{1.75} at C2	C2 (50.24%): s(36.29%)p(63.52%)
· · · ·		$sp^{1.78}$ at C6	C6 (49.76%): s(35.97%)p(63.86%)
π(C2-C6)	1.70206	n/a	C2 (51.85%): s(0.01%)p(99.92%)
			C6 (48.15%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97808	<i>sp</i> ^{1.84} at C3	C3 (49.38%): s(35.10%)p(64.71%)
		$sp^{1.94}$ at C5	C5 (50.62%): s(34.02%)p(65.86%)
π(C3-C5)	1.62815	n/a	C3 (52.89%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C5 (47.11%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98304	<i>sp</i> ^{1.76} at C3	C3 (50.28%): s(36.21%)p(63.60%)
		$sp^{1.79}$ at C7	C7 (49.72%): s(35.80%)p(64.02%)
σ(C6-C8)	1.98431	<i>sp</i> ^{1.79} at C6	C6 (50.11%): <i>s</i> (35.74%) <i>p</i> (64.07%)
		$sp^{1.81}$ at C8	C8 (49.89%): <i>s</i> (35.49%) <i>p</i> (64.34%)
σ(C7-C8)	1.98418	<i>sp</i> ^{1.79} at C7	C7 (50.09%): <i>s</i> (35.78%) <i>p</i> (64.04%)
		$sp^{1.81}$ at C8	C8 (49.91%): <i>s</i> (35.49%) <i>p</i> (64.33%)
π(C7-C8)	1.67909	n/a	C7 (48.01%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (51.99%): <i>s</i> (0.00%) <i>p</i> (99.94%)
σ(C11-C12)	1.97649	<i>sp</i> ^{1.75} at C11	C11 (51.09%): <i>s</i> (36.36%) <i>p</i> (63.53%)
		<i>sp</i> ^{1.90} at C12	C12 (48.91%): <i>s</i> (34.47%) <i>p</i> (65.34%)
π(C11-C12)	1.65006	n/a	C11 (44.47%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.53%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97138	<i>sp</i> ^{2.21} at C11	C11 (49.15%): <i>s</i> (31.08%) <i>p</i> (68.79%)
		<i>sp</i> ^{1.95} at C10	C10 (50.85%): s(33.85%)p(66.03%)
Lone pair 1 (N4)	1.87193	$sp^{2.64}$	s(27.47%)p(72.52%)
σ(N4-C9)	1.98857	$sp^{1.60}$ at N4	N4 (59.92%): <i>s</i> (38.30%) <i>p</i> (61.34%)
		<i>sp</i> ^{1.95} at C9	C9 (40.08%): s(33.85%)p(66.03%)
π(N4-C9)	1.86570	n/a	N4 (63.95%): s(0.00%)p(99.86%)
			C9 (36.05%): s(0.00%)p(99.86%)
σ(N4-C10)	1.98276	<i>sp</i> ^{1.92} at N4	N4 (59.04%): <i>s</i> (34.10%) <i>p</i> (65.57%)
		$sp^{2.32}$ at C10	C10 (40.96%): s(30.08%)p(69.82%)

Table S86. Solvated NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the PBE0 functional.

^{*a*} Calculated in solution at the optimized S0 geometry using PBE0 (SMD "dichloromethane"/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^d Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.80959	$sp^{2.43}$	s(29.16%)p(70.81%)
Lone pair 2 (N1)	1.64041	n/a	s(0.12%)p(99.82%)
σ(N1-C5)	1.98442	$sp^{1.87}$ at N1	N1 (59.12%): s(34.72%)p(65.09%)
		$sp^{2.21}$ at C5	C5 (40.88%): s(31.14%)p(68.78%)
σ(N1-C11)	1.98331	<i>sp</i> ^{1.78} at N1	N1 (58.51%): s(35.89%)p(63.89%)
		$sp^{2.08}$ at C11	C11 (41.49%): s(32.43%)p(67.48%)
σ(C2-C5)	1.97730	<i>sp</i> ^{1.85} at C2	C2 (49.57%): s(34.97%)p(64.86%)
		$sp^{1.88}$ at C5	C5 (50.43%): s(34.70%)p(65.20%)
σ(C2-C6)	1.98167	<i>sp</i> ^{1.75} at C2	C2 (50.21%): s(36.34%)p(63.49%)
		$sp^{1.77}$ at C6	C6 (49.79%): s(36.09%)p(63.77%)
π(C2-C6)	1.70203	n/a	C2 (52.19%): s(0.01%)p(99.92%)
			C6 (47.81%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97737	<i>sp</i> ^{1.83} at C3	C3 (49.45%): s(35.25%)p(64.58%)
		$sp^{1.93}$ at C5	C5 (50.55%): s(34.05%)p(65.84%)
π(C3-C5)	1.62941	n/a	C3 (53.32%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (46.68%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C3-C7)	1.98270	<i>sp</i> ^{1.75} at C3	C3 (50.24%): s(36.26%)p(63.58%)
		$sp^{1.78}$ at C7	C7 (49.76%): s(35.93%)p(63.92%)
σ(C6-C8)	1.98371	<i>sp</i> ^{1.79} at C6	C6 (50.12%): <i>s</i> (35.82%) <i>p</i> (64.02%)
		$sp^{1.81}$ at C8	C8 (49.88%): <i>s</i> (35.57%) <i>p</i> (64.28%)
σ(C7-C8)	1.98358	<i>sp</i> ^{1.78} at C7	C7 (50.11%): <i>s</i> (35.86%) <i>p</i> (63.98%)
		$sp^{1.81}$ at C8	C8 (49.89%): s(35.57%)p(64.27%)
π(C7-C8)	1.67803	n/a	C7 (47.79%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.21%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C11-C12)	1.97603	$sp^{1.75}$ at C11	C11 (51.01%): <i>s</i> (36.36%) <i>p</i> (63.55%)
		$sp^{1.89}$ at C12	C12 (48.99%): <i>s</i> (34.57%) <i>p</i> (65.26%)
π(C11-C12)	1.65233	n/a	C11 (43.55%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (56.45%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97084	$sp^{2.21}$ at C11	C11 (49.19%): <i>s</i> (31.13%) <i>p</i> (68.75%)
		<i>sp</i> ^{1.95} at C10	C10 (50.81%): <i>s</i> (33.87%) <i>p</i> (66.02%)
Lone pair 1 (N4)	1.86763	$sp^{2.64}$	s(27.45%)p(72.53%)
σ(N4-C9)	1.98836	$sp^{1.61}$ at N4	N4 (60.05%): s(38.26%)p(61.45%)
		<i>sp</i> ^{1.94} at C9	C9 (39.95%): s(33.95%)p(65.96%)
π(N4-C9)	1.86970	n/a	N4 (64.51%): s(0.00%)p(99.84%)
			C9 (35.49%): s(0.00%)p(99.85%)
σ(N4-C10)	1.98226	<i>sp</i> ^{1.92} at N4	N4 (59.38%): <i>s</i> (34.19%) <i>p</i> (65.55%)
		$sp^{2.33}$ at C10	C10 (40.62%): s(30.03%)p(69.89%)

Table S87. Solvated NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the M06 functional.

^{*a*} Calculated in solution at the optimized S0 geometry using M06 (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = \left(\frac{\% p}{\% s}\right)^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83696	$sp^{2.52}$	s(28.42%)p(71.55%)
Lone pair 2 (N1)	1.64833	n/a	s(0.06%)p(99.87%)
σ(N1-C5)	1.98489	<i>sp</i> ^{1.84} at N1	N1 (58.83%): s(35.14%)p(64.64%)
		$sp^{2.20}$ at C5	C5 (41.17%): $s(31.20\%)p(68.72\%)$
σ(N1-C11)	1.98348	<i>sp</i> ^{1.75} at N1	N1 (58.28%): s(36.27%)p(63.47%)
, , ,		$sp^{2.08}$ at C11	C11 (41.72%): s(32.49%)p(67.42%)
σ(C2-C5)	1.97827	<i>sp</i> ^{1.87} at C2	C2 (49.48%): s(34.84%)p(64.98%)
		$sp^{1.88}$ at C5	C5 (50.52%) : $s(34.68\%)p(65.22\%)$
σ(C2-C6)	1.98235	<i>sp</i> ^{1.75} at C2	C2 (50.25%): s(36.29%)p(63.53%)
		$sp^{1.78}$ at C6	C6 (49.75%): s(35.96%)p(63.88%)
π(C2-C6)	1.70105	n/a	C2 (51.98%) : $s(0.01\%)p(99.92\%)$
			C6 (48.02%): $s(0.00\%)p(99.93\%)$
σ(C3-C5)	1.97827	<i>sp</i> ^{1.84} at C3	C3 (49.34%): s(35.12%)p(64.70%)
		$sp^{1.94}$ at C5	C5 (50.66%) : $s(34.02\%)p(65.87\%)$
π(C3-C5)	1.63046	n/a	C3 (53.13%): s(0.00%)p(99.93%)
. ,			C5 (46.87%): s(0.01%)p(99.92%)
σ(C3-C7)	1.98326	<i>sp</i> ^{1.76} at C3	C3 (50.28%): s(36.19%)p(63.63%)
		$sp^{1.79}$ at C7	C7 (49.72%): s(35.81%)p(64.02%)
σ(C6-C8)	1.98443	<i>sp</i> ^{1.79} at C6	C6 (50.11%): s(35.74%)p(64.09%)
		$sp^{1.81}$ at C8	C8 (49.89%): s(35.48%)p(64.36%)
σ(C7-C8)	1.98429	<i>sp</i> ^{1.79} at C7	C7 (50.10%): s(35.77%)p(64.06%)
		$sp^{1.81}$ at C8	C8 (49.90%): s(35.48%)p(64.35%)
π(C7-C8)	1.67921	n/a	C7 (47.93%): s(0.00%)p(99.94%)
			C8 (52.07%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97673	<i>sp</i> ^{1.74} at C11	C11 (51.13%): <i>s</i> (36.41%) <i>p</i> (63.50%)
		<i>sp</i> ^{1.90} at C12	C12 (48.87%): <i>s</i> (34.47%) <i>p</i> (65.35%)
π(C11-C12)	1.65589	n/a	C11 (43.87%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (56.13%): <i>s</i> (0.00%) <i>p</i> (99.91%)
σ(C11-C10)	1.97194	<i>sp</i> ^{2.22} at C11	C11 (49.07%): <i>s</i> (31.04%) <i>p</i> (68.85%)
		<i>sp</i> ^{1.95} at C10	C10 (50.93%): <i>s</i> (33.87%) <i>p</i> (66.03%)
Lone pair 1 (N4)	1.88562	$sp^{2.71}$	s(26.93%)p(73.05%)
σ(N4-C9)	1.98849	$sp^{1.58}$ at N4	N4 (60.08%): s(38.55%)p(61.10%)
		<i>sp</i> ^{1.95} at C9	C9 (39.92%): <i>s</i> (33.81%) <i>p</i> (66.08%)
π(N4-C9)	1.87103	n/a	N4 (63.91%): s(0.00%)p(99.84%)
			C9 (36.09%): s(0.00%)p(99.86%)
σ(N4-C10)	1.98271	<i>sp</i> ^{1.90} at N4	N4 (59.24%): s(34.40%)p(65.29%)
		$sp^{2.32}$ at C10	C10 (40.76%): s(30.05%)p(69.86%)

Table S88. Solvated NBO analysis^{*a*} of (*t*^{Bu}L3)₂Zn with the M06-2X functional.

^{*a*} Calculated in solution at the optimized S0 geometry using M06-2X (SMD "dichloromethane"/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = \left(\frac{\% p}{\% s}\right)^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82111	$sp^{2.56}$	s(28.09%)p(71.88%)
Lone pair 2 (N1)	1.65342	n/a	s(0.10%)p(99.85%)
σ(N1-C5)	1.98511	$sp^{1.83}$ at N1	N1 (58.78%): s(35.24%)p(64.52%)
		$sp^{2.20}$ at C5	C5 (41.22%): s(31.18%)p(68.71%)
σ(N1-C11)	1.98372	$sp^{1.74}$ at N1	N1 (58.24%): s(36.46%)p(63.27%)
		$sp^{2.08}$ at C11	C11 (41.76%): s(32.46%)p(67.42%)
σ(C2-C5)	1.97829	<i>sp</i> ^{1.86} at C2	C2 (49.52%): s(34.85%)p(64.95%)
		$sp^{1.88}$ at C5	C5 (50.48%): s(34.69%)p(65.19%)
σ(C2-C6)	1.98204	<i>sp</i> ^{1.75} at C2	C2 (50.23%): s(36.33%)p(63.47%)
		$sp^{1.77}$ at C6	C6 (49.77%): s(35.99%)p(63.83%)
π(C2-C6)	1.70085	n/a	C2 (52.05%): s(0.01%)p(99.92%)
			C6 (47.95%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97830	<i>sp</i> ^{1.84} at C3	C3 (49.40%): s(35.14%)p(64.66%)
		$sp^{1.94}$ at C5	C5 (50.60%): s(34.00%)p(65.87%)
π(C3-C5)	1.62799	n/a	C3 (53.40%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C5 (46.60%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98292	<i>sp</i> ^{1.75} at C3	C3 (50.26%): s(36.24%)p(63.57%)
		$sp^{1.79}$ at C7	C7 (49.74%): s(35.83%)p(63.98%)
σ(C6-C8)	1.98404	<i>sp</i> ^{1.79} at C6	C6 (50.11%): <i>s</i> (35.78%) <i>p</i> (64.03%)
		$sp^{1.81}$ at C8	C8 (49.89%): <i>s</i> (35.52%) <i>p</i> (64.30%)
σ(C7-C8)	1.98393	<i>sp</i> ^{1.79} at C7	C7 (50.09%): <i>s</i> (35.81%) <i>p</i> (64.00%)
		<i>sp</i> ^{1.81} at C8	C8 (49.91%): s(35.52%)p(64.29%)
π (C7-C8)	1.68053	n/a	C7 (47.79%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.21%): <i>s</i> (0.00%) <i>p</i> (99.94%)
σ(C11-C12)	1.97653	<i>sp</i> ^{1.75} at C11	C11 (51.08%): <i>s</i> (36.37%) <i>p</i> (63.52%)
		<i>sp</i> ^{1.89} at C12	C12 (48.92%): <i>s</i> (34.52%) <i>p</i> (65.28%)
π(C11-C12)	1.65623	n/a	C11 (43.56%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (56.44%): s(0.00%)p(99.91%)
σ(C11-C10)	1.97203	$sp^{2.21}$ at C11	C11 (49.10%): <i>s</i> (31.07%) <i>p</i> (68.79%)
		<i>sp</i> ^{1.95} at C10	C10 (50.90%): s(33.88%)p(66.00%)
Lone pair 1 (N4)	1.87690	$sp^{2.75}$	s(26.69%)p(73.30%)
σ(N4-C9)	1.98832	$sp^{1.58}$ at N4	N4 (59.94%): s(38.64%)p(60.99%)
		<i>sp</i> ^{1.95} at C9	C9 (40.06%): s(33.86%)p(66.00%)
π(N4-C9)	1.87280	n/a	N4 (64.05%): <i>s</i> (0.00%) <i>p</i> (99.85%)
			C9 (35.95%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98288	$sp^{1.89}$ at N4	N4 (59.18%): <i>s</i> (34.54%) <i>p</i> (65.13%)
		$sp^{2.33}$ at C10	C10 (40.82%): s(30.03%)p(69.86%)

Table S89. Solvated NBO analysis^{*a*} of (^{*t*Bu}L3)₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in solution at the optimized S0 geometry using CAM-B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81477	$sp^{2.23}$	s(30.94%)p(69.04%)
Lone pair 2 (N1)	1.60621	n/a	s(0.05%)p(99.89%)
σ(N1-C5)	1.98380	<i>sp</i> ^{1.94} at N1	N1 (59.27%): s(33.95%)p(65.84%)
		$sp^{2.23}$ at C5	C5 (40.73%): s(30.95%)p(68.96%)
σ(N1-C11)	1.98284	$sp^{1.86}$ at N1	N1 (58.61%): s(34.94%)p(64.83%)
		$sp^{2.08}$ at C11	C11 (41.39%): s(32.41%)p(67.50%)
σ(C2-C5)	1.97734	<i>sp</i> ^{1.84} at C2	C2 (49.61%): s(35.11%)p(64.71%)
		$sp^{1.88}$ at C5	C5 (50.39%): s(34.73%)p(65.15%)
σ(C2-C6)	1.98211	$sp^{1.74}$ at C2	C2 (50.22%): s(36.50%)p(63.33%)
		$sp^{1.75}$ at C6	C6 (49.78%): s(36.27%)p(63.57%)
π(C2-C6)	1.70618	n/a	C2 (52.06%): s(0.01%)p(99.92%)
			C6 (47.94%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97750	<i>sp</i> ^{1.82} at C3	C3 (49.45%): s(35.35%)p(64.47%)
		$sp^{1.92}$ at C5	C5 (50.55%): s(34.20%)p(65.67%)
π(C3-C5)	1.62631	n/a	C3 (52.79%): s(0.00%)p(99.92%)
			C5 (47.21%): s(0.02%)p(99.90%)
σ(C3-C7)	1.98313	<i>sp</i> ^{1.74} at C3	C3 (50.25%): s(36.38%)p(63.45%)
		$sp^{1.77}$ at C7	C7 (49.75%): s(36.10%)p(63.74%)
σ(C6-C8)	1.98416	<i>sp</i> ^{1.77} at C6	C6 (50.15%): s(36.01%)p(63.82%)
		$sp^{1.80}$ at C8	C8 (49.85%): s(35.72%)p(64.12%)
σ(C7-C8)	1.98403	$sp^{1.77}$ at C7	C7 (50.09%): s(36.02%)p(63.81%)
		$sp^{1.79}$ at C8	C8 (49.91%): s(35.75%)p(64.09%)
π(C7-C8)	1.67382	n/a	C7 (48.10%): s(0.00%)p(99.92%)
			C8 (51.90%): s(0.00%)p(99.93%)
σ(C11-C12)	1.97725	$sp^{1.77}$ at C11	C11 (50.88%): <i>s</i> (36.05%) <i>p</i> (63.84%)
		$sp^{1.85}$ at C12	C12 (49.12%): s(35.02%)p(64.80%)
π(C11-C12)	1.63884	n/a	C11 (44.53%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (55.47%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97095	$sp^{2.17}$ at C11	C11 (49.10%): <i>s</i> (31.47%) <i>p</i> (68.40%)
		<i>sp</i> ^{1.95} at C10	C10 (50.90%): <i>s</i> (33.91%) <i>p</i> (65.97%)
Lone pair 1 (N4)	1.86727	$sp^{2.47}$	s(28.84%)p(71.13%)
σ(N4-C9)	1.98753	$sp^{1.65}$ at N4	N4 (59.71%): <i>s</i> (37.65%) <i>p</i> (62.04%)
		<i>sp</i> ^{2.04} at C9	C9 (40.29%): <i>s</i> (32.87%) <i>p</i> (67.03%)
π(N4-C9)	1.85386	n/a	N4 (64.03%): <i>s</i> (0.00%) <i>p</i> (99.85%)
			C9 (35.97%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98131	<i>sp</i> ^{1.99} at N4	N4 (59.58%): <i>s</i> (33.34%) <i>p</i> (66.38%)
		$sp^{2.33}$ at C10	C10 (40.42%): s(30.01%)p(69.91%)

Table S90. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81409	$sp^{2.42}$	s(29.21%)p(70.76%)
Lone pair 2 (N1)	1.61272	n/a	s(0.05%)p(99.90%)
σ(N1-C5)	1.98419	$sp^{1.87}$ at N1	N1 (59.06%): s(34.78%)p(65.00%)
		$sp^{2.22}$ at C5	C5 (40.94%): s(31.03%)p(68.87%)
σ(N1-C11)	1.98310	$sp^{1.78}$ at N1	N1 (58.36%): s(35.84%)p(63.91%)
		$sp^{2.08}$ at C11	C11 (41.64%): s(32.48%)p(67.41%)
σ(C2-C5)	1.97742	<i>sp</i> ^{1.86} at C2	C2 (49.46%): s(34.94%)p(64.87%)
		$sp^{1.88}$ at C5	C5 (50.54%): s(34.74%)p(65.15%)
σ(C2-C6)	1.98196	$sp^{1.74}$ at C2	C2 (50.24%): s(36.41%)p(63.41%)
		$sp^{1.76}$ at C6	C6 (49.76%): s(36.14%)p(63.70%)
π(C2-C6)	1.70434	n/a	C2 (51.86%): s(0.01%)p(99.93%)
			C6 (48.14%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97768	<i>sp</i> ^{1.84} at C3	C3 (49.29%): s(35.20%)p(64.62%)
		$sp^{1.93}$ at C5	C5 (50.71%): s(34.12%)p(65.77%)
π(C3-C5)	1.62681	n/a	C3 (52.29%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (47.71%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98300	<i>sp</i> ^{1.75} at C3	C3 (50.27%): s(36.27%)p(63.56%)
		$sp^{1.78}$ at C7	C7 (49.73%): s(35.94%)p(63.88%)
σ(C6-C8)	1.98431	<i>sp</i> ^{1.78} at C6	C6 (50.15%): s(35.87%)p(63.95%)
		$sp^{1.80}$ at C8	C8 (49.85%): s(35.61%)p(64.22%)
σ(C7-C8)	1.98420	$sp^{1.78}$ at C7	C7 (50.07%): s(35.89%)p(63.93%)
		$sp^{1.80}$ at C8	C8 (49.93%): s(35.63%)p(64.20%)
π(C7-C8)	1.67406	n/a	C7 (48.21%): s(0.00%)p(99.93%)
			C8 (51.79%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97683	<i>sp</i> ^{1.77} at C11	C11 (51.04%): <i>s</i> (36.10%) <i>p</i> (63.79%)
		$sp^{1.86}$ at C12	C12 (48.96%): <i>s</i> (34.89%) <i>p</i> (64.93%)
π(C11-C12)	1.63882	n/a	C11 (44.94%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.06%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97093	<i>sp</i> ^{2.19} at C11	C11 (49.07%): <i>s</i> (31.35%) <i>p</i> (68.53%)
		$sp^{1.95}$ at C10	C10 (50.93%): <i>s</i> (33.85%) <i>p</i> (66.04%)
Lone pair 1 (N4)	1.86647	$sp^{2.63}$	s(27.57%)p(72.42%)
σ(N4-C9)	1.98757	$sp^{1.60}$ at N4	N4 (59.51%): <i>s</i> (38.31%) <i>p</i> (61.35%)
		$sp^{2.03}$ at C9	C9 (40.49%): <i>s</i> (32.93%) <i>p</i> (66.95%)
π(N4-C9)	1.85470	n/a	N4 (63.82%): s(0.00%)p(99.86%)
			C9 (36.18%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98153	<i>sp</i> ^{1.99} at N4	N4 (59.38%): <i>s</i> (33.96%) <i>p</i> (65.75%)
		$sp^{2.32}$ at C10	C10 (40.62%): s(30.10%)p(69.80%)

Table S91. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81331	$sp^{2.45}$	s(28.94%)p(71.03%)
Lone pair 2 (N1)	1.60961	n/a	s(0.05%)p(99.90%)
σ(N1-C5)	1.98418	$sp^{1.86}$ at N1	N1 (58.91%): s(34.93%)p(64.86%)
		$sp^{2.22}$ at C5	C5 (41.09%) : $s(31.07\%)p(68.84\%)$
σ(N1-C11)	1.98297	<i>sp</i> ^{1.77} at N1	N1 (58.24%): s(35.96%)p(63.79%)
		$sp^{2.07}$ at C11	C11 (41.76%): s(32.52%)p(67.38%)
σ(C2-C5)	1.97701	<i>sp</i> ^{1.86} at C2	C2 (49.46%): s(34.90%)p(64.93%)
		$sp^{1.87}$ at C5	C5 (50.54%): s(34.75%)p(65.15%)
σ(C2-C6)	1.98145	$sp^{1.74}$ at C2	C2 (50.23%): s(36.38%)p(63.44%)
· · · ·		$sp^{1.76}$ at C6	C6 (49.77%): s(36.11%)p(63.73%)
π(C2-C6)	1.70459	n/a	C2 (51.79%): s(0.01%)p(99.93%)
			C6 (48.21%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97720	<i>sp</i> ^{1.84} at C3	C3 (49.30%): <i>s</i> (35.16%) <i>p</i> (64.67%)
		<i>sp</i> ^{1.93} at C5	C5 (50.70%): <i>s</i> (34.08%) <i>p</i> (65.82%)
π(C3-C5)	1.62651	n/a	C3 (52.27%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C5 (47.73%): <i>s</i> (0.02%) <i>p</i> (99.91%)
σ(C3-C7)	1.98248	<i>sp</i> ^{1.75} at C3	C3 (50.27%): <i>s</i> (36.26%) <i>p</i> (63.58%)
		$sp^{1.78}$ at C7	C7 (49.73%): <i>s</i> (35.91%) <i>p</i> (63.93%)
σ(C6-C8)	1.98373	$sp^{1.78}$ at C6	C6 (50.14%): <i>s</i> (35.87%) <i>p</i> (63.97%)
		<i>sp</i> ^{1.81} at C8	C8 (49.86%): s(35.59%)p(64.25%)
σ(C7-C8)	1.98363	$sp^{1.78}$ at C7	C7 (50.07%): <i>s</i> (35.88%) <i>p</i> (63.95%)
		<i>sp</i> ^{1.80} at C8	C8 (49.93%): s(35.61%)p(64.23%)
π (C7-C8)	1.67436	n/a	C7 (48.27%): <i>s</i> (0.00%) <i>p</i> (99.94%)
			C8 (51.73%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97638	$sp^{1.77}$ at C11	C11 (51.02%): <i>s</i> (36.10%) <i>p</i> (63.80%)
		<i>sp</i> ^{1.87} at C12	C12 (48.98%): s(34.84%)p(65.00%)
π (C11-C12)	1.63859	n/a	C11 (45.02%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C12 (54.98%): s(0.01%)p(99.92%)
σ(C11-C10)	1.97056	$sp^{2.19}$ at C11	C11 (49.11%): <i>s</i> (31.31%) <i>p</i> (68.58%)
		<i>sp</i> ^{1.95} at C10	C10 (50.89%): s(33.81%)p(66.09%)
Lone pair 1 (N4)	1.86463	$sp^{2.64}$	s(27.44%)p(72.54%)
σ(N4-C9)	1.98742	$sp^{1.59}$ at N4	N4 (59.40%): s(38.41%)p(61.25%)
		$sp^{2.03}$ at C9	C9 (40.60%): s(32.94%)p(66.95%)
π(N4-C9)	1.85538	n/a	N4 (63.85%): <i>s</i> (0.00%) <i>p</i> (99.86%)
		1.02	C9 (36.15%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98129	$sp^{1.93}$ at N4	N4 (59.21%): <i>s</i> (33.98%) <i>p</i> (65.73%)
		$sp^{2.31}$ at C10	C10 (40.79%): s(30.17%)p(69.74%)

Table S92. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the O3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81718	$sp^{2.49}$	s(28.63%)p(71.35%)
Lone pair 2 (N1)	1.62314	n/a	s(0.04%)p(99.91%)
σ(N1-C5)	1.98444	$sp^{1.84}$ at N1	N1 (58.99%): s(35.10%)p(64.68%)
		$sp^{2.21}$ at C5	C5 (41.01%): s(31.10%)p(68.79%)
σ(N1-C11)	1.98323	<i>sp</i> ^{1.76} at N1	N1 (58.33%): s(36.11%)p(63.63%)
		$sp^{2.07}$ at C11	C11 (41.67%): s(32.53%)p(67.35%)
σ(C2-C5)	1.97719	<i>sp</i> ^{1.85} at C2	C2 (49.50%): s(34.96%)p(64.85%)
		$sp^{1.88}$ at C5	C5 (50.50%): $s(34.71\%)p(65.17\%)$
σ(C2-C6)	1.98180	<i>sp</i> ^{1.74} at C2	C2 (50.22%): s(36.44%)p(63.37%)
		$sp^{1.76}$ at C6	C6 (49.78%): s(36.16%)p(63.67%)
π(C2-C6)	1.70428	n/a	C2 (51.97%) : $s(0.01\%)p(99.93\%)$
			C6 (48.03%): $s(0.00\%)p(99.93\%)$
σ(C3-C5)	1.97753	<i>sp</i> ^{1.83} at C3	C3 (49.32%): s(35.22%)p(64.59%)
· · · ·		$sp^{1.93}$ at C5	C5 (50.68%) : $s(34.07\%)p(65.81\%)$
π(C3-C5)	1.62629	n/a	C3 (52.66%) : $s(0.00\%)p(99.93\%)$
			C5 (47.34%) : $s(0.02\%)p(99.91\%)$
σ(C3-C7)	1.98277	<i>sp</i> ^{1.75} at C3	C3 (50.26%): s(36.30%)p(63.52%)
· · · ·		$sp^{1.78}$ at C7	C7 (49.74%): $s(35.97\%)p(63.85\%)$
σ(C6-C8)	1.98383	$sp^{1.78}$ at C6	C6 (50.14%): s(35.91%)p(63.90%)
		$sp^{1.80}$ at C8	C8 (49.86%): s(35.63%)p(64.19%)
σ(C7-C8)	1.98373	$sp^{1.78}$ at C7	C7 (50.07%): s(35.92%)p(63.89%)
		$sp^{1.80}$ at C8	C8 (49.93%): s(35.65%)p(64.16%)
π(C7-C8)	1.67507	n/a	C7 (48.09%): s(0.00%)p(99.94%)
			C8 (51.91%) : $s(0.00\%)p(99.94\%)$
σ(C11-C12)	1.97670	<i>sp</i> ^{1.77} at C11	C11 (51.00%): s(36.08%)p(63.81%)
. ,		$sp^{1.86}$ at C12	C12 (49.00%): s(34.90%)p(64.91%)
π(C11-C12)	1.64069	n/a	C11 (44.39%): s(0.00%)p(99.91%)
. ,			C12 (55.61%): s(0.01%)p(99.92%)
σ(C11-C10)	1.97113	<i>sp</i> ^{2.19} at C11	C11 (49.07%): s(31.30%)p(68.57%)
		<i>sp</i> ^{1.95} at C10	C10 (50.93%): s(33.83%)p(66.06%)
Lone pair 1 (N4)	1.86992	sp ^{2.70}	s(27.02%)p(72.97%)
σ(N4-C9)	1.98740	<i>sp</i> ^{1.58} at N4	N4 (59.49%): s(38.58%)p(61.07%)
		$sp^{2.03}$ at C9	C9 (40.51%): $s(32.94\%)p(66.94\%)$
π(N4-C9)	1.85774	n/a	N4 (64.00%): s(0.00%)p(99.86%)
			C9 (36.00%): $s(0.00\%)p(99.88\%)$
σ(N4-C10)	1.98159	<i>sp</i> ^{1.91} at N4	N4 (59.39%): s(34.24%)p(65.46%)
, , ,		$sp^{2.31}$ at C10	C10 (40.61%): s(30.15%)p(69.74%)

Table S93. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses

20 % Hartree-Fock exchange.²² ^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.20

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.20

^d Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})$.²⁰ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82096	$sp^{2.50}$	s(28.56%)p(71.41%)
Lone pair 2 (N1)	1.62756	n/a	s(0.05%)p(99.90%)
σ(N1-C5)	1.98460	$sp^{1.84}$ at N1	N1 (58.95%): s(35.14%)p(64.63%)
		$sp^{2.21}$ at C5	C5 (41.05%): s(31.10%)p(68.80%)
σ(N1-C11)	1.98335	<i>sp</i> ^{1.76} at N1	N1 (58.27%): s(36.13%)p(63.61%)
		$sp^{2.07}$ at C11	C11 (41.73%): s(32.54%)p(67.34%)
σ(C2-C5)	1.97746	<i>sp</i> ^{1.86} at C2	C2 (49.52%): s(34.94%)p(64.87%)
		$sp^{1.88}$ at C5	C5 (50.48%): s(34.71%)p(65.17%)
σ(C2-C6)	1.98190	$sp^{1.74}$ at C2	C2 (50.23%): s(36.37%)p(63.44%)
		$sp^{1.76}$ at C6	C6 (49.77%): s(36.12%)p(63.71%)
π(C2-C6)	1.70396	n/a	C2 (52.01%) : $s(0.01\%)p(99.93\%)$
			C6 (47.99%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97777	<i>sp</i> ^{1.84} at C3	C3 (49.34%): s(35.20%)p(64.62%)
		$sp^{1.93}$ at C5	C5 (50.66%) : $s(34.07\%)p(65.81\%)$
π(C3-C5)	1.62672	n/a	C3 (52.66%): s(0.00%)p(99.93%)
			C5 (47.34%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98289	<i>sp</i> ^{1.75} at C3	C3 (50.27%): s(36.24%)p(63.57%)
		$sp^{1.78}$ at C7	C7 (49.73%): s(35.93%)p(63.90%)
σ(C6-C8)	1.98407	<i>sp</i> ^{1.78} at C6	C6 (50.14%): s(35.86%)p(63.96%)
		$sp^{1.81}$ at C8	C8 (49.86%): s(35.59%)p(64.24%)
σ(C7-C8)	1.98396	$sp^{1.78}$ at C7	C7 (50.07%): s(35.87%)p(63.95%)
		$sp^{1.80}$ at C8	C8 (49.93%): s(35.61%)p(64.21%)
π(C7-C8)	1.67481	n/a	C7 (48.07%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (51.93%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97682	$sp^{1.77}$ at C11	C11 (50.98%): <i>s</i> (36.09%) <i>p</i> (63.80%)
		$sp^{1.86}$ at C12	C12 (49.02%): s(34.87%)p(64.94%)
π(C11-C12)	1.64185	n/a	C11 (44.36%): <i>s</i> (0.00%) <i>p</i> (99.91%)
			C12 (55.64%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97129	<i>sp</i> ^{2.19} at C11	C11 (49.05%): <i>s</i> (31.29%) <i>p</i> (68.59%)
		<i>sp</i> ^{1.95} at C10	C10 (50.95%): <i>s</i> (33.84%) <i>p</i> (66.05%)
Lone pair 1 (N4)	1.87152	$sp^{2.69}$	s(27.09%)p(72.90%)
σ(N4-C9)	1.98761	<i>sp</i> ^{1.58} at N4	N4 (59.45%): s(38.56%)p(61.08%)
		$sp^{2.03}$ at C9	C9 (40.55%): <i>s</i> (32.97%) <i>p</i> (66.92%)
π(N4-C9)	1.85875	n/a	N4 (64.10%): s(0.00%)p(99.85%)
			C9 (35.90%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98169	$sp^{1.92}$ at N4	N4 (59.28%): s(34.19%)p(65.50%)
		$sp^{2.31}$ at C10	C10 (40.72%): s(30.15%)p(69.76%)

Table S94. NBO analysis^a of (MeL3^{Me})₂Zn with the PBE0 functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.81339	$sp^{2.48}$	s(28.75%)p(71.22%)
Lone pair 2 (N1)	1.63612	n/a	s(0.05%)p(99.88%)
σ(N1-C5)	1.98429	$sp^{1.84}$ at N1	N1 (59.29%): s(35.09%)p(64.71%)
		$sp^{2.22}$ at C5	C5 (40.71%): s(31.07%)p(68.84%)
σ(N1-C11)	1.98316	<i>sp</i> ^{1.77} at N1	N1 (58.55%): s(35.99%)p(63.80%)
		$sp^{2.07}$ at C11	C11 (41.45%): s(32.50%)p(67.41%)
σ(C2-C5)	1.97663	<i>sp</i> ^{1.85} at C2	C2 (49.60%): s(35.09%)p(64.75%)
		$sp^{1.88}$ at C5	C5 (50.40%): s(34.72%)p(65.18%)
σ(C2-C6)	1.98154	$sp^{1.74}$ at C2	C2 (50.19%): s(36.41%)p(63.42%)
		$sp^{1.76}$ at C6	C6 (49.81%): s(36.24%)p(63.62%)
π(C2-C6)	1.70394	n/a	C2 (52.29%): s(0.01%)p(99.92%)
			C6 (47.71%): s(0.00%)p(99.92%)
σ(C3-C5)	1.97705	<i>sp</i> ^{1.82} at C3	C3 (49.42%): s(35.35%)p(64.48%)
		$sp^{1.93}$ at C5	C5 (50.58%): s(34.10%)p(65.79%)
π(C3-C5)	1.62726	n/a	C3 (53.03%): s(0.00%)p(99.93%)
			C5 (46.97%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98255	<i>sp</i> ^{1.75} at C3	C3 (50.21%): s(36.27%)p(63.57%)
		$sp^{1.77}$ at C7	C7 (49.79%): s(36.06%)p(63.79%)
σ(C6-C8)	1.98350	<i>sp</i> ^{1.78} at C6	C6 (50.15%): <i>s</i> (35.93%) <i>p</i> (63.91%)
		$sp^{1.80}$ at C8	C8 (49.85%): <i>s</i> (35.66%) <i>p</i> (64.18%)
σ(C7-C8)	1.98340	$sp^{1.78}$ at C7	C7 (50.08%): <i>s</i> (35.93%) <i>p</i> (63.90%)
		$sp^{1.80}$ at C8	C8 (49.92%): s(35.69%)p(64.16%)
π(C7-C8)	1.67434	n/a	C7 (47.86%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.14%): <i>s</i> (0.00%) <i>p</i> (99.93%)
σ(C11-C12)	1.97641	$sp^{1.77}$ at C11	C11 (50.91%): <i>s</i> (36.07%) <i>p</i> (63.83%)
		<i>sp</i> ^{1.85} at C12	C12 (49.09%): <i>s</i> (34.98%) <i>p</i> (64.85%)
π(C11-C12)	1.64266	n/a	C11 (43.57%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (56.43%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97079	$sp^{2.19}$ at C11	C11 (49.08%): <i>s</i> (31.35%) <i>p</i> (68.53%)
		<i>sp</i> ^{1.95} at C10	C10 (50.92%): <i>s</i> (33.86%) <i>p</i> (66.03%)
Lone pair 1 (N4)	1.86836	$sp^{2.69}$	s(27.08%)p(72.90%)
σ(N4-C9)	1.98740	<i>sp</i> ^{1.59} at N4	N4 (59.66%): <i>s</i> (38.50%) <i>p</i> (61.21%)
		$sp^{2.03}$ at C9	C9 (40.34%): <i>s</i> (32.96%) <i>p</i> (66.95%)
π(N4-C9)	1.86262	n/a	N4 (64.73%): s(0.00%)p(99.83%)
			C9 (35.27%): <i>s</i> (0.00%) <i>p</i> (99.85%)
σ(N4-C10)	1.98155	<i>sp</i> ^{1.91} at N4	N4 (59.61%): <i>s</i> (34.28%) <i>p</i> (65.46%)
		$sp^{2.32}$ at C10	C10 (40.39%): s(30.08%)p(69.84%)

Table S95. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the M06 functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84154	$sp^{2.57}$	s(28.04%)p(71.93%)
Lone pair 2 (N1)	1.64418	n/a	s(0.03%)p(99.91%)
σ(N1-C5)	1.98461	$sp^{1.81}$ at N1	N1 (59.00%): s(35.47%)p(64.31%)
		$sp^{2.21}$ at C5	C5 (41.00%): s(31.13%)p(68.79%)
σ(N1-C11)	1.98320	$sp^{1.74}$ at N1	N1 (58.32%): s(36.35%)p(63.40%)
		$sp^{2.07}$ at C11	C11 (41.68%): s(32.56%)p(67.34%)
σ(C2-C5)	1.97761	<i>sp</i> ^{1.85} at C2	C2 (49.52%): s(34.98%)p(64.85%)
		$sp^{1.83}$ at C5	C5 (50.48%): s(34.70%)p(65.20%)
σ(C2-C6)	1.98221	<i>sp</i> ^{1.75} at C2	C2 (50.23%): s(36.36%)p(63.46%)
		$sp^{1.76}$ at C6	C6 (49.77%): s(36.13%)p(63.71%)
π(C2-C6)	1.70318	n/a	C2 (52.11%): s(0.01%)p(99.93%)
			C6 (47.89%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97799	<i>sp</i> ^{1.83} at C3	C3 (49.31%): s(35.23%)p(64.60%)
		$sp^{1.93}$ at C5	C5 (50.69%): s(34.07%)p(65.82%)
π(C3-C5)	1.62827	n/a	C3 (52.91%): s(0.00%)p(99.93%)
			C5 (47.09%): s(0.02%)p(99.92%)
σ(C3-C7)	1.98313	<i>sp</i> ^{1.76} at C3	C3 (50.26%): <i>s</i> (36.22%) <i>p</i> (63.61%)
		$sp^{1.78}$ at C7	C7 (49.74%): <i>s</i> (35.95%) <i>p</i> (63.89%)
σ(C6-C8)	1.98421	<i>sp</i> ^{1.78} at C6	C6 (50.14%): <i>s</i> (35.85%) <i>p</i> (63.97%)
		<i>sp</i> ^{1.81} at C8	C8 (49.86%): <i>s</i> (35.58%) <i>p</i> (64.26%)
σ(C7-C8)	1.98408	$sp^{1.78}$ at C7	C7 (50.07%): <i>s</i> (35.85%) <i>p</i> (63.97%)
		<i>sp</i> ^{1.80} at C8	C8 (49.93%): s(35.60%)p(64.23%)
π(C7-C8)	1.67559	n/a	C7 (47.97%): <i>s</i> (0.00%) <i>p</i> (99.94%)
			C8 (52.03%): s(0.00%)p(99.94%)
σ(C11-C12)	1.97716	$sp^{1.77}$ at C11	C11 (51.02%): <i>s</i> (36.13%) <i>p</i> (63.77%)
		<i>sp</i> ^{1.86} at C12	C12 (48.98%): s(34.88%)p(64.94%)
π (C11-C12)	1.64551	n/a	C11 (43.87%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (56.13%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97182	$sp^{2.20}$ at C11	C11 (48.96%): <i>s</i> (31.24%) <i>p</i> (68.64%)
		<i>sp</i> ^{1.95} at C10	C10 (51.04%): s(33.87%)p(66.03%)
Lone pair 1 (N4)	1.88574	<i>sp</i> ^{2.77}	s(26.55%)p(73.43%)
σ(N4-C9)	1.98749	<i>sp</i> ^{1.57} at N4	N4 (59.61%): s(38.83%)p(60.82%)
		<i>sp</i> ^{2.04} at C9	C9 (40.39%): s(32.91%)p(66.99%)
π(N4-C9)	1.86514	n/a	N4 (63.91%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (36.09%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98158	$sp^{1.89}$ at N4	N4 (59.50%): <i>s</i> (34.47%) <i>p</i> (65.23%)
		$sp^{2.32}$ at C10	C10 (40.50%): $s(30.10\%)p(69.82\%)$

Table S96. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the M06-2X functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

 b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.82481	$sp^{2.61}$	s(27.72%)p(72.25%)
Lone pair 2 (N1)	1.64981	n/a	s(0.04%)p(99.91%)
σ(N1-C5)	1.98489	<i>sp</i> ^{1.80} at N1	N1 (58.95%): s(35.59%)p(64.17%)
		$sp^{2.21}$ at C5	C5 (41.05%): $s(31.10\%)p(68.79\%)$
σ(N1-C11)	1.98347	<i>sp</i> ^{1.73} at N1	N1 (58.27%): s(36.53%)p(63.20%)
		$sp^{2.07}$ at C11	C11 (41.73%): s(32.53%)p(67.35%)
σ(C2-C5)	1.97768	<i>sp</i> ^{1.85} at C2	C2 (49.54%): s(34.97%)p(64.83%)
		$sp^{1.88}$ at C5	C5 (50.46%) : $s(34.71\%)p(65.17\%)$
σ(C2-C6)	1.98188	<i>sp</i> ^{1.74} at C2	C2 (50.22%): s(36.42%)p(63.39%)
		$sp^{1.76}$ at C6	C6 (49.78%): s(36.14%)p(63.69%)
π(C2-C6)	1.70280	n/a	C2 (52.21%) : $s(0.01\%)p(99.93\%)$
			C6 (47.79%): s(0.00%)p(99.93%)
σ(C3-C5)	1.97804	<i>sp</i> ^{1.83} at C3	C3 (49.35%): s(35.23%)p(64.57%)
		$sp^{1.93}$ at C5	C5 (50.65%): s(34.06%)p(65.82%)
π(C3-C5)	1.62675	n/a	C3 (53.12%): <i>s</i> (0.00%) <i>p</i> (99.92%)
			C5 (46.88%): s(0.02%)p(99.91%)
σ(C3-C7)	1.98279	<i>sp</i> ^{1.75} at C3	C3 (50.25%): s(36.27%)p(63.54%)
		$sp^{1.78}$ at C7	C7 (49.75%): s(35.95%)p(63.87%)
σ(C6-C8)	1.98382	<i>sp</i> ^{1.78} at C6	C6 (50.14%): <i>s</i> (35.89%) <i>p</i> (63.92%)
		$sp^{1.80}$ at C8	C8 (49.86%): s(35.61%)p(64.21%)
σ(C7-C8)	1.98375	$sp^{1.78}$ at C7	C7 (50.07%): <i>s</i> (35.89%) <i>p</i> (63.91%)
		<i>sp</i> ^{1.80} at C8	C8 (49.93%): s(35.63%)p(64.18%)
π(C7-C8)	1.67613	n/a	C7 (47.86%): <i>s</i> (0.00%) <i>p</i> (99.93%)
			C8 (52.14%): <i>s</i> (0.00%) <i>p</i> (99.94%)
σ(C11-C12)	1.97692	$sp^{1.77}$ at C11	C11 (50.98%): <i>s</i> (36.11%) <i>p</i> (63.78%)
		<i>sp</i> ^{1.86} at C12	C12 (49.02%): s(34.91%)p(64.89%)
π(C11-C12)	1.64732	n/a	C11 (43.43%): <i>s</i> (0.00%) <i>p</i> (99.90%)
			C12 (56.57%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97197	$sp^{2.19}$ at C11	C11 (49.00%): <i>s</i> (31.27%) <i>p</i> (68.60%)
		<i>sp</i> ^{1.95} at C10	C10 (51.00%): s(33.88%)p(66.00%)
Lone pair 1 (N4)	1.87689	$sp^{2.80}$	s(26.31%)p(73.67%)
σ(N4-C9)	1.98743	$sp^{1.56}$ at N4	N4 (59.48%): s(38.90%)p(60.74%)
		<i>sp</i> ^{2.03} at C9	C9 (40.52%): s(32.92%)p(66.96%)
π(N4-C9)	1.86648	n/a	N4 (64.21%): s(0.00%)p(99.85%)
			C9 (35.79%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98189	$sp^{1.88}$ at N4	N4 (59.43%): <i>s</i> (34.63%) <i>p</i> (65.05%)
		$sp^{2.32}$ at C10	C10 (40.57%): s(30.08%)p(69.82%)

Table S97. NBO analysis^{*a*} of (^{Me}L3^{Me})₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84126	$sp^{2.35}$	s(29.86%)p(70.11%)
σ(N1-C5)	1.98732	$sp^{1.63}$ at N1	N1 (59.81%): <i>s</i> (37.86%) <i>p</i> (61.84%)
		$sp^{2.01}$ at C5	C5 (40.19%): s(33.19%)p(66.72%)
π(N1-C5)	1.85812	n/a	N1 (70.41%): s(0.08%)p(99.78%)
			C5 (29.59%): <i>s</i> (0.13%) <i>p</i> (99.70%)
σ(N1-C11)	1.98192	<i>sp</i> ^{2.11} at N1	N1 (58.27%): s(32.05%)p(67.68%)
		$sp^{2.15}$ at C11	C11 (41.73%): s(31.71%)p(68.21%)
σ(C2-C5)	1.98404	$sp^{2.85}$ at C2	C2 (51.83%): <i>s</i> (25.91%) <i>p</i> (73.94%)
		$sp^{2.18}$ at C5	C5 (48.17%): <i>s</i> (31.45%) <i>p</i> (68.48%)
σ(C3-C5)	1.97761	$sp^{1.83}$ at C3	C3 (49.98%): s(35.22%)p(64.59%)
		$sp^{1.84}$ at C5	C5 (50.02%): s(35.21%)p(64.71%)
σ(C3-C6)	1.98633	<i>sp</i> ^{1.90} at C3	C3 (51.52%): <i>s</i> (34.36%) <i>p</i> (65.45%)
		$sp^{1.67}$ at C6	C6 (48.48%): <i>s</i> (37.38%) <i>p</i> (62.52%)
π(C3-C6)	1.63358	n/a	C3 (67.89%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C6 (32.11%): <i>s</i> (0.02%) <i>p</i> (99.88%)
σ(C6-C8)	1.98547	$sp^{2.16}$ at C6	C6 (47.50%): <i>s</i> (31.59%) <i>p</i> (68.32%)
		<i>sp</i> ^{2.92} at C8	C8 (52.50%): <i>s</i> (25.48%) <i>p</i> (74.36%)
σ(C6-O7)	1.99359	<i>sp</i> ^{2.21} at C6	C6 (35.13%): <i>s</i> (31.09%) <i>p</i> (68.81%)
		<i>sp</i> ^{1.73} at O7	O7 (64.87%): <i>s</i> (36.44%) <i>p</i> (63.12%)
Lone pair 1 (O7)	1.95984	n/a	s(58.05%)p(41.88%)
Lone pair 2 (O7)	1.88638	n/a	s(5.46%)p(94.41%)
Lone pair 3 (O7)	1.57135	n/a	s(0.01%)p(99.78%)
σ(C11-C12)	1.97730	<i>sp</i> ^{1.78} at C11	C11 (49.98%): s(35.93%)p(63.97%)
		<i>sp</i> ^{1.90} at C12	C12 (50.02%): s(34.44%)p(65.39%)
π(C11-C12)	1.64782	n/a	C11 (46.63%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (53.37%): s(0.02%)p(99.90%)
σ(C11-C10)	1.97462	<i>sp</i> ^{2.09} at C11	C11 (49.39%): s(32.28%)p(67.60%)
		<i>sp</i> ^{1.94} at C10	C10 (50.61%): s(33.92%)p(65.94%)
Lone pair 1 (N4)	1.88662	$sp^{2.16}$	s(31.67%)p(68.25%)
σ(N4-C9)	1.98633	$sp^{1.72}$ at N4	N4 (59.00%): s(36.59%)p(63.09%)
		<i>sp</i> ^{1.95} at C9	C9 (41.00%): <i>s</i> (33.86%) <i>p</i> (66.04%)
π(N4-C9)	1.84619	n/a	N4 (61.90%): s(0.01%)p(99.82%)
			C9 (38.10%): <i>s</i> (0.01%) <i>p</i> (99.85%)
σ(N4-C10)	1.98145	<i>sp</i> ^{2.15} at N4	N4 (58.48%): s(31.61%)p(68.09%)
		$sp^{2.31}$ at C10	C10 (41.52%): s(30.17%)p(69.75%)

Table S98. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84094	$sp^{2.53}$	s(28.29%)p(71.68%)
σ(N1-C5)	1.98736	$sp^{1.57}$ at N1	N1 (59.59%): s(38.72%)p(60.94%)
		$sp^{2.01}$ at C5	C5 (40.41%): s(33.22%)p(66.66%)
π(N1-C5)	1.86062	n/a	N1 (70.16%): s(0.07%)p(99.79%)
			C5 (29.84%): <i>s</i> (0.10%) <i>p</i> (99.75%)
σ(N1-C11)	1.98219	<i>sp</i> ^{2.04} at N1	N1 (58.01%): <i>s</i> (32.76%) <i>p</i> (66.95%)
		$sp^{2.14}$ at C11	C11 (41.99%): s(31.82%)p(68.09%)
σ(C2-C5)	1.98387	$sp^{2.88}$ at C2	C2 (51.34%): <i>s</i> (25.73%) <i>p</i> (74.11%)
		$sp^{2.16}$ at C5	C5 (48.66%): <i>s</i> (31.60%) <i>p</i> (68.34%)
σ(C3-C5)	1.97714	<i>sp</i> ^{1.84} at C3	C3 (49.82%): <i>s</i> (35.17%) <i>p</i> (64.64%)
		$sp^{1.85}$ at C5	C5 (50.18%): <i>s</i> (35.07%) <i>p</i> (64.85%)
σ(C3-C6)	1.98567	<i>sp</i> ^{1.91} at C3	C3 (51.38%): <i>s</i> (34.27%) <i>p</i> (65.54%)
		<i>sp</i> ^{1.68} at C6	C6 (48.62%): <i>s</i> (37.34%) <i>p</i> (62.56%)
π(C3-C6)	1.63303	n/a	C3 (67.61%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (32.39%): <i>s</i> (0.01%) <i>p</i> (99.88%)
σ(C6-C8)	1.98525	$sp^{2.15}$ at C6	C6 (48.05%): <i>s</i> (31.70%) <i>p</i> (68.23%)
		<i>sp</i> ^{2.94} at C8	C8 (51.95%): <i>s</i> (25.34%) <i>p</i> (74.49%)
σ(C6-O7)	1.99358	<i>sp</i> ^{2.22} at C6	C6 (35.36%): <i>s</i> (31.04%) <i>p</i> (68.84%)
		<i>sp</i> ^{1.66} at O7	O7 (64.64%): s(37.46%)p(62.08%)
Lone pair 1 (O7)	1.95806	n/a	s(55.98%)p(43.94%)
Lone pair 2 (O7)	1.88647	n/a	s(6.52%)p(93.36%)
Lone pair 3 (O7)	1.56978	n/a	s(0.02%)p(99.78%)
σ(C11-C12)	1.97662	$sp^{1.78}$ at C11	C11 (50.17%): <i>s</i> (35.93%) <i>p</i> (63.97%)
		<i>sp</i> ^{1.90} at C12	C12 (49.83%): <i>s</i> (34.37%) <i>p</i> (65.45%)
π(C11-C12)	1.64900	n/a	C11 (47.17%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (52.83%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97442	$sp^{2.10}$ at C11	C11 (49.38%): <i>s</i> (32.17%) <i>p</i> (67.71%)
		<i>sp</i> ^{1.95} at C10	C10 (50.62%): s(33.85%)p(66.02%)
Lone pair 1 (N4)	1.88565	$sp^{2.27}$	s(30.52%)p(69.41%)
σ(N4-C9)	1.98626	$sp^{1.68}$ at N4	N4 (58.94%): <i>s</i> (37.15%) <i>p</i> (62.51%)
		<i>sp</i> ^{1.95} at C9	C9 (41.06%): <i>s</i> (33.84%) <i>p</i> (66.03%)
π(N4-C9)	1.84524	n/a	N4 (62.15%): s(0.01%)p(99.82%)
			C9 (37.85%): <i>s</i> (0.02%) <i>p</i> (99.86%)
σ(N4-C10)	1.98202	$sp^{2.10}$ at N4	N4 (58.22%): s(32.20%)p(67.47%)
		$sp^{2.30}$ at C10	C10 (41.78%): $s(30.27\%)p(69.63\%)$

Table S99. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83866	$sp^{2.56}$	s(28.05%)p(71.92%)
σ(N1-C5)	1.98724	$sp^{1.56}$ at N1	N1 (59.46%): s(38.86%)p(60.80%)
		$sp^{2.01}$ at C5	C5 (40.54%): s(33.24%)p(66.65%)
π(N1-C5)	1.85993	n/a	N1 (70.07%): s(0.06%)p(99.80%)
			C5 (29.93%): <i>s</i> (0.09%) <i>p</i> (99.76%)
σ(N1-C11)	1.98202	$sp^{2.03}$ at N1	N1 (57.89%): s(32.86%)p(66.85%)
		$sp^{2.14}$ at C11	C11 (42.11%): s(31.86%)p(68.05%)
σ(C2-C5)	1.98352	$sp^{2.88}$ at C2	C2 (51.53%): s(25.73%)p(74.13%)
		$sp^{2.16}$ at C5	C5 (48.47%): s(31.65%)p(68.30%)
σ(C3-C5)	1.97664	<i>sp</i> ^{1.84} at C3	C3 (49.84%): s(35.16%)p(64.67%)
		$sp^{1.85}$ at C5	C5 (50.16%) : $s(35.01\%)p(64.92\%)$
σ(C3-C6)	1.98522	<i>sp</i> ^{1.91} at C3	C3 (51.41%): s(34.25%)p(65.57%)
		$sp^{1.68}$ at C6	C6 (48.59%): s(37.32%)p(62.60%)
π(C3-C6)	1.63054	n/a	C3 (67.49%): s(0.01%)p(99.92%)
			C6 (32.51%) : $s(0.01\%)p(99.89\%)$
σ(C6-C8)	1.98503	<i>sp</i> ^{2.16} at C6	C6 (47.84%): s(31.67%)p(68.27%)
		$sp^{2.94}$ at C8	C8 (52.16%): s(25.36%)p(74.49%)
σ(C6-O7)	1.99350	<i>sp</i> ^{2.21} at C6	C6 (35.56%): s(31.10%)p(68.78%)
		$sp^{1.65}$ at O7	O7 (64.44%): s(37.53%)p(62.00%)
Lone pair 1 (O7)	1.95717	n/a	s(56.30%)p(43.63%)
Lone pair 2 (O7)	1.88491	n/a	s(6.13%)p(93.74%)
Lone pair 3 (O7)	1.56970	n/a	s(0.02%)p(99.77%)
σ(C11-C12)	1.97612	<i>sp</i> ^{1.78} at C11	C11 (50.15%): s(35.94%)p(63.97%)
		<i>sp</i> ^{1.90} at C12	C12 (49.85%): s(34.31%)p(65.35%)
π(C11-C12)	1.64816	n/a	C11 (47.13%): s(0.01%)p(99.92%)
			C12 (52.87%): s(0.01%)p(99.91%)
σ(C11-C10)	1.97400	$sp^{2.11}$ at C11	C11 (49.39%): s(32.12%)p(67.77%)
		<i>sp</i> ^{1.95} at C10	C10 (50.61%): s(33.82%)p(66.07%)
Lone pair 1 (N4)	1.88373	$sp^{2.28}$	s(30.42%)p(69.50%)
σ(N4-C9)	1.98599	$sp^{1.68}$ at N4	N4 (58.81%): s(37.23%)p(62.44%)
		<i>sp</i> ^{1.95} at C9	C9 (41.19%): s(33.82%)p(66.05%)
π(N4-C9)	1.84617	n/a	N4 (62.09%): s(0.01%)p(99.81%)
			C9 (37.91%): <i>s</i> (0.02%) <i>p</i> (99.86%)
σ(N4-C10)	1.98177	<i>sp</i> ^{2.09} at N4	N4 (58.06%): s(32.22%)p(67.46%)
		$sp^{2.29}$ at C10	C10 (41.94%): s(30.32%)p(69.58%)

Table S100. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the O3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84533	$sp^{2.61}$	s(27.71%)p(72.26%)
σ(N1-C5)	1.98722	$sp^{1.55}$ at N1	N1 (59.57%): s(39.02%)p(60.63%)
		$sp^{2.01}$ at C5	C5 (40.43%): s(33.22%)p(66.66%)
π(N1-C5)	1.86389	n/a	N1 (70.71%): s(0.06%)p(99.80%)
			C5 (29.29%): s(0.08%)p(99.77%)
σ(N1-C11)	1.98233	<i>sp</i> ^{2.02} at N1	N1 (58.00%): <i>s</i> (33.05%) <i>p</i> (66.65%)
		$sp^{2.14}$ at C11	C11 (42.00%): s(31.86%)p(68.04%)
σ(C2-C5)	1.98394	$sp^{2.85}$ at C2	C2 (51.46%): <i>s</i> (25.91%) <i>p</i> (73.93%)
		$sp^{2.16}$ at C5	C5 (48.54%): <i>s</i> (31.64%) <i>p</i> (68.29%)
σ(C3-C5)	1.97700	$sp^{1.84}$ at C3	C3 (49.81%): s(35.20%)p(64.60%)
		$sp^{1.85}$ at C5	C5 (50.19%): s(35.04%)p(64.87%)
σ(C3-C6)	1.98515	<i>sp</i> ^{1.91} at C3	C3 (51.36%): <i>s</i> (34.29%) <i>p</i> (65.51%)
		$sp^{1.68}$ at C6	C6 (48.64%): <i>s</i> (37.31%) <i>p</i> (62.59%)
π(C3-C6)	1.63648	n/a	C3 (68.58%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (31.42%): <i>s</i> (0.01%) <i>p</i> (99.88%)
σ(C6-C8)	1.98541	$sp^{2.16}$ at C6	C6 (47.96%): s(31.65%)p(68.28%)
		$sp^{2.91}$ at C8	C8 (52.04%): s(25.53%)p(74.30%)
σ(C6-O7)	1.99352	<i>sp</i> ^{2.21} at C6	C6 (35.32%): <i>s</i> (31.11%) <i>p</i> (68.76%)
		$sp^{1.62}$ at O7	O7 (64.68%): <i>s</i> (37.98%) <i>p</i> (61.55%)
Lone pair 1 (O7)	1.95701	n/a	s(55.12%)p(44.80%)
Lone pair 2 (O7)	1.89219	n/a	s(6.87%)p(93.02%)
Lone pair 3 (O7)	1.57926	n/a	s(0.02%)p(99.78%)
σ(C11-C12)	1.97651	<i>sp</i> ^{1.78} at C11	C11 (50.13%): s(35.91%)p(63.99%)
		$sp^{1.90}$ at C12	C12 (49.87%): s(34.39%)p(65.42%)
π(C11-C12)	1.65025	n/a	C11 (46.84%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (53.16%): <i>s</i> (0.01%) <i>p</i> (99.91%)
σ(C11-C10)	1.97442	$sp^{2.11}$ at C11	C11 (49.37%): s(32.13%)p(67.74%)
		<i>sp</i> ^{1.95} at C10	C10 (50.63%): s(33.82%)p(66.05%)
Lone pair 1 (N4)	1.88890	$sp^{2.34}$	s(29.89%)p(70.04%)
σ(N4-C9)	1.98595	$sp^{1.66}$ at N4	N4 (58.91%): s(37.47%)p(62.18%)
		<i>sp</i> ^{1.95} at C9	C9 (41.09%): <i>s</i> (33.87%) <i>p</i> (65.99%)
π(N4-C9)	1.84883	n/a	N4 (62.21%): s(0.01%)p(99.82%)
			C9 (37.79%): <i>s</i> (0.02%) <i>p</i> (99.86%)
σ(N4-C10)	1.98203	<i>sp</i> ^{2.07} at N4	N4 (58.24%): s(32.51%)p(67.15%)
		$sp^{2.30}$ at C10	C10 (41.76%): s(30.31%)p(69.59%)

Table S101. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84708	$sp^{2.61}$	s(27.69%)p(72.28%)
σ(N1-C5)	1.98740	$sp^{1.55}$ at N1	N1 (59.55%): s(39.06%)p(60.58%)
		$sp^{2.01}$ at C5	C5 (40.45%): s(33.24%)p(66.65%)
π(N1-C5)	1.86532	n/a	N1 (70.96%): s(0.07%)p(99.78%)
			C5 (29.04%): <i>s</i> (0.08%) <i>p</i> (99.75%)
σ(N1-C11)	1.98244	$sp^{2.02}$ at N1	N1 (57.91%): <i>s</i> (33.02%) <i>p</i> (66.67%)
		$sp^{2.13}$ at C11	C11 (42.09%): s(31.88%)p(68.02%)
σ(C2-C5)	1.98400	$sp^{2.86}$ at C2	C2 (51.51%): <i>s</i> (25.84%) <i>p</i> (74.00%)
		$sp^{2.16}$ at C5	C5 (48.49%): <i>s</i> (31.61%) <i>p</i> (68.33%)
σ(C3-C5)	1.97706	<i>sp</i> ^{1.84} at C3	C3 (49.86%): <i>s</i> (35.18%) <i>p</i> (64.63%)
		$sp^{1.85}$ at C5	C5 (50.14%): <i>s</i> (35.06%) <i>p</i> (64.86%)
σ(C3-C6)	1.98529	<i>sp</i> ^{1.91} at C3	C3 (51.48%): <i>s</i> (34.27%) <i>p</i> (65.53%)
		$sp^{1.68}$ at C6	C6 (48.52%): <i>s</i> (37.31%) <i>p</i> (62.60%)
π(C3-C6)	1.63672	n/a	C3 (69.03%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (30.97%): <i>s</i> (0.01%) <i>p</i> (99.87%)
σ(C6-C8)	1.98548	<i>sp</i> ^{2.16} at C6	C6 (47.86%): <i>s</i> (31.64%) <i>p</i> (68.29%)
		<i>sp</i> ^{2.92} at C8	C8 (52.14%): <i>s</i> (25.44%) <i>p</i> (74.39%)
σ(C6-O7)	1.99365	<i>sp</i> ^{2.21} at C6	C6 (35.49%): <i>s</i> (31.14%) <i>p</i> (68.75%)
		$sp^{1.63}$ at O7	O7 (64.51%): <i>s</i> (37.89%) <i>p</i> (61.62%)
Lone pair 1 (O7)	1.95775	n/a	s(55.59%)p(44.33%)
Lone pair 2 (O7)	1.89201	n/a	s(6.49%)p(93.39%)
Lone pair 3 (O7)	1.57904	n/a	s(0.02%)p(99.77%)
σ(C11-C12)	1.97663	<i>sp</i> ^{1.78} at C11	C11 (50.11%): <i>s</i> (35.91%) <i>p</i> (64.00%)
		<i>sp</i> ^{1.90} at C12	C12 (49.89%): s(34.38%)p(65.44%)
π(C11-C12)	1.65181	n/a	C11 (46.82%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (53.18%): <i>s</i> (0.01%) <i>p</i> (99.90%)
σ(C11-C10)	1.97459	$sp^{2.11}$ at C11	C11 (49.35%): <i>s</i> (32.12%) <i>p</i> (67.75%)
		<i>sp</i> ^{1.95} at C10	C10 (50.65%): s(33.83%)p(66.04%)
Lone pair 1 (N4)	1.88872	$sp^{2.33}$	s(30.05%)p(69.88%)
σ(N4-C9)	1.98617	$sp^{1.67}$ at N4	N4 (58.85%): <i>s</i> (37.37%) <i>p</i> (62.26%)
		<i>sp</i> ^{1.95} at C9	C9 (41.15%): <i>s</i> (33.87%) <i>p</i> (66.00%)
π(N4-C9)	1.84971	n/a	N4 (62.35%): s(0.01%)p(99.80%)
			C9 (37.65%): <i>s</i> (0.02%) <i>p</i> (99.85%)
σ(N4-C10)	1.98214	<i>sp</i> ^{2.07} at N4	N4 (58.12%): s(32.44%)p(67.21%)
		$sp^{2.30}$ at C10	C10(41.88%); $s(30.31%)p(69.59%)$

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84368	$sp^{2.59}$	s(27.82%)p(72.15%)
σ(N1-C5)	1.98723	$sp^{1.56}$ at N1	N1 (59.79%): s(38.94%)p(60.77%)
		$sp^{2.01}$ at C5	C5 (40.21%): s(33.20%)p(66.71%)
π(N1-C5)	1.86794	n/a	N1 (71.97%): s(0.08%)p(99.76%)
			C5 (28.03%): <i>s</i> (0.10%) <i>p</i> (99.72%)
σ(N1-C11)	1.98221	<i>sp</i> ^{2.02} at N1	N1 (58.25%): s(33.02%)p(66.72%)
		$sp^{2.14}$ at C11	C11 (41.75%): s(31.81%)p(68.11%)
σ(C2-C5)	1.98371	<i>sp</i> ^{2.84} at C2	C2 (51.67%): s(26.02%)p(73.83%)
		$sp^{2.16}$ at C5	C5 (48.33%): s(31.59%)p(68.34%)
σ(C3-C5)	1.97679	<i>sp</i> ^{1.83} at C3	C3 (49.88%): s(35.27%)p(64.56%)
		$sp^{1.85}$ at C5	C5 (50.12%): s(35.10%)p(64.83%)
σ(C3-C6)	1.98530	<i>sp</i> ^{1.90} at C3	C3 (51.51%): <i>s</i> (34.36%) <i>p</i> (65.45%)
		$sp^{1.68}$ at C6	C6 (48.49%): <i>s</i> (37.31%) <i>p</i> (62.60%)
π(C3-C6)	1.63823	n/a	C3 (70.25%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (29.75%): <i>s</i> (0.02%) <i>p</i> (99.87%)
σ(C6-C8)	1.98528	$sp^{2.16}$ at C6	C6 (47.66%): <i>s</i> (31.58%) <i>p</i> (68.34%)
		<i>sp</i> ^{2.90} at C8	C8 (52.34%): <i>s</i> (25.60%) <i>p</i> (74.24%)
σ(C6-O7)	1.99362	<i>sp</i> ^{2.20} at C6	C6 (35.09%): <i>s</i> (31.18%) <i>p</i> (68.73%)
		$sp^{1.64}$ at O7	O7 (64.91%): <i>s</i> (37.73%) <i>p</i> (61.83%)
Lone pair 1 (O7)	1.95855	n/a	s(55.77%)p(44.15%)
Lone pair 2 (O7)	1.89108	n/a	s(6.46%)p(93.40%)
Lone pair 3 (O7)	1.58647	n/a	s(0.01%)p(99.75%)
σ(C11-C12)	1.97631	<i>sp</i> ^{1.78} at C11	C11 (49.99%): s(35.91%)p(64.00%)
		<i>sp</i> ^{1.90} at C12	C12 (50.01%): <i>s</i> (34.47%) <i>p</i> (65.38%)
π(C11-C12)	1.65207	n/a	C11 (46.37%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C12 (53.63%): <i>s</i> (0.02%) <i>p</i> (99.90%)
σ(C11-C10)	1.97415	$sp^{2.10}$ at C11	C11 (49.36%): <i>s</i> (32.19%) <i>p</i> (67.69%)
		<i>sp</i> ^{1.95} at C10	C10 (50.64%): s(33.88%)p(66.00%)
Lone pair 1 (N4)	1.88803	$sp^{2.33}$	s(29.97%)p(69.94%)
σ(N4-C9)	1.98589	$sp^{1.67}$ at N4	N4 (58.97%): <i>s</i> (37.35%) <i>p</i> (62.34%)
		<i>sp</i> ^{1.94} at C9	C9 (41.03%): <i>s</i> (33.93%) <i>p</i> (65.97%)
π(N4-C9)	1.85400	n/a	N4 (62.80%): s(0.01%)p(99.79%)
			C9 (37.20%): <i>s</i> (0.01%) <i>p</i> (99.84%)
σ(N4-C10)	1.98166	$sp^{2.06}$ at N4	N4 (58.49%): s(32.56%)p(67.14%)
		$sp^{2.31}$ at C10	C10 (41.51%): s(30.23%)p(69.69%)

Table S103. NBO analysis^a of (CF3L4)₂Zn with the M06 functional.

^a Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.86365	$sp^{2.69}$	s(27.12%)p(72.85%)
σ(N1-C5)	1.98721	$sp^{1.53}$ at N1	N1 (59.71%): s(39.41%)p(60.24%)
		$sp^{2.02}$ at C5	C5 (40.29%): s(33.13%)p(66.77%)
π(N1-C5)	1.87230	n/a	N1 (71.48%): s(0.08%)p(99.75%)
· · · ·			C5 (28.52%): $s(0.09\%)p(99.74\%)$
σ(N1-C11)	1.98243	<i>sp</i> ^{2.00} at N1	N1 (57.97%): s(33.25%)p(66.45%)
		$sp^{2.13}$ at C11	C11 (42.03%): $s(31.90\%)p(68.02\%)$
σ(C2-C5)	1.98438	<i>sp</i> ^{2.86} at C2	C2 (51.38%): s(25.89%)p(73.97%)
		$sp^{2.16}$ at C5	C5 (48.62%): $s(31.67\%)p(68.27\%)$
σ(C3-C5)	1.97710	<i>sp</i> ^{1.84} at C3	C3 (49.79%): s(35.17%)p(64.65%)
		$sp^{1.85}$ at C5	C5 (50.21%) : $s(35.12\%)p(64.81\%)$
σ(C3-C6)	1.98483	<i>sp</i> ^{1.91} at C3	C3 (51.44%): s(34.27%)p(65.55%)
		$sp^{1.68}$ at C6	C6 (48.56%): s(37.33%)p(62.58%)
π(C3-C6)	1.64449	n/a	C3 (70.61%) : $s(0.02\%)p(99.92\%)$
			C6 (29.39%) : $s(0.02\%)p(99.87\%)$
σ(C6-C8)	1.98582	<i>sp</i> ^{2.15} at C6	C6 (48.04%): s(31.69%)p(68.24%)
		$sp^{2.92}$ at C8	C8 (51.96%): s(25.44%)p(74.40%)
σ(C6-O7)	1.99393	<i>sp</i> ^{2.21} at C6	C6 (35.24%): s(31.08%)p(68.82%)
		$sp^{1.57}$ at O7	O7 (64.76%): s(38.71%)p(60.80%)
Lone pair 1 (O7)	1.95772	n/a	s(55.16%)p(44.76%)
Lone pair 2 (O7)	1.90563	n/a	s(6.10%)p(93.77%)
Lone pair 3 (O7)	1.58655	n/a	s(0.02%)p(99.74%)
σ(C11-C12)	1.97701	<i>sp</i> ^{1.78} at C11	C11 (50.10%): s(35.92%)p(63.99%)
		$sp^{1.90}$ at C12	C12 (49.90%): s(34.45%)p(65.38%)
π(C11-C12)	1.65791	n/a	C11 (46.56%): s(0.01%)p(99.91%)
, , , ,			C12 (53.44%): s(0.02%)p(99.91%)
σ(C11-C10)	1.97497	<i>sp</i> ^{2.11} at C11	C11 (49.30%): s(32.11%)p(67.78%)
		$sp^{1.95}$ at C10	C10 (50.70%): s(33.85%)p(66.03%)
Lone pair 1 (N4)	1.90053	$sp^{2.40}$	s(29.41%)p(70.51%)
σ(N4-C9)	1.98621	<i>sp</i> ^{1.64} at N4	N4 (59.02%): s(37.68%)p(61.96%)
, <i>,</i> ,		<i>sp</i> ^{1.95} at C9	C9 (40.98%): s(33.84%)p(66.04%)
π(N4-C9)	1.85696	n/a	N4 (62.23%): s(0.01%)p(99.77%)
			C9 (37.77%): s(0.01%)p(99.85%)
σ(N4-C10)	1.98215	<i>sp</i> ^{2.04} at N4	N4 (58.33%): s(32.78%)p(66.88%)
· · · ·		$sp^{2.30}$ at C10	C10(41.67%): $s(30.28%)p(69.64%)$

Table S104. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the M06-2X functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

\mathbf{NBO}^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85329	$sp^{2.72}$	s(26.90%)p(73.07%)
σ(N1-C5)	1.98722	$sp^{1.52}$ at N1	N1 (59.59%): s(39.47%)p(60.17%)
		$sp^{2.01}$ at C5	C5 (40.41%): s(33.15%)p(66.73%)
π(N1-C5)	1.87425	n/a	N1 (71.92%): s(0.08%)p(99.77%)
			C5 (28.08%): <i>s</i> (0.07%) <i>p</i> (99.75%)
σ(N1-C11)	1.98271	<i>sp</i> ^{1.98} at N1	N1 (57.95%): <i>s</i> (33.40%) <i>p</i> (66.29%)
		$sp^{2.14}$ at C11	C11 (42.05%): s(31.86%)p(68.04%)
σ(C2-C5)	1.98436	$sp^{2.83}$ at C2	C2 (51.49%): <i>s</i> (26.04%) <i>p</i> (73.79%)
		$sp^{2.16}$ at C5	C5 (48.51%): <i>s</i> (31.67%) <i>p</i> (68.26%)
σ(C3-C5)	1.97712	$sp^{1.83}$ at C3	C3 (49.80%): s(35.21%)p(64.59%)
		$sp^{1.85}$ at C5	C5 (50.20%): s(35.09%)p(64.82%)
σ(C3-C6)	1.98488	<i>sp</i> ^{1.91} at C3	C3 (51.38%): <i>s</i> (34.29%) <i>p</i> (65.50%)
		$sp^{1.67}$ at C6	C6 (48.62%): <i>s</i> (37.35%) <i>p</i> (62.55%)
π(C3-C6)	1.64903	n/a	C3 (70.55%): <i>s</i> (0.02%) <i>p</i> (99.91%)
			C6 (29.45%): <i>s</i> (0.01%) <i>p</i> (99.86%)
σ(C6-C8)	1.98590	<i>sp</i> ^{2.15} at C6	C6 (47.97%): <i>s</i> (31.68%) <i>p</i> (68.24%)
		<i>sp</i> ^{2.90} at C8	C8 (52.03%): <i>s</i> (25.61%) <i>p</i> (74.20%)
σ(C6-O7)	1.99363	<i>sp</i> ^{2.22} at C6	C6 (35.31%): <i>s</i> (31.05%) <i>p</i> (68.82%)
		$sp^{1.58}$ at O7	O7 (64.69%): <i>s</i> (38.64%) <i>p</i> (60.87%)
Lone pair 1 (O7)	1.95679	n/a	s(53.64%)p(46.28%)
Lone pair 2 (O7)	1.89895	n/a	s(7.68%)p(92.19%)
Lone pair 3 (O7)	1.58800	n/a	s(0.02%)p(99.76%)
σ(C11-C12)	1.97664	<i>sp</i> ^{1.78} at C11	C11 (50.07%): s(35.91%)p(63.99%)
		<i>sp</i> ^{1.90} at C12	C12 (49.93%): s(34.46%)p(65.35%)
π(C11-C12)	1.65874	n/a	C11 (46.37%): s(0.01%)p(99.90%)
			C12 (53.63%): s(0.01%)p(99.90%)
σ(C11-C10)	1.97501	$sp^{2.11}$ at C11	C11 (49.31%): <i>s</i> (32.13%) <i>p</i> (67.74%)
		<i>sp</i> ^{1.95} at C10	C10 (50.69%): s(33.86%)p(66.00%)
Lone pair 1 (N4)	1.89480	$sp^{2.42}$	s(29.22%)p(70.70%)
σ(N4-C9)	1.98587	$sp^{1.64}$ at N4	N4 (58.87%): s(37.73%)p(61.90%)
		<i>sp</i> ^{1.95} at C9	C9 (41.13%): s(33.88%)p(65.98%)
π(N4-C9)	1.85807	n/a	N4 (62.46%): s(0.01%)p(99.80%)
			C9 (37.54%): <i>s</i> (0.02%) <i>p</i> (99.85%)
σ(N4-C10)	1.98232	<i>sp</i> ^{2.03} at N4	N4 (58.25%): s(32.91%)p(66.74%)
		$sp^{2.30}$ at C10	C10 (41.75%): s(30.25%)p(69.64%)

Table S105. NBO analysis^{*a*} of (^{CF3}L4)₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_Ah_A + c_Bh_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83908	$sp^{2.31}$	s(30.21%)p(69.74%)
σ(N1-C5)	1.98649	$sp^{1.67}$ at N1	N1 (59.69%): s(37.34%)p(62.36%)
		$sp^{2.02}$ at C5	C5 (40.31%): s(33.06%)p(66.85%)
π(N1-C5)	1.87061	n/a	N1 (70.02%): s(0.18%)p(99.67%)
			C5 (29.98%): <i>s</i> (0.25%) <i>p</i> (99.58%)
σ(N1-C11)	1.98126	$sp^{2.10}$ at N1	N1 (58.19%): s(32.14%)p(67.59%)
		$sp^{2.21}$ at C11	C11 (41.81%): s(31.14%)p(68.78%)
σ(C2-C5)	1.98373	$sp^{2.85}$ at C2	C2 (52.08%): <i>s</i> (25.97%) <i>p</i> (73.89%)
		$sp^{2.26}$ at C5	C5 (47.92%): <i>s</i> (30.63%) <i>p</i> (69.29%)
σ(C3-C5)	1.97829	$sp^{1.80}$ at C3	C3 (50.14%): s(35.60%)p(64.21%)
		$sp^{1.77}$ at C5	C5 (49.86%): s(36.02%)p(63.89%)
σ(C3-C6)	1.98583	<i>sp</i> ^{1.94} at C3	C3 (51.43%): <i>s</i> (33.91%) <i>p</i> (65.89%)
		$sp^{1.66}$ at C6	C6 (48.57%): <i>s</i> (37.51%) <i>p</i> (62.39%)
π(C3-C6)	1.64582	n/a	C3 (67.94%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C6 (32.06%): <i>s</i> (0.01%) <i>p</i> (99.89%)
σ(C6-C8)	1.98636	<i>sp</i> ^{2.13} at C6	C6 (47.32%): <i>s</i> (31.87%) <i>p</i> (68.04%)
		$sp^{2.83}$ at C8	C8 (52.68%): <i>s</i> (26.04%) <i>p</i> (73.79%)
σ(C6-O7)	1.99333	<i>sp</i> ^{2.26} at C6	C6 (35.29%): <i>s</i> (30.67%) <i>p</i> (69.23%)
		$sp^{1.80}$ at O7	O7 (64.71%): s(35.58%)p(64.00%)
Lone pair 1 (O7)	1.95992	n/a	s(58.02%)p(41.91%)
Lone pair 2 (O7)	1.89031	n/a	s(6.36%)p(93.53%)
Lone pair 3 (O7)	1.58118	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97550	<i>sp</i> ^{1.76} at C11	C11 (50.19%): <i>s</i> (36.16%) <i>p</i> (63.75%)
		<i>sp</i> ^{1.92} at C12	C12 (49.81%): <i>s</i> (34.16%) <i>p</i> (65.66%)
π(C11-C12)	1.66357	n/a	C11 (46.22%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (53.78%): <i>s</i> (0.04%) <i>p</i> (99.87%)
σ(C11-C10)	1.97282	$sp^{2.06}$ at C11	C11 (49.18%): <i>s</i> (32.61%) <i>p</i> (67.25%)
		<i>sp</i> ^{1.93} at C10	C10 (50.82%): s(34.10%)p(65.75%)
Lone pair 1 (N4)	1.88963	$sp^{2.03}$	s(32.99%)p(66.97%)
σ(N4-C9)	1.98607	$sp^{1.83}$ at N4	N4 (58.78%): <i>s</i> (35.28%) <i>p</i> (64.42%)
		<i>sp</i> ^{1.98} at C9	C9 (41.22%): <i>s</i> (33.57%) <i>p</i> (66.33%)
π(N4-C9)	1.84226	n/a	N4 (61.26%): s(0.00%)p(99.83%)
			C9 (38.74%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98147	<i>sp</i> ^{2.16} at N4	N4 (58.23%): s(31.60%)p(68.10%)
		$sp^{2.30}$ at C10	C10 (41.77%): s(30.26%)p(69.65%)

Table S106. NBO analysis^{*a*} of (*t*^{Bu}L4)₂Zn with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83910	$sp^{2.49}$	s(28.64%)p(71.32%)
σ(N1-C5)	1.98661	$sp^{1.61}$ at N1	N1 (59.45%): s(38.21%)p(61.45%)
		$sp^{2.02}$ at C5	C5 (40.55%): s(33.12%)p(66.77%)
π(N1-C5)	1.87312	n/a	N1 (69.74%): s(0.16%)p(99.70%)
			C5 (30.26%): <i>s</i> (0.19%) <i>p</i> (99.66%)
σ(N1-C11)	1.98158	<i>sp</i> ^{2.03} at N1	N1 (57.93%): <i>s</i> (32.86%) <i>p</i> (66.85%)
		$sp^{2.20}$ at C11	C11 (42.07%): s(31.23%)p(68.67%)
σ(C2-C5)	1.98353	$sp^{2.87}$ at C2	C2 (51.60%): <i>s</i> (25.78%) <i>p</i> (74.07%)
		<i>sp</i> ^{2.25} at C5	C5 (48.40%): <i>s</i> (30.79%) <i>p</i> (69.15%)
σ(C3-C5)	1.97779	<i>sp</i> ^{1.81} at C3	C3 (49.99%): <i>s</i> (35.56%) <i>p</i> (64.25%)
		$sp^{1.78}$ at C5	C5 (50.01%): <i>s</i> (35.89%) <i>p</i> (64.03%)
σ(C3-C6)	1.98515	<i>sp</i> ^{1.95} at C3	C3 (51.28%): <i>s</i> (33.83%) <i>p</i> (65.98%)
		$sp^{1.67}$ at C6	C6 (48.72%): <i>s</i> (37.48%) <i>p</i> (62.44%)
π(C3-C6)	1.64490	n/a	C3 (67.62%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (32.38%): <i>s</i> (0.00%) <i>p</i> (99.89%)
σ(C6-C8)	1.98613	<i>sp</i> ^{2.13} at C6	C6 (47.84%): <i>s</i> (31.97%) <i>p</i> (67.96%)
		$sp^{2.86}$ at C8	C8 (52.16%): <i>s</i> (25.89%) <i>p</i> (73.93%)
σ(C6-O7)	1.99334	<i>sp</i> ^{2.26} at C6	C6 (35.52%): <i>s</i> (30.63%) <i>p</i> (69.26%)
		<i>sp</i> ^{1.72} at O7	O7 (64.48%): s(36.58%)p(62.98%)
Lone pair 1 (O7)	1.95815	n/a	s(55.85%)p(44.08%)
Lone pair 2 (O7)	1.89029	n/a	s(7.54%)p(92.36%)
Lone pair 3 (O7)	1.57928	n/a	s(0.01%)p(99.81%)
σ(C11-C12)	1.97484	<i>sp</i> ^{1.76} at C11	C11 (50.38%): s(36.17%)p(63.74%)
		<i>sp</i> ^{1.93} at C12	C12 (49.62%): s(34.07%)p(65.75%)
π(C11-C12)	1.66500	n/a	C11 (46.80%): <i>s</i> (0.02%) <i>p</i> (99.91%)
			C12 (53.20%): s(0.04%)p(99.88%)
σ(C11-C10)	1.97256	$sp^{2.07}$ at C11	C11 (49.16%): <i>s</i> (32.51%) <i>p</i> (67.37%)
		<i>sp</i> ^{1.93} at C10	C10 (50.84%): s(34.04%)p(65.83%)
Lone pair 1 (N4)	1.88853	$sp^{2.15}$	s(31.78%)p(68.18%)
σ(N4-C9)	1.98610	$sp^{1.78}$ at N4	N4 (58.72%): <i>s</i> (35.86%) <i>p</i> (63.82%)
		<i>sp</i> ^{1.98} at C9	C9 (41.28%): <i>s</i> (33.55%) <i>p</i> (66.32%)
π(N4-C9)	1.84135	n/a	N4 (61.51%): s(0.00%)p(99.83%)
			C9 (38.49%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98200	<i>sp</i> ^{2.09} at N4	N4 (57.99%): s(32.22%)p(67.46%)
		$sp^{2.29}$ at C10	C10(42.01%); $s(30.34%)p(69.55%)$

Table S107. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83659	$sp^{2.52}$	s(28.41%)p(71.54%)
σ(N1-C5)	1.98651	$sp^{1.60}$ at N1	N1 (59.31%): s(38.35%)p(61.31%)
		$sp^{2.01}$ at C5	C5 (40.69%): s(33.15%)p(66.74%)
π(N1-C5)	1.87282	n/a	N1 (69.65%): s(0.15%)p(99.71%)
			C5 (30.35%): <i>s</i> (0.18%) <i>p</i> (99.67%)
σ(N1-C11)	1.98142	<i>sp</i> ^{2.03} at N1	N1 (57.80%): s(32.95%)p(66.76%)
		$sp^{2.19}$ at C11	C11 (42.20%): s(31.28%)p(68.63%)
σ(C2-C5)	1.98319	$sp^{2.88}$ at C2	C2 (51.78%): s(25.77%)p(74.09%)
		$sp^{2.24}$ at C5	C5 (48.22%): s(30.82%)p(69.13%)
σ(C3-C5)	1.97729	<i>sp</i> ^{1.81} at C3	C3 (50.01%): s(35.54%)p(64.28%)
		$sp^{1.79}$ at C5	C5 (49.99%): s(35.84%)p(64.09%)
σ(C3-C6)	1.98464	<i>sp</i> ^{1.95} at C3	C3 (51.32%): s(33.81%)p(66.01%)
		$sp^{1.67}$ at C6	C6 (48.68%): s(37.45%)p(62.47%)
π(C3-C6)	1.64303	n/a	C3 (67.50%): s(0.01%)p(99.92%)
			C6 (32.50%) : $s(0.00\%)p(99.90\%)$
σ(C6-C8)	1.98589	<i>sp</i> ^{2.13} at C6	C6 (47.64%): s(31.95%)p(67.99%)
		$sp^{2.85}$ at C8	C8 (52.36%): s(25.92%)p(73.92%)
σ(C6-O7)	1.99325	<i>sp</i> ^{2.25} at C6	C6 (35.73%): s(30.69%)p(69.20%)
		$sp^{1.72}$ at O7	O7 (64.27%): s(36.67%)p(62.89%)
Lone pair 1 (O7)	1.95721	n/a	s(56.20%)p(43.73%)
Lone pair 2 (O7)	1.88895	n/a	s(7.10%)p(92.79%)
Lone pair 3 (O7)	1.57910	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97434	<i>sp</i> ^{1.76} at C11	C11 (50.36%): s(36.16%)p(63.76%)
		<i>sp</i> ^{1.93} at C12	C12 (49.64%): s(34.02%)p(65.81%)
π(C11-C12)	1.66436	n/a	C11 (46.82%): s(0.01%)p(99.91%)
			C12 (53.18%): s(0.04%)p(99.89%)
σ(C11-C10)	1.97210	$sp^{2.08}$ at C11	C11 (49.18%): s(32.47%)p(67.42%)
		<i>sp</i> ^{1.94} at C10	C10 (50.82%): s(34.00%)p(65.88%)
Lone pair 1 (N4)	1.88679	$sp^{2.15}$	s(31.69%)p(68.27%)
σ(N4-C9)	1.98582	$sp^{1.77}$ at N4	N4 (58.60%): s(35.94%)p(63.74%)
		<i>sp</i> ^{1.98} at C9	C9 (41.40%): <i>s</i> (33.54%) <i>p</i> (66.33%)
π(N4-C9)	1.84223	n/a	N4 (61.44%): s(0.00%)p(99.82%)
			C9 (38.56%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98174	<i>sp</i> ^{2.09} at N4	N4 (57.83%): s(32.23%)p(67.46%)
		$sp^{2.29}$ at C10	C10 (42.17%): s(30.40%)p(69.49%)

Table S108. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the O3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84339	$sp^{2.56}$	s(28.04%)p(71.91%)
σ(N1-C5)	1.98657	<i>sp</i> ^{1.59} at N1	N1 (59.42%): s(38.53%)p(61.12%)
		$sp^{2.01}$ at C5	C5 (40.58%): s(33.13%)p(66.75%)
π(N1-C5)	1.87655	n/a	N1 (70.27%): s(0.15%)p(99.71%)
			C5 (29.73%): <i>s</i> (0.16%) <i>p</i> (99.69%)
σ(N1-C11)	1.98176	$sp^{2.01}$ at N1	N1 (57.93%): <i>s</i> (33.15%) <i>p</i> (66.54%)
		<i>sp</i> ^{2.19} at C11	C11 (42.07%): s(31.28%)p(68.62%)
σ(C2-C5)	1.98358	$sp^{2.85}$ at C2	C2 (51.72%): <i>s</i> (25.95%) <i>p</i> (73.89%)
		$sp^{2.24}$ at C5	C5 (48.28%): s(30.82%)p(69.11%)
σ(C3-C5)	1.97760	<i>sp</i> ^{1.80} at C3	C3 (49.98%): s(35.58%)p(64.22%)
		<i>sp</i> ^{1.79} at C5	C5 (50.02%): <i>s</i> (35.85%) <i>p</i> (64.06%)
σ(C3-C6)	1.98460	<i>sp</i> ^{1.95} at C3	C3 (51.26%): <i>s</i> (33.86%) <i>p</i> (65.94%)
		$sp^{1.67}$ at C6	C6 (48.74%): <i>s</i> (37.44%) <i>p</i> (62.47%)
π(C3-C6)	1.64794	n/a	C3 (68.57%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (31.43%): <i>s</i> (0.00%) <i>p</i> (99.89%)
σ(C6-C8)	1.98623	<i>sp</i> ^{2.13} at C6	C6 (47.76%): <i>s</i> (31.93%) <i>p</i> (68.00%)
		$sp^{2.83}$ at C8	C8 (52.24%): <i>s</i> (26.07%) <i>p</i> (73.74%)
σ(C6-O7)	1.99329	<i>sp</i> ^{2.25} at C6	C6 (35.49%): <i>s</i> (30.71%) <i>p</i> (69.17%)
		$sp^{1.68}$ at O7	O7 (64.51%): <i>s</i> (37.10%) <i>p</i> (62.45%)
Lone pair 1 (O7)	1.95715	n/a	s(54.86%)p(45.07%)
Lone pair 2 (O7)	1.89597	n/a	s(8.02%)p(91.88%)
Lone pair 3 (O7)	1.58856	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97479	<i>sp</i> ^{1.76} at C11	C11 (50.35%): <i>s</i> (36.15%) <i>p</i> (63.76%)
		<i>sp</i> ^{1.93} at C12	C12 (49.65%): s(34.09%)p(65.72%)
π(C11-C12)	1.66702	n/a	C11 (46.48%): s(0.01%)p(99.91%)
			C12 (53.52%): s(0.03%)p(99.89%)
σ(C11-C10)	1.97253	$sp^{2.08}$ at C11	C11 (49.15%): s(32.47%)p(67.40%)
		<i>sp</i> ^{1.94} at C10	C10 (50.85%): s(34.00%)p(65.86%)
Lone pair 1 (N4)	1.89182	$sp^{2.21}$	s(31.13%)p(68.83%)
σ(N4-C9)	1.98580	<i>sp</i> ^{1.75} at N4	N4 (58.70%): s(36.20%)p(63.47%)
		<i>sp</i> ^{1.97} at C9	C9 (41.30%): s(33.60%)p(66.27%)
π(N4-C9)	1.84491	n/a	N4 (61.51%): s(0.00%)p(99.83%)
			C9 (38.49%): s(0.00%)p(99.88%)
σ(N4-C10)	1.98197	<i>sp</i> ^{2.06} at N4	N4 (58.01%): s(32.53%)p(67.14%)
		$sp^{2.29}$ at C10	C10 (41.99%): s(30.39%)p(69.50%)

Table S109. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84525	$sp^{2.57}$	s(28.03%)p(71.92%)
σ(N1-C5)	1.98672	$sp^{1.58}$ at N1	N1 (59.41%): s(38.55%)p(61.08%)
		$sp^{2.01}$ at C5	C5 (40.59%): s(33.14%)p(66.74%)
π(N1-C5)	1.87778	n/a	N1 (70.51%): s(0.16%)p(99.69%)
			C5 (29.49%): <i>s</i> (0.17%) <i>p</i> (99.66%)
σ(N1-C11)	1.98186	<i>sp</i> ^{2.01} at N1	N1 (57.84%): s(33.12%)p(66.56%)
		$sp^{2.19}$ at C11	C11 (42.16%): s(31.30%)p(68.61%)
σ(C2-C5)	1.98363	$sp^{2.86}$ at C2	C2 (51.76%): s(25.88%)p(73.97%)
		$sp^{2.24}$ at C5	C5 (48.24%): s(30.80%)p(69.14%)
σ(C3-C5)	1.97766	<i>sp</i> ^{1.81} at C3	C3 (50.04%): s(35.56%)p(64.24%)
		$sp^{1.79}$ at C5	C5 (49.96%): s(35.87%)p(64.05%)
σ(C3-C6)	1.98477	<i>sp</i> ^{1.95} at C3	C3 (51.38%): s(33.83%)p(65.97%)
		$sp^{1.67}$ at C6	C6 (48.62%): $s(37.44\%)p(62.47\%)$
π(C3-C6)	1.64783	n/a	C3 (69.01%): s(0.01%)p(99.92%)
			C6 (30.99%) : $s(0.00\%)p(99.89\%)$
σ(C6-C8)	1.98631	$sp^{2.13}$ at C6	C6 (47.66%): s(31.92%)p(68.01%)
		$sp^{2.84}$ at C8	C8 (52.34%): s(25.98%)p(73.83%)
σ(C6-O7)	1.99343	<i>sp</i> ^{2.25} at C6	C6 (35.66%): s(30.73%)p(69.16%)
		$sp^{1.69}$ at O7	O7 (64.34%): s(37.01%)p(62.52%)
Lone pair 1 (O7)	1.95789	n/a	s(55.41%)p(44.52%)
Lone pair 2 (O7)	1.89583	n/a	s(7.55%)p(92.34%)
Lone pair 3 (O7)	1.58841	n/a	s(0.01%)p(99.79%)
σ(C11-C12)	1.97485	$sp^{1.76}$ at C11	C11 (50.32%): s(36.15%)p(63.76%)
		$sp^{1.93}$ at C12	C12 (49.68%): s(34.06%)p(65.75%)
π(C11-C12)	1.66885	n/a	C11 (46.46%): s(0.01%)p(99.91%)
			C12 (53.54%): s(0.04%)p(99.88%)
σ(C11-C10)	1.97271	$sp^{2.08}$ at C11	C11 (49.13%): s(32.46%)p(67.41%)
		$sp^{1.94}$ at C10	C10 (50.87%): s(34.02%)p(65.85%)
Lone pair 1 (N4)	1.89264	$sp^{2.19}$	s(31.29%)p(68.67%)
σ(N4-C9)	1.98600	<i>sp</i> ^{1.76} at N4	N4 (58.63%): s(36.10%)p(63.56%)
		<i>sp</i> ^{1.97} at C9	C9 (41.37%): s(33.60%)p(66.27%)
π(N4-C9)	1.84578	n/a	N4 (61.66%): s(0.00%)p(99.81%)
			C9 (38.34%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98209	<i>sp</i> ^{2.07} at N4	N4 (57.89%): s(32.46%)p(67.20%)
		$sp^{2.29}$ at C10	C10 (42.11%): s(30.39%)p(69.50%)

Table S110. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the PBE0 functional.

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84204	$sp^{2.55}$	s(28.16%)p(71.78%)
σ(N1-C5)	1.98652	$sp^{1.60}$ at N1	N1 (59.66%): s(38.39%)p(61.31%)
		$sp^{2.02}$ at C5	C5 (40.34%): s(33.10%)p(66.81%)
π(N1-C5)	1.87994	n/a	N1 (71.47%): s(0.19%)p(99.65%)
			C5 (28.53%): <i>s</i> (0.20%) <i>p</i> (99.62%)
σ(N1-C11)	1.98155	<i>sp</i> ^{2.01} at N1	N1 (58.18%): s(33.14%)p(66.60%)
		$sp^{2.20}$ at C11	C11 (41.82%): s(31.23%)p(68.69%)
σ(C2-C5)	1.98337	$sp^{2.83}$ at C2	C2 (51.92%): s(26.06%)p(73.79%)
		$sp^{2.25}$ at C5	C5 (48.08%): s(30.79%)p(69.14%)
σ(C3-C5)	1.97737	$sp^{1.80}$ at C3	C3 (50.06%): s(35.65%)p(64.17%)
		$sp^{1.78}$ at C5	C5 (49.94%): s(35.88%)p(64.04%)
σ(C3-C6)	1.98483	<i>sp</i> ^{1.94} at C3	C3 (51.40%): s(33.92%)p(65.90%)
		$sp^{1.67}$ at C6	C6 (48.60%): <i>s</i> (37.44%) <i>p</i> (62.47%)
π(C3-C6)	1.64874	n/a	C3 (70.17%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (29.83%): <i>s</i> (0.01%) <i>p</i> (99.88%)
σ(C6-C8)	1.98614	<i>sp</i> ^{2.14} at C6	C6 (47.49%): <i>s</i> (31.86%) <i>p</i> (68.06%)
		$sp^{2.82}$ at C8	C8 (52.51%): <i>s</i> (26.13%) <i>p</i> (73.69%)
σ(C6-O7)	1.99341	<i>sp</i> ^{2.25} at C6	C6 (35.27%): <i>s</i> (30.77%) <i>p</i> (69.14%)
		$sp^{1.70}$ at O7	O7 (64.73%): s(36.84%)p(62.74%)
Lone pair 1 (O7)	1.95878	n/a	s(55.54%)p(44.39%)
Lone pair 2 (O7)	1.89473	n/a	s(7.59%)p(92.30%)
Lone pair 3 (O7)	1.59620	n/a	s(0.01%)p(99.78%)
σ(C11-C12)	1.97446	<i>sp</i> ^{1.76} at C11	C11 (50.20%): s(36.16%)p(63.76%)
		<i>sp</i> ^{1.92} at C12	C12 (49.80%): s(34.16%)p(65.68%)
π(C11-C12)	1.66961	n/a	C11 (45.93%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (54.07%): <i>s</i> (0.04%) <i>p</i> (99.88%)
σ(C11-C10)	1.97217	$sp^{2.07}$ at C11	C11 (49.14%): <i>s</i> (32.52%) <i>p</i> (67.36%)
		<i>sp</i> ^{1.93} at C10	C10 (50.86%): s(34.06%)p(65.81%)
Lone pair 1 (N4)	1.89090	$sp^{1.90}$	s(31.23%)p(68.71%)
σ(N4-C9)	1.98565	$sp^{1.76}$ at N4	N4 (58.77%): <i>s</i> (36.08%) <i>p</i> (63.63%)
		<i>sp</i> ^{1.97} at C9	C9 (41.23%): <i>s</i> (33.67%) <i>p</i> (66.24%)
π(N4-C9)	1.85015	n/a	N4 (62.04%): <i>s</i> (0.00%) <i>p</i> (99.80%)
			C9 (37.96%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98154	<i>sp</i> ^{2.06} at N4	N4 (58.25%): s(32.56%)p(67.14%)
		$sp^{2.30}$ at C10	C10 (41.75%): s(30.32%)p(69.59%)

Table S111. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the M06 functional.

^a Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.86136	$sp^{2.65}$	s(27.38%)p(72.57%)
σ(N1-C5)	1.98663	$sp^{1.56}$ at N1	N1 (59.57%): s(38.94%)p(60.71%)
		$sp^{2.02}$ at C5	C5 (40.43%): s(33.04%)p(66.86%)
π(N1-C5)	1.88457	n/a	N1 (70.99%): s(0.18%)p(99.65%)
			C5 (29.01%): <i>s</i> (0.18%) <i>p</i> (99.65%)
σ(N1-C11)	1.98194	<i>sp</i> ^{1.99} at N1	N1 (57.94%): s(33.39%)p(66.31%)
· · · ·		$sp^{2.19}$ at C11	C11 (42.06%): s(31.29%)p(68.63%)
σ(C2-C5)	1.98392	$sp^{2.85}$ at C2	C2 (51.63%): s(25.93%)p(73.93%)
		$sp^{2.24}$ at C5	C5 (48.37%): s(30.88%)p(69.07%)
σ(C3-C5)	1.97766	<i>sp</i> ^{1.81} at C3	C3 (49.97%): s(35.56%)p(64.26%)
		$sp^{1.78}$ at C5	C5 (50.03%) : $s(35.90\%)p(64.02\%)$
σ(C3-C6)	1.98435	<i>sp</i> ^{1.95} at C3	C3 (51.34%): s(33.83%)p(65.98%)
		$sp^{1.67}$ at C6	C6 (48.66%): $s(37.46\%)p(62.46\%)$
π(C3-C6)	1.65426	n/a	C3 (70.55%) : $s(0.01\%)p(99.92\%)$
			C6 (29.45%) : $s(0.00\%)p(99.88\%)$
σ(C6-C8)	1.98667	$sp^{2.13}$ at C6	C6 (47.84%): s(31.96%)p(67.98%)
		$sp^{2.84}$ at C8	C8 (52.16%): s(25.98%)p(73.85%)
σ(C6-O7)	1.99376	<i>sp</i> ^{2.26} at C6	C6 (35.42%): s(30.68%)p(69.23%)
		$sp^{1.63}$ at O7	O7 (64.58%): s(37.82%)p(61.71%)
Lone pair 1 (O7)	1.95796	n/a	s(54.90%)p(45.02%)
Lone pair 2 (O7)	1.90938	n/a	s(7.26%)p(92.63%)
Lone pair 3 (O7)	1.59601	n/a	s(0.01%)p(99.77%)
σ(C11-C12)	1.97522	<i>sp</i> ^{1.76} at C11	C11 (50.36%): s(36.19%)p(63.72%)
		$sp^{1.93}$ at C12	C12 (49.64%): s(34.08%)p(65.74%)
π(C11-C12)	1.67593	n/a	C11 (46.24%): s(0.02%)p(99.91%)
, , ,			C12 (53.76%): s(0.04%)p(99.88%)
σ(C11-C10)	1.97309	$sp^{2.08}$ at C11	C11 (49.07%): s(32.43%)p(67.45%)
, , ,		$sp^{1.93}$ at C10	C10 (50.93%): s(34.03%)p(65.84%)
Lone pair 1 (N4)	1.90351	$sp^{2.26}$	s(30.65%)p(69.31%)
σ(N4-C9)	1.98599	<i>sp</i> ^{1.74} at N4	N4 (58.80%): s(36.42%)p(63.25%)
		<i>sp</i> ^{1.97} at C9	C9 (41.20%): s(33.58%)p(66.31%)
π(N4-C9)	1.85275	n/a	N4 (61.50%): s(0.00%)p(99.78%)
			C9 (38.50%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98206	<i>sp</i> ^{2.04} at N4	N4 (58.11%): s(32.81%)p(66.87%)
		$sp^{2.29}$ at C10	C10 (41.89%): s(30.35%)p(69.56%)

Table S112. NBO analysis^a of (^{tBu}L4)₂Zn with the M06-2X functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85169	$sp^{2.67}$	s(27.21%)p(72.74%)
σ(N1-C5)	1.98665	$sp^{1.56}$ at N1	N1 (59.44%): s(38.96%)p(60.67%)
		$sp^{2.02}$ at C5	C5 (40.56%): s(33.07%)p(66.80%)
π(N1-C5)	1.88627	n/a	N1 (71.41%): s(0.18%)p(99.67%)
			C5 (28.59%): <i>s</i> (0.16%) <i>p</i> (99.67%)
σ(N1-C11)	1.98218	$sp^{1.97}$ at N1	N1 (57.90%): <i>s</i> (33.52%) <i>p</i> (66.16%)
		<i>sp</i> ^{2.19} at C11	C11 (42.10%): s(31.27%)p(68.63%)
σ(C2-C5)	1.98395	$sp^{2.83}$ at C2	C2 (51.74%): <i>s</i> (26.08%) <i>p</i> (73.75%)
		<i>sp</i> ^{2.24} at C5	C5 (48.26%): <i>s</i> (30.87%) <i>p</i> (69.06%)
σ(C3-C5)	1.97764	$sp^{1.80}$ at C3	C3 (49.99%): <i>s</i> (35.59%) <i>p</i> (64.20%)
		<i>sp</i> ^{1.79} at C5	C5 (50.01%): <i>s</i> (35.87%) <i>p</i> (64.04%)
σ(C3-C6)	1.98437	<i>sp</i> ^{1.95} at C3	C3 (51.27%): <i>s</i> (33.86%) <i>p</i> (65.93%)
		<i>sp</i> ^{1.67} at C6	C6 (48.73%): s(37.48%)p(62.43%)
π(C3-C6)	1.65833	n/a	C3 (70.48%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (29.52%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(C6-C8)	1.98662	$sp^{2.13}$ at C6	C6 (47.77%): <i>s</i> (31.95%) <i>p</i> (67.97%)
		<i>sp</i> ^{2.82} at C8	C8 (52.23%): <i>s</i> (26.14%) <i>p</i> (73.66%)
σ(C6-O7)	1.99343	<i>sp</i> ^{2.26} at C6	C6 (35.49%): <i>s</i> (30.65%) <i>p</i> (69.23%)
		<i>sp</i> ^{1.64} at O7	O7 (64.51%): s(37.76%)p(61.77%)
Lone pair 1 (O7)	1.95703	n/a	s(53.19%)p(46.73%)
Lone pair 2 (O7)	1.90255	n/a	s(9.02%)p(90.87%)
Lone pair 3 (O7)	1.59672	n/a	s(0.01%)p(99.79%)
σ(C11-C12)	1.97496	<i>sp</i> ^{1.76} at C11	C11 (50.30%): <i>s</i> (36.17%) <i>p</i> (63.74%)
		<i>sp</i> ^{1.92} at C12	C12 (49.70%): <i>s</i> (34.13%) <i>p</i> (65.67%)
π(C11-C12)	1.67659	n/a	C11 (46.01%): <i>s</i> (0.01%) <i>p</i> (99.90%)
			C12 (53.99%): <i>s</i> (0.03%) <i>p</i> (99.88%)
σ(C11-C10)	1.97314	$sp^{2.08}$ at C11	C11 (49.08%): <i>s</i> (32.45%) <i>p</i> (67.41%)
		<i>sp</i> ^{1.93} at C10	C10 (50.92%): s(34.04%)p(65.82%)
Lone pair 1 (N4)	1.89761	$sp^{2.28}$	s(30.44%)p(69.52%)
σ(N4-C9)	1.98573	$sp^{1.73}$ at N4	N4 (58.66%): <i>s</i> (36.48%) <i>p</i> (63.17%)
		<i>sp</i> ^{1.97} at C9	C9 (41.34%): <i>s</i> (33.61%) <i>p</i> (66.25%)
π(N4-C9)	1.85412	n/a	N4 (61.70%): s(0.00%)p(99.81%)
			C9 (38.30%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98225	$sp^{2.03}$ at N4	N4 (58.04%): s(32.94%)p(66.71%)
		$sp^{2.29}$ at C10	C10 (41.96%): s(30.32%)p(69.56%)

Table S113. NBO analysis^{*a*} of (^{*t*Bu}L4)₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_Ah_A + c_Bh_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83925	$sp^{2.31}$	s(30.22%)p(69.73%)
σ(N1-C5)	1.98656	$sp^{1.67}$ at N1	N1 (59.70%): s(37.36%)p(62.33%)
		$sp^{2.02}$ at C5	C5 (40.30%): s(33.05%)p(66.86%)
π(N1-C5)	1.86924	n/a	N1 (70.04%): s(0.18%)p(99.67%)
			C5 (29.96%): <i>s</i> (0.25%) <i>p</i> (99.58%)
σ(N1-C11)	1.98131	$sp^{2.11}$ at N1	N1 (58.20%): <i>s</i> (32.11%) <i>p</i> (67.61%)
		$sp^{2.20}$ at C11	C11 (41.80%): s(31.25%)p(68.67%)
σ(C2-C5)	1.98378	$sp^{2.85}$ at C2	C2 (52.06%): <i>s</i> (25.96%) <i>p</i> (73.90%)
		$sp^{2.26}$ at C5	C5 (47.94%): <i>s</i> (30.64%) <i>p</i> (69.29%)
σ(C3-C5)	1.97835	$sp^{1.80}$ at C3	C3 (50.14%): <i>s</i> (35.60%) <i>p</i> (64.21%)
		$sp^{1.77}$ at C5	C5 (49.86%): <i>s</i> (36.02%) <i>p</i> (63.88%)
σ(C3-C6)	1.98586	<i>sp</i> ^{1.94} at C3	C3 (51.43%): <i>s</i> (33.91%) <i>p</i> (65.89%)
		$sp^{1.66}$ at C6	C6 (48.57%): <i>s</i> (37.51%) <i>p</i> (62.39%)
π(C3-C6)	1.64456	n/a	C3 (67.94%): <i>s</i> (0.01%) <i>p</i> (99.91%)
			C6 (32.06%): <i>s</i> (0.01%) <i>p</i> (99.89%)
σ(C6-C8)	1.98636	<i>sp</i> ^{2.13} at C6	C6 (47.33%): <i>s</i> (31.87%) <i>p</i> (68.04%)
		<i>sp</i> ^{2.83} at C8	C8 (52.67%): <i>s</i> (26.03%) <i>p</i> (73.79%)
σ(C6-O7)	1.99333	<i>sp</i> ^{2.26} at C6	C6 (35.29%): <i>s</i> (30.67%) <i>p</i> (69.23%)
		$sp^{1.80}$ at O7	O7 (64.71%): s(35.58%)p(64.00%)
Lone pair 1 (O7)	1.95994	n/a	s(58.03%)p(41.91%)
Lone pair 2 (O7)	1.89028	n/a	s(6.36%)p(93.54%)
Lone pair 3 (O7)	1.58082	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97599	$sp^{1.78}$ at C11	C11 (50.19%): s(35.96%)p(63.94%)
		$sp^{1.92}$ at C12	C12 (49.81%): s(34.17%)p(65.65%)
π(C11-C12)	1.65857	n/a	C11 (46.25%): <i>s</i> (0.02%) <i>p</i> (99.89%)
			C12 (53.75%): <i>s</i> (0.05%) <i>p</i> (99.86%)
σ(C11-C10)	1.97296	$sp^{2.05}$ at C11	C11 (49.16%): s(32.70%)p(67.17%)
		<i>sp</i> ^{1.93} at C10	C10 (50.84%): s(34.08%)p(65.77%)
Lone pair 1 (N4)	1.88961	$sp^{2.03}$	s(33.00%)p(66.96%)
σ(N4-C9)	1.98610	$sp^{1.83}$ at N4	N4 (58.78%): s(35.28%)p(64.42%)
		<i>sp</i> ^{1.98} at C9	C9 (41.22%): <i>s</i> (33.57%) <i>p</i> (66.33%)
π(N4-C9)	1.84264	n/a	N4 (61.25%): s(0.00%)p(99.83%)
			C9 (38.75%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98154	$sp^{2.16}$ at N4	N4 (58.23%): s(31.59%)p(68.11%)
		$sp^{2.30}$ at C10	C10 (41.77%): s(30.31%)p(69.60%)

Table S114. NBO analysis^{*a*} of (^{Me}L4)₂Zn with the M06-L functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-L (gas phase/ def2-tzvpp def2/j). The M06-L functional uses 0 % Hartree-Fock exchange.¹⁹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83920	$sp^{2.49}$	s(28.65%)p(71.31%)
σ(N1-C5)	1.98669	$sp^{1.61}$ at N1	N1 (59.46%): s(38.23%)p(61.43%)
		$sp^{2.02}$ at C5	C5 (40.54%): s(33.11%)p(66.78%)
π(N1-C5)	1.87155	n/a	N1 (69.78%): s(0.16%)p(99.70%)
			C5 (30.22%): <i>s</i> (0.19%) <i>p</i> (99.66%)
σ(N1-C11)	1.98164	<i>sp</i> ^{2.04} at N1	N1 (57.95%): s(32.83%)p(66.87%)
		$sp^{2.19}$ at C11	C11 (42.05%): s(31.34%)p(68.56%)
σ(C2-C5)	1.98360	$sp^{2.87}$ at C2	C2 (51.59%): <i>s</i> (25.78%) <i>p</i> (74.07%)
		$sp^{2.25}$ at C5	C5 (48.41%): <i>s</i> (30.79%) <i>p</i> (69.15%)
σ(C3-C5)	1.97784	$sp^{1.81}$ at C3	C3 (49.99%): s(35.56%)p(64.25%)
		$sp^{1.78}$ at C5	C5 (50.01%): s(35.89%)p(64.02%)
σ(C3-C6)	1.98517	<i>sp</i> ^{1.95} at C3	C3 (51.28%): <i>s</i> (33.82%) <i>p</i> (65.98%)
		$sp^{1.67}$ at C6	C6 (48.72%): <i>s</i> (37.47%) <i>p</i> (62.44%)
π(C3-C6)	1.64334	n/a	C3 (67.63%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (32.37%): <i>s</i> (0.00%) <i>p</i> (99.89%)
σ(C6-C8)	1.98613	$sp^{2.12}$ at C6	C6 (47.86%): <i>s</i> (31.98%) <i>p</i> (67.95%)
		<i>sp</i> ^{2.86} at C8	C8 (52.14%): <i>s</i> (25.88%) <i>p</i> (73.94%)
σ(C6-O7)	1.99334	<i>sp</i> ^{2.26} at C6	C6 (35.52%): <i>s</i> (30.63%) <i>p</i> (69.26%)
		$sp^{1.72}$ at O7	O7 (64.48%): s(36.58%)p(62.98%)
Lone pair 1 (O7)	1.95817	n/a	s(55.85%)p(44.08%)
Lone pair 2 (O7)	1.89026	n/a	s(7.55%)p(92.36%)
Lone pair 3 (O7)	1.57883	n/a	s(0.01%)p(99.81%)
σ(C11-C12)	1.97540	$sp^{1.78}$ at C11	C11 (50.38%): <i>s</i> (35.96%) <i>p</i> (63.94%)
		<i>sp</i> ^{1.93} at C12	C12 (49.62%): <i>s</i> (34.08%) <i>p</i> (65.73%)
π(C11-C12)	1.66017	n/a	C11 (46.78%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (53.22%): <i>s</i> (0.05%) <i>p</i> (99.87%)
σ(C11-C10)	1.97267	$sp^{2.06}$ at C11	C11 (49.14%): s(32.60%)p(67.28%)
		<i>sp</i> ^{1.94} at C10	C10 (50.86%): s(34.02%)p(65.85%)
Lone pair 1 (N4)	1.88851	$sp^{2.14}$	s(31.80%)p(68.17%)
σ(N4-C9)	1.98613	$sp^{1.78}$ at N4	N4 (58.72%): <i>s</i> (35.86%) <i>p</i> (63.81%)
		<i>sp</i> ^{1.98} at C9	C9 (41.28%): <i>s</i> (33.55%) <i>p</i> (66.32%)
π(N4-C9)	1.84172	n/a	N4 (61.51%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (38.49%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98206	$sp^{2.10}$ at N4	N4 (57.99%): s(32.20%)p(67.48%)
		$sp^{2.29}$ at C10	C10 (42.01%): s(30.39%)p(69.50%)

Table S115. NBO analysis^{*a*} of (^{Me}L4)₂Zn with the TPSSh functional.

^a Calculated in gas phase at the optimized S0 geometry using TPSSh (gas phase/ def2-tzvpp def2/j). The TPSSh functional uses 10 % Hartree-Fock exchange.¹¹

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.83665	$sp^{2.52}$	s(28.42%)p(71.53%)
σ(N1-C5)	1.98659	$sp^{1.60}$ at N1	N1 (59.32%): s(38.37%)p(61.29%)
		$sp^{2.01}$ at C5	C5 (40.68%): s(33.14%)p(66.75%)
π(N1-C5)	1.87110	n/a	N1 (69.69%): s(0.15%)p(99.71%)
			C5 (30.31%): s(0.18%)p(99.67%)
σ(N1-C11)	1.98147	<i>sp</i> ^{2.03} at N1	N1 (57.82%): s(32.93%)p(66.78%)
		$sp^{2.18}$ at C11	C11 (42.18%): s(31.39%)p(68.52%)
σ(C2-C5)	1.98325	$sp^{2.88}$ at C2	C2 (51.76%): s(25.77%)p(74.10%)
		$sp^{2.24}$ at C5	C5 (48.24%): s(30.82%)p(69.13%)
σ(C3-C5)	1.97733	$sp^{1.81}$ at C3	C3 (50.01%): s(35.54%)p(64.28%)
		$sp^{1.79}$ at C5	C5 (49.99%): s(35.84%)p(64.08%)
σ(C3-C6)	1.98466	<i>sp</i> ^{1.95} at C3	C3 (51.32%): <i>s</i> (33.81%) <i>p</i> (66.01%)
		$sp^{1.67}$ at C6	C6 (48.68%): s(37.45%)p(62.48%)
π(C3-C6)	1.64136	n/a	C3 (67.51%): s(0.01%)p(99.92%)
			C6 (32.49%): s(0.00%)p(99.90%)
σ(C6-C8)	1.98588	<i>sp</i> ^{2.13} at C6	C6 (47.66%): s(31.96%)p(67.98%)
		$sp^{2.85}$ at C8	C8 (52.34%): s(25.91%)p(73.93%)
σ(C6-O7)	1.99326	<i>sp</i> ^{2.25} at C6	C6 (35.73%): <i>s</i> (30.69%) <i>p</i> (69.20%)
		$sp^{1.72}$ at O7	O7 (64.27%): <i>s</i> (36.66%) <i>p</i> (62.89%)
Lone pair 1 (O7)	1.95723	n/a	s(56.20%)p(43.73%)
Lone pair 2 (O7)	1.88893	n/a	s(7.11%)p(92.79%)
Lone pair 3 (O7)	1.57862	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97486	<i>sp</i> ^{1.78} at C11	C11 (50.35%): s(35.96%)p(63.95%)
		<i>sp</i> ^{1.93} at C12	C12 (49.65%): s(34.02%)p(65.80%)
π(C11-C12)	1.65979	n/a	C11 (46.75%): <i>s</i> (0.02%) <i>p</i> (99.91%)
			C12 (53.25%): s(0.05%)p(99.87%)
σ(C11-C10)	1.97220	$sp^{2.07}$ at C11	C11 (49.16%): <i>s</i> (32.56%) <i>p</i> (67.33%)
		<i>sp</i> ^{1.94} at C10	C10 (50.84%): s(33.98%)p(65.90%)
Lone pair 1 (N4)	1.88675	$sp^{2.15}$	s(31.70%)p(68.25%)
σ(N4-C9)	1.98585	$sp^{1.77}$ at N4	N4 (58.60%): s(35.94%)p(63.74%)
		<i>sp</i> ^{1.98} at C9	C9 (41.40%): <i>s</i> (33.54%) <i>p</i> (66.33%)
π(N4-C9)	1.84263	n/a	N4 (61.44%): s(0.00%)p(99.82%)
			C9 (38.56%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98178	<i>sp</i> ^{2.09} at N4	N4 (57.83%): s(32.21%)p(67.47%)
		$sp^{2.28}$ at C10	C10 (42.17%): s(30.45%)p(69.45%)

Table S116. NBO analysis^a of (MeL4)₂Zn with the O3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using O3LYP (gas phase/ def2-tzvpp def2/j). The O3LYP functional uses 11.61 % Hartree-Fock exchange.²¹

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84344	$sp^{2.56}$	s(28.05%)p(71.90%)
σ(N1-C5)	1.98665	$sp^{1.58}$ at N1	N1 (59.43%): s(38.55%)p(61.09%)
		$sp^{2.01}$ at C5	C5 (40.57%): s(33.13%)p(66.75%)
π(N1-C5)	1.87491	n/a	N1 (70.31%): s(0.14%)p(99.71%)
			C5 (29.69%): s(0.17%)p(99.69%)
σ(N1-C11)	1.98182	<i>sp</i> ^{2.01} at N1	N1 (57.94%): s(33.12%)p(66.57%)
		$sp^{2.18}$ at C11	C11 (42.06%): s(31.39%)p(68.51%)
σ(C2-C5)	1.98364	$sp^{2.85}$ at C2	C2 (51.70%): s(25.95%)p(73.89%)
		$sp^{2.24}$ at C5	C5 (48.30%): s(30.83%)p(69.11%)
σ(C3-C5)	1.97764	$sp^{1.80}$ at C3	C3 (49.98%): s(35.58%)p(64.22%)
		$sp^{1.79}$ at C5	C5 (50.02%): s(35.85%)p(64.06%)
σ(C3-C6)	1.98462	<i>sp</i> ^{1.95} at C3	C3 (51.26%): s(33.85%)p(65.94%)
		$sp^{1.67}$ at C6	C6 (48.74%): s(37.44%)p(62.47%)
π(C3-C6)	1.64634	n/a	C3 (68.57%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (31.43%): <i>s</i> (0.00%) <i>p</i> (99.89%)
σ(C6-C8)	1.98623	$sp^{2.13}$ at C6	C6 (47.77%): s(31.93%)p(67.99%)
		$sp^{2.83}$ at C8	C8 (52.23%): s(26.07%)p(73.75%)
σ(C6-O7)	1.99329	<i>sp</i> ^{2.25} at C6	C6 (35.49%): <i>s</i> (30.71%) <i>p</i> (69.17%)
		$sp^{1.68}$ at O7	O7 (64.51%): <i>s</i> (37.09%) <i>p</i> (62.45%)
Lone pair 1 (O7)	1.95717	n/a	s(54.85%)p(45.07%)
Lone pair 2 (O7)	1.89595	n/a	s(8.02%)p(91.88%)
Lone pair 3 (O7)	1.58811	n/a	s(0.01%)p(99.80%)
σ(C11-C12)	1.97530	<i>sp</i> ^{1.78} at C11	C11 (50.34%): <i>s</i> (35.95%) <i>p</i> (63.96%)
		<i>sp</i> ^{1.93} at C12	C12 (49.66%): s(34.10%)p(65.70%)
π(C11-C12)	1.66217	n/a	C11 (46.42%): <i>s</i> (0.02%) <i>p</i> (99.91%)
			C12 (53.58%): <i>s</i> (0.05%) <i>p</i> (99.88%)
σ(C11-C10)	1.97265	$sp^{2.07}$ at C11	C11 (49.13%): <i>s</i> (32.56%) <i>p</i> (67.31%)
		<i>sp</i> ^{1.94} at C10	C10 (50.87%): <i>s</i> (33.98%) <i>p</i> (65.88%)
Lone pair 1 (N4)	1.89180	$sp^{2.21}$	s(31.15%)p(68.81%)
σ(N4-C9)	1.98583	$sp^{1.75}$ at N4	N4 (58.70%): <i>s</i> (36.20%) <i>p</i> (63.46%)
		<i>sp</i> ^{1.97} at C9	C9 (41.30%): <i>s</i> (33.60%) <i>p</i> (66.27%)
π(N4-C9)	1.84534	n/a	N4 (61.51%): <i>s</i> (0.00%) <i>p</i> (99.83%)
			C9 (38.49%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(N4-C10)	1.98201	<i>sp</i> ^{2.07} at N4	N4 (58.01%): s(32.51%)p(67.16%)
		$sp^{2.28}$ at C10	C10 (41.99%): $s(30.43\%)p(69.46\%)$

Table S117. NBO analysis^{*a*} of (MeL4)₂Zn with the B3LYP functional.

^a Calculated in gas phase at the optimized S0 geometry using B3LYP (gas phase/ def2-tzvpp def2/j). The B3LYP functional uses 20 % Hartree-Fock exchange.²²

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84533	$sp^{2.56}$	s(28.04%)p(71.91%)
σ(N1-C5)	1.98680	$sp^{1.58}$ at N1	N1 (59.41%): s(38.57%)p(61.06%)
		$sp^{2.01}$ at C5	C5 (40.59%): s(33.14%)p(66.75%)
π(N1-C5)	1.87625	n/a	N1 (70.55%): s(0.16%)p(99.69%)
			C5 (29.45%): s(0.17%)p(99.66%)
σ(N1-C11)	1.98191	<i>sp</i> ^{2.01} at N1	N1 (57.86%): <i>s</i> (33.09%) <i>p</i> (66.59%)
		$sp^{2.18}$ at C11	C11 (42.14%): s(31.41%)p(68.50%)
σ(C2-C5)	1.98370	$sp^{2.86}$ at C2	C2 (51.75%): <i>s</i> (25.88%) <i>p</i> (73.97%)
		$sp^{2.24}$ at C5	C5 (48.25%): s(30.80%)p(69.14%)
σ(C3-C5)	1.97771	$sp^{1.81}$ at C3	C3 (50.04%): s(35.56%)p(64.24%)
		<i>sp</i> ^{1.79} at C5	C5 (49.96%): <i>s</i> (35.87%) <i>p</i> (64.04%)
σ(C3-C6)	1.98480	<i>sp</i> ^{1.95} at C3	C3 (51.38%): <i>s</i> (33.83%) <i>p</i> (65.97%)
		$sp^{1.67}$ at C6	C6 (48.62%): <i>s</i> (37.44%) <i>p</i> (62.47%)
π(C3-C6)	1.64636	n/a	C3 (69.02%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (30.98%): <i>s</i> (0.00%) <i>p</i> (99.89%)
σ(C6-C8)	1.98631	<i>sp</i> ^{2.13} at C6	C6 (47.67%): <i>s</i> (31.92%) <i>p</i> (68.01%)
		$sp^{2.84}$ at C8	C8 (52.33%): <i>s</i> (25.98%) <i>p</i> (73.84%)
σ(C6-O7)	1.99343	<i>sp</i> ^{2.25} at C6	C6 (35.66%): <i>s</i> (30.73%) <i>p</i> (69.16%)
		<i>sp</i> ^{1.69} at O7	O7 (64.34%): s(37.01%)p(62.52%)
Lone pair 1 (O7)	1.95791	n/a	s(55.41%)p(44.52%)
Lone pair 2 (O7)	1.89582	n/a	s(7.56%)p(92.34%)
Lone pair 3 (O7)	1.58800	n/a	s(0.01%)p(99.79%)
σ(C11-C12)	1.97537	<i>sp</i> ^{1.78} at C11	C11 (50.32%): <i>s</i> (35.95%) <i>p</i> (63.96%)
		<i>sp</i> ^{1.93} at C12	C12 (49.68%): s(34.08%)p(65.73%)
π(C11-C12)	1.66402	n/a	C11 (46.41%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (53.59%): s(0.05%)p(99.87%)
σ(C11-C10)	1.97283	$sp^{2.07}$ at C11	C11 (49.11%): <i>s</i> (32.55%) <i>p</i> (67.32%)
		<i>sp</i> ^{1.94} at C10	C10 (50.89%): s(34.00%)p(65.87%)
Lone pair 1 (N4)	1.89263	$sp^{2.19}$	s(31.31%)p(68.65%)
σ(N4-C9)	1.98603	$sp^{1.76}$ at N4	N4 (58.63%): <i>s</i> (36.10%) <i>p</i> (63.55%)
		<i>sp</i> ^{1.97} at C9	C9 (41.37%): <i>s</i> (33.59%) <i>p</i> (66.28%)
π(N4-C9)	1.84623	n/a	N4 (61.66%): <i>s</i> (0.00%) <i>p</i> (99.81%)
			C9 (38.34%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98215	$sp^{2.07}$ at N4	N4 (57.89%): <i>s</i> (32.44%) <i>p</i> (67.21%)
		$sp^{2.28}$ at C10	C10(42.11%): $s(30.43%)p(69.46%)$

Table S118. NBO analysis^a of (MeL4)₂Zn with the PBE0 functional.

^a Calculated in gas phase at the optimized S0 geometry using PBE0 (gas phase/ def2-tzvpp def2/j). The PBE0 functional uses 25 % Hartree-Fock exchange.¹⁴

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.84214	$sp^{2.55}$	s(28.17%)p(71.77%)
σ(N1-C5)	1.98659	$sp^{1.60}$ at N1	N1 (59.67%): s(38.42%)p(61.29%)
		$sp^{2.02}$ at C5	C5 (40.33%): s(33.10%)p(66.81%)
π(N1-C5)	1.87865	n/a	N1 (71.50%): s(0.19%)p(99.65%)
			C5 (28.50%): <i>s</i> (0.20%) <i>p</i> (99.62%)
σ(N1-C11)	1.98161	<i>sp</i> ^{2.01} at N1	N1 (58.20%): s(33.11%)p(66.63%)
		$sp^{2.19}$ at C11	C11 (41.80%): s(31.34%)p(68.58%)
σ(C2-C5)	1.98343	$sp^{2.83}$ at C2	C2 (51.90%): s(26.06%)p(73.80%)
		$sp^{2.25}$ at C5	C5 (48.10%): s(30.79%)p(69.14%)
σ(C3-C5)	1.97743	<i>sp</i> ^{1.80} at C3	C3 (50.07%): s(35.65%)p(64.17%)
		$sp^{1.78}$ at C5	C5 (49.93%): s(35.88%)p(64.04%)
σ(C3-C6)	1.98486	$sp^{1.94}$ at C3	C3 (51.40%): s(33.91%)p(65.90%)
		$sp^{1.67}$ at C6	C6 (48.60%): $s(37.44\%)p(62.47\%)$
π(C3-C6)	1.64763	n/a	C3 (70.18%): s(0.01%)p(99.92%)
			C6 (29.82%): s(0.01%)p(99.88%)
σ(C6-C8)	1.98614	<i>sp</i> ^{2.14} at C6	C6 (47.50%): s(31.86%)p(68.06%)
		$sp^{2.82}$ at C8	C8 (52.50%): s(26.13%)p(73.69%)
σ(C6-O7)	1.99341	<i>sp</i> ^{2.25} at C6	C6 (35.26%): s(30.77%)p(69.14%)
		$sp^{1.70}$ at O7	O7 (64.74%): s(36.84%)p(62.74%)
Lone pair 1 (O7)	1.95880	n/a	s(55.54%)p(44.39%)
Lone pair 2 (O7)	1.89472	n/a	s(7.59%)p(92.29%)
Lone pair 3 (O7)	1.59593	n/a	s(0.01%)p(99.78%)
σ(C11-C12)	1.97500	$sp^{1.78}$ at C11	C11 (50.19%): s(35.95%)p(63.97%)
		$sp^{1.92}$ at C12	C12 (49.81%): s(34.19%)p(65.65%)
π(C11-C12)	1.66459	n/a	C11 (45.90%): s(0.02%)p(99.90%)
			C12 (54.10%): s(0.05%)p(99.87%)
σ(C11-C10)	1.97231	$sp^{2.06}$ at C11	C11 (49.12%): s(32.62%)p(67.26%)
		$sp^{1.93}$ at C10	C10 (50.88%): s(34.03%)p(65.84%)
Lone pair 1 (N4)	1.89088	$sp^{2.20}$	s(31.24%)p(68.70%)
σ(N4-C9)	1.98569	<i>sp</i> ^{1.76} at N4	N4 (58.76%): s(36.08%)p(63.63%)
		<i>sp</i> ^{1.97} at C9	C9 (41.24%): s(33.67%)p(66.24%)
π(N4-C9)	1.85071	n/a	N4 (62.02%): s(0.00%)p(99.80%)
			C9 (37.98%): <i>s</i> (0.00%) <i>p</i> (99.86%)
σ(N4-C10)	1.98160	<i>sp</i> ^{2.06} at N4	N4 (58.25%): s(32.55%)p(67.16%)
		$sp^{2.29}$ at C10	C10 (41.75%): s(30.37%)p(69.55%)

Table S119. NBO analysis^{*a*} of (^{Me}L4)₂Zn with the M06 functional.

^a Calculated in gas phase at the optimized S0 geometry using M06 (gas phase/ def2-tzvpp def2/j). The M06 functional uses 27 % Hartree-Fock exchange.²³

^b The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.86149	$sp^{2.65}$	s(27.39%)p(72.56%)
σ(N1-C5)	1.98670	$sp^{1.56}$ at N1	N1 (59.58%): s(38.96%)p(60.69%)
		$sp^{2.02}$ at C5	C5 (40.42%): s(33.04%)p(66.86%)
π(N1-C5)	1.88341	n/a	N1 (71.03%): s(0.18%)p(99.65%)
			C5 (28.97%): <i>s</i> (0.18%) <i>p</i> (99.64%)
σ(N1-C11)	1.98200	<i>sp</i> ^{1.99} at N1	N1 (57.95%): <i>s</i> (33.36%) <i>p</i> (66.33%)
		$sp^{2.18}$ at C11	C11 (42.05%): s(31.40%)p(68.52%)
σ(C2-C5)	1.98399	$sp^{2.85}$ at C2	C2 (51.62%): <i>s</i> (25.93%) <i>p</i> (73.93%)
		$sp^{2.24}$ at C5	C5 (48.38%): <i>s</i> (30.88%) <i>p</i> (69.07%)
σ(C3-C5)	1.97772	$sp^{1.81}$ at C3	C3 (49.97%): s(35.56%)p(64.26%)
		$sp^{1.78}$ at C5	C5 (50.03%): s(35.91%)p(64.01%)
σ(C3-C6)	1.98437	<i>sp</i> ^{1.95} at C3	C3 (51.34%): <i>s</i> (33.83%) <i>p</i> (65.98%)
		$sp^{1.67}$ at C6	C6 (48.66%): <i>s</i> (37.46%) <i>p</i> (62.46%)
π(C3-C6)	1.65312	n/a	C3 (70.56%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (29.44%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(C6-C8)	1.98667	$sp^{2.13}$ at C6	C6 (47.85%): <i>s</i> (31.96%) <i>p</i> (67.97%)
		<i>sp</i> ^{2.84} at C8	C8 (52.15%): <i>s</i> (25.98%) <i>p</i> (73.85%)
σ(C6-O7)	1.99376	$sp^{2.26}$ at C6	C6 (35.42%): <i>s</i> (30.68%) <i>p</i> (69.23%)
		$sp^{1.63}$ at O7	O7 (64.58%): s(37.81%)p(61.71%)
Lone pair 1 (O7)	1.95797	n/a	s(54.90%)p(45.02%)
Lone pair 2 (O7)	1.90938	n/a	s(7.26%)p(92.63%)
Lone pair 3 (O7)	1.59570	n/a	s(0.01%)p(99.77%)
σ(C11-C12)	1.97576	<i>sp</i> ^{1.78} at C11	C11 (50.36%): <i>s</i> (35.98%) <i>p</i> (63.93%)
		<i>sp</i> ^{1.93} at C12	C12 (49.64%): <i>s</i> (34.09%) <i>p</i> (65.73%)
π(C11-C12)	1.67051	n/a	C11 (46.25%): <i>s</i> (0.02%) <i>p</i> (99.91%)
			C12 (53.75%): <i>s</i> (0.05%) <i>p</i> (99.88%)
σ(C11-C10)	1.97322	$sp^{2.07}$ at C11	C11 (49.05%): <i>s</i> (32.53%) <i>p</i> (67.35%)
		<i>sp</i> ^{1.94} at C10	C10 (50.95%): s(34.01%)p(65.86%)
Lone pair 1 (N4)	1.90351	$sp^{2.26}$	s(30.66%)p(69.29%)
σ(N4-C9)	1.98602	$sp^{1.74}$ at N4	N4 (58.80%): <i>s</i> (36.42%) <i>p</i> (63.24%)
		<i>sp</i> ^{1.97} at C9	C9 (41.20%): <i>s</i> (33.58%) <i>p</i> (66.31%)
π(N4-C9)	1.85335	n/a	N4 (61.49%): s(0.00%)p(99.78%)
			C9 (38.51%): <i>s</i> (0.00%) <i>p</i> (99.87%)
σ(N4-C10)	1.98213	<i>sp</i> ^{2.04} at N4	N4 (58.10%): s(32.79%)p(66.88%)
		$sp^{2.29}$ at C10	C10 (41.90%): $s(30.40\%)p(69.51\%)$

Table S120 NBO analysis^{*a*} of (^{Me}L4)₂Zn with the M06-2X functional.

^a Calculated in gas phase at the optimized S0 geometry using M06-2X (gas phase/ def2-tzvpp def2/j). The M06-2X functional uses 54 % Hartree-Fock exchange.²³

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.

NBO ^b	Occupancy ^c	Hybridization ^d	Atomic Orbital Contributions (%) ^e
Lone pair 1 (N1)	1.85171	$sp^{2.67}$	s(27.22%)p(72.73%)
σ(N1-C5)	1.98672	$sp^{1.56}$ at N1	N1 (59.45%): s(38.99%)p(60.64%)
		$sp^{2.02}$ at C5	C5 (40.55%): s(33.07%)p(66.81%)
π(N1-C5)	1.88489	n/a	N1 (71.46%): s(0.18%)p(99.67%)
			C5 (28.54%): <i>s</i> (0.16%) <i>p</i> (99.67%)
σ(N1-C11)	1.98223	<i>sp</i> ^{1.98} at N1	N1 (57.92%): <i>s</i> (33.49%) <i>p</i> (66.18%)
		$sp^{2.18}$ at C11	C11 (42.08%): s(31.38%)p(68.52%)
σ(C2-C5)	1.98401	$sp^{2.83}$ at C2	C2 (51.73%): s(26.08%)p(73.75%)
		$sp^{2.24}$ at C5	C5 (48.27%): <i>s</i> (30.87%) <i>p</i> (69.06%)
σ(C3-C5)	1.97768	<i>sp</i> ^{1.80} at C3	C3 (49.99%): <i>s</i> (35.59%) <i>p</i> (64.20%)
		<i>sp</i> ^{1.79} at C5	C5 (50.01%): <i>s</i> (35.87%) <i>p</i> (64.04%)
σ(C3-C6)	1.98439	<i>sp</i> ^{1.95} at C3	C3 (51.27%): <i>s</i> (33.85%) <i>p</i> (65.94%)
		$sp^{1.67}$ at C6	C6 (48.73%): <i>s</i> (37.47%) <i>p</i> (62.43%)
π(C3-C6)	1.65697	n/a	C3 (70.49%): <i>s</i> (0.01%) <i>p</i> (99.92%)
			C6 (29.51%): <i>s</i> (0.00%) <i>p</i> (99.88%)
σ(C6-C8)	1.98662	<i>sp</i> ^{2.13} at C6	C6 (47.78%): <i>s</i> (31.96%) <i>p</i> (67.96%)
		$sp^{2.82}$ at C8	C8 (52.22%): <i>s</i> (26.14%) <i>p</i> (73.66%)
σ(C6-O7)	1.99344	<i>sp</i> ^{2.26} at C6	C6 (35.48%): <i>s</i> (30.65%) <i>p</i> (69.23%)
		$sp^{1.64}$ at O7	O7 (64.52%): s(37.76%)p(61.78%)
Lone pair 1 (O7)	1.95705	n/a	s(53.19%)p(46.73%)
Lone pair 2 (O7)	1.90253	n/a	s(9.03%)p(90.87%)
Lone pair 3 (O7)	1.59635	n/a	s(0.01%)p(99.79%)
σ(C11-C12)	1.97548	<i>sp</i> ^{1.78} at C11	C11 (50.30%): <i>s</i> (35.97%) <i>p</i> (63.93%)
		<i>sp</i> ^{1.92} at C12	C12 (49.70%): s(34.14%)p(65.66%)
π(C11-C12)	1.67159	n/a	C11 (45.94%): <i>s</i> (0.02%) <i>p</i> (99.90%)
			C12 (54.06%): <i>s</i> (0.04%) <i>p</i> (99.87%)
σ(C11-C10)	1.97326	$sp^{2.07}$ at C11	C11 (49.06%): <i>s</i> (32.54%) <i>p</i> (67.32%)
		<i>sp</i> ^{1.94} at C10	C10 (50.94%): s(34.02%)p(65.84%)
Lone pair 1 (N4)	1.89760	$sp^{2.28}$	s(30.45%)p(69.51%)
σ(N4-C9)	1.98576	$sp^{1.73}$ at N4	N4 (58.66%): <i>s</i> (36.48%) <i>p</i> (63.17%)
		<i>sp</i> ^{1.97} at C9	C9 (41.34%): <i>s</i> (33.61%) <i>p</i> (66.25%)
π(N4-C9)	1.85466	n/a	N4 (61.69%): s(0.00%)p(99.81%)
			C9 (38.31%): s(0.00%)p(99.87%)
σ(N4-C10)	1.98231	<i>sp</i> ^{2.03} at N4	N4 (58.03%): s(32.92%)p(66.73%)
		$sp^{2.29}$ at C10	C10(41.97%); $s(30.37%)p(69.52%)$

Table S121. NBO analysis^{*a*} of (^{Me}L4)₂Zn with the CAM-B3LYP functional.

^{*a*} Calculated in gas phase at the optimized S0 geometry using CAM-B3LYP (gas phase/ def2-tzvpp def2/j). The CAM-B3LYP functional is a range-separated functional, and uses 19 % Hartree-Fock exchange at short range, 33 % Hartree-Fock exchange at intermediate range, and 65 % Hartree-Fock exchange at long range.¹⁵

^{*b*} The general formulation of a sigma natural bond orbital (NBO) is $\sigma_{AB} = c_A h_A + c_B h_B$, where h_A and h_B are the atom-centered hybrid orbitals of atoms A and B, and c_A and c_B are the normalized polarization coefficients of atoms A and B. If the natural ionicity of an NBO, given by $i_{AB} = \frac{(cA^2 - cB^2)}{(cA^2 + CB^2)}$, exceeds a fixed limit ($|i_{AB}| > 0.95$), this extremely polarized "bond" is identified instead as a lone pair.²⁰

^c Orbital occupancy ($0 \le x \le 2$) is the number of electrons in the specified NBO. Lower orbital occupancy values are indicative of stronger delocalization.²⁰

^{*d*} Hybridization of a given NBO is of the form sp^{λ}, where $\lambda = (\frac{\% p}{\% s})^{20}$ Hybridizations with a very high value of λ (for example, sp^{∞}) have been denoted as non-applicable.
NMR spectra

Figure S28. ¹H NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

ALK-02-169-C4F.12.fid CF3guan proligand clean F19 CDCl3 {D:\nmrdata\user\Herbert} Herbert 11

59.6 -59.8 -60.0 -60.2 -60.4 -60.6 -60.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -62.8 -63.0 -63.2 -63.4 -63.6 -63.8 -64.0 -64.2 fl (ppm)

Figure S29. ${}^{19}F{}^{1}H$ NMR (377 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (CF³L1).

Figure S30. ¹³C NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S31. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S32. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S33. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S34. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S35. ¹H NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S36. ¹³C NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S37. $^{1}H^{-13}C$ HSQC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine ($^{tBu}L1$).

Figure S38. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S39. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S40. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S41. ¹H NMR (500 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S42. ${}^{19}F{}^{1}H$ NMR (471 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (CF³L2).

Figure S43. ¹³C NMR (126 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S44. ¹H-¹³C HSQC NMR (126 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S45. ¹H-¹³C HMBC NMR (126 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S46. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S47. ¹H-¹H NOESY NMR (500 MHz, CDCl₃, 22 °C) of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Figure S48. ¹H NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S49. ${}^{19}F{}^{1}H$ NMR (377 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((${}^{CF3}L1$)ZnCl₂).

Figure S50. ¹³C NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S51. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S52. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S53. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S54. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride ((^{CF3}L1)ZnCl₂).

Figure S55. ¹H NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride ((*t*^{Bu}L1)ZnCl₂).

ALK-02-171-B4C.12.fid Zn(tBuguan)Cl2 C13CPD CDCl3 {D:\nmrdata\user\Herbert} Herbert 18

Figure S56. ¹³C NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride ((^{*t*Bu}L1)ZnCl₂).

Figure S57. $^{1}H^{-13}C$ HSQC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (($^{tBu}L1$)ZnCl₂).

Figure S58. $^{1}H^{-13}C$ HMBC NMR (101 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (($^{tBu}L1$)ZnCl₂).

Figure S59. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride ((^{*t*Bu}L1)ZnCl₂).

Figure S60. $^{1}H^{-1}H$ NOESY NMR (400 MHz, CDCl₃, 22 °C) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (($^{tBu}L1$)ZnCl₂).

Figure S61. ¹H NMR (400 MHz, C_6D_6 , 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc (($^{CF3}L2$)₂Zn).

Figure S62. ${}^{19}F{}^{1}H{}$ NMR (377 MHz, C₆D₆, 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((${}^{CF3}L2)_2Zn$).

Figure S63. ¹³C NMR (101 MHz, C_6D_6 , 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((^{CF3}L2)₂Zn).

Figure S64. ¹H-¹³C HSQC NMR (101 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((^{CF3}L2)₂Zn).

Figure S65. ¹H-¹³C HMBC NMR (101 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((^{CF3}L2)₂Zn).

Figure S66. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((^{CF3}L2)₂Zn).

Figure S67. ¹H-¹H NOESY NMR (400 MHz, CDCl₃, 22 °C) of bis-(4-aminopyrimidino)(2-trifluoromethyl)phenanthridine zinc ((^{CF3}L2)₂Zn).

Figure S68. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride (zoom of tetramethyl region) ((^{CF3}L2)₂Zn).

Figure S69. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine zinc chloride (full spectra) ((^{CF3}L2)₂Zn).

1.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 fl (ppm)

Figure S70. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (zoom of tetramethyl region) ((*t*^{Bu}L1)ZnCl₂).

Figure S71. Variable-temperature ¹H NMR (500 MHz, CDCl₃) of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine zinc chloride (full spectra) ((*t*^{Bu}L1)ZnCl₂).

Figure S72. APCI high-resolution mass spectrum of (4-tetramethylguanidino)(2-trifluoromethyl)phenanthridine (^{CF3}L1).

Figure S73. APCI high-resolution mass spectrum of (2-tert-butyl)(4-tetramethylguanidino)phenanthridine (^{*t*Bu}L1).

Figure S74. APCI high-resolution mass spectrum of (4-aminopyrimidino)(2-trifluoromethyl)phenanthridine (^{CF3}L2).

Coordinates of optimized geometries

(CF3L1)ZnCl2 (S0,eq) M06-L (gas phase/ def2-tzvpp def2/j)

Zn	8.85735	10.12510	6.22951
Cl	8.44462	9.08804	4.33155
Cl	10.81542	10.20198	7.32627
Ν	7.73977	11.93012	6.14475
Ν	7.64754	9.98392	7.97050
Ν	8.52473	7.97841	8.69628
Ν	8.51987	9.78284	10.16841
С	6.85201	11.08474	8.19320
С	5.99416	11.25357	9.27797
Н	5.93885	10.48605	10.05293
С	6.04258	13.25558	7.29158
С	5.21394	13.39427	8.42291
Н	4.58044	14.27153	8.54688
С	6.87476	12.11167	7.19339
С	6.09946	14.22517	6.22013
С	5.20569	12.40687	9.39297
С	8.20005	9.27025	8.94436
С	5.32173	15.40045	6.18551
Н	4.63255	15.62300	7.00147
С	7.96623	7.29962	7.54331
Н	6.97239	7.69379	7.30912
Н	8.59709	7.42622	6.64569
Н	7.88610	6.22565	7.76103
С	6.98425	13.97322	5.13344
F	3.64445	13.66901	10.64408
С	5.41714	16.27987	5.12212
Н	4.80442	17.18409	5.11544
С	7.78108	12.79322	5.16660

Н	8.46629	12.57333	4.33936
С	8.46313	8.99545	11.37756
Н	7.84992	9.51789	12.13060
Н	7.99832	8.02367	11.17812
Н	9.45864	8.82314	11.81962
С	8.92267	11.16369	10.32000
Н	9.21966	11.57141	9.34619
Н	8.13082	11.79041	10.76765
Н	9.80645	11.20698	10.97385
F	3.52158	11.51435	10.77483
С	9.74972	7.39949	9.21681
Н	10.34098	8.15924	9.73680
Н	9.55578	6.55120	9.89239
Н	10.36200	7.04456	8.37525
С	4.36945	12.54492	10.63090
С	6.29068	16.02426	4.04970
Н	6.35314	16.72759	3.21708
С	7.06560	14.88242	4.05667
Н	7.75049	14.66547	3.23319
F	5.14606	12.55629	11.73277

(CF3L1)ZnCl2 (S0,eq) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

7	0.07107	10 20 (02	(22052
Zn	8.8/19/	10.20603	6.22852
CI	8.35/55	9.04304	4.36848
CI	11.03535	10.29404	6.88882
N	7.79920	12.01915	6.13694
C	7.84597	12.90009	5.17342
H	8.55934	12.72243	4.36111
C	7.01073	14.05991	5.13406
С	7.10651	14.98849	4.06796
Н	7.83344	14.80729	3.27175
С	6.28839	16.10340	4.04421
Н	6.35812	16.82284	3.22458
С	5.35780	16.31036	5.08633
Н	4.71161	17.19198	5.06468
С	5.24947	15.41195	6.13759
Н	4.51958	15.60131	6.92577
С	6.07362	14.26247	6.19000
С	6.02152	13.27243	7.25602
С	6.90817	12.16436	7.17993
С	6.91526	11.13847	8.18990
С	6.01460	11.26419	9.24981
Н	5.97379	10.49654	10.02328
С	5.15085	12.37306	9.32752
С	5.14019	13.36406	8.35803
Н	4.45413	14.20420	8.45128
С	4.25132	12.47448	10.53305
F	3.33965	13.45548	10.42367
F	3.57626	11.32847	10.75629
F	4.95992	12.72141	11.65803
Ν	7.77321	10.06515	7.99520
С	8.25827	9.30296	8.98681
Ν	8.50335	7,99483	8.73187
C	7.79586	7.28736	7.66982
H	6.83015	7.76661	7.46901
Н	8.37427	7.27215	6.73025
Н	7.62053	6.24812	7.99149
C	9.66054	7.29416	9.28085
Ĥ	10 32354	7 99392	9.80219
H	9.36594	6.48702	9.97214
-			

10.22914	6.84762	8.44835
8.58672	9.79944	10.21184
8.45717	9.02594	11.44183
7.88900	9.61951	12.17853
7.90766	8.09510	11.25592
9.43788	8.78186	11.88428
9.03996	11.17458	10.37732
9.40324	11.56803	9.41954
8.24633	11.83347	10.77102
9.87960	11.18396	11.09145
	10.22914 8.58672 8.45717 7.88900 7.90766 9.43788 9.03996 9.40324 8.24633 9.87960	10.229146.847628.586729.799448.457179.025947.889009.619517.907668.095109.437888.781869.0399611.174589.4032411.568038.2463311.833479.8796011.18396

$({}^{CF3}L1)ZnCl_2~(S_{1,eq})~B3LYP~(SMD~``dichloromethane''/~def2-tzvpp~def2/j)$

Zn	9.17824	10.46120	6.26268
Cl	9.04752	8.98536	4.56683
Cl	11.20504	10.72920	7.24829
Ν	7.92757	12.05570	6.12758
Ν	7.95844	10.18006	8.02427
Ν	8.38619	8.01187	8.72542
Ν	8.76615	9.78758	10.21467
С	7.05749	11.17467	8.19323
С	6.14432	11.25084	9.27359
Н	6.15760	10.47917	10.04457
C	6.07502	13.21992	7.21596
Ċ	5.18539	13.26093	8.32742
H	4.45360	14.06483	8.39811
C	7.01941	12.17950	7.13849
Č	6.04360	14.23120	6.15177
Č	5.21818	12.29740	9.33731
Č	8 35315	9 31878	9 02115
C	5 16270	15 31850	6 11728
н	4 43735	15.51050	6 92075
C	7 54788	7 47317	7 64896
н	6 63441	8 07040	7 54307
Н	8 09073	7 47496	6 68957
н	7 26803	6 44245	7 91197
C	6 99960	14 05647	5 07870
F	3 35534	13 32813	10 37678
C	5 18540	16 24202	5 05900
н	4 48766	17.08244	5 05224
C	7 89080	12 97518	5 11578
н	8 61097	12.97510	4 30605
C	8 69103	8 99726	11 44464
н	8 27864	9 64456	12 23440
н	8 02000	8 14148	11 30885
н	9.68266	8 64273	11.26002
C	9 28853	11 14834	10 37465
н	9.62579	11 53953	9 40775
Н	8 53358	11.81542	10.82160
Н	10 15770	11.0147	11 04814
F	3 64672	11.20834	10 72913
C	9 39791	7 09947	9 26310
н	10 22413	7.66804	9 70506
Н	8 97795	6 40816	10 01023
н	9 79544	6 50914	8 42328
C	4 29053	12 37503	10 51835
C	6 11204	16.07418	4 00835
н	6 12967	16 79303	3 18344
C	7 00031	15 01132	4 00774
н	7.00031	14 88554	3 10251
F	1 06164	17.00554	11 66090
1.	4.20104	12.04520	11.00000

(*BuL1)ZnCl₂ (S_{0,eq}) M06-L (gas phase/ def2-tzvpp def2/j)

Zn	8.77870	10.05365	6.18620
Cl	8.27089	8.97853	4.33184
Cl	10.79380	10.08421	7.18694
Ν	7.73826	11.89825	6.12699
Ν	7.62904	9.95715	7.96691
Ν	8.53203	7.97606	8.73006
N	8.59605	9.84137	10.12744
C	6.84763	11.07611	8.18608
Č	5.99032	11.25436	9.26800
H	5.94615	10.46708	10.02536
C	6.06859	13.24577	7.29474
Č	5.23515	13.38083	8.42384
H	4.61517	14.27141	8.51580
C	6.88523	12.09352	7.18333
Č	6.14404	14.22394	6.23142
Č	5 18637	12 40278	9 41083
Č	8 22030	9 27985	8 93903
Č	5 39264	15 41749	6 20749
н	4 71040	15 64766	7 02720
C	7 93214	7 26516	7.61825
н	6 92301	7 64123	7 42198
Н	8 51771	7 38167	6 68871
Н	7 87873	6 19498	7 86170
C	7.02211	13 96563	5 13989
c	3 50290	13 82770	10 66111
C	5 50557	16 30644	5 1 5 3 9 7
н	4 91296	17 22/18	5 1 5 8 2 3
C II	7 70280	12 76783	5 1 5 5 2 9
с ц	8 16583	12.70703	4 32017
n C	8 58077	0 10801	4.52017
н	8.00268	9.65684	12 12655
н Н	8 12580	8 12612	11 22040
н	9.60257	8 95992	11.22949
C	9.02237	11 22210	10 18822
н	9 30418	11.22210	9 18484
н	8 24815	11 80135	10 60591
H	9.91856	11.07135	10.82107
C	3 30136	11.25174	10.62107
C	9 78274	7 41723	9 20912
н	10 37955	8 18515	9 70992
Н	9 62185	6 56707	9 89130
Н	10 37475	7 07248	8 34858
C	4 29293	12 52233	10 64650
c	6 37194	16 04343	4 07752
н	6 44922	16 75369	3 25192
C	7 12109	14 88459	4 07270
н	7 80026	14 66102	3 24605
C	5 16890	12 47239	11 90439
н	2 82958	13 91293	9 79573
Н	4 16028	14 70953	10 66716
Н	2 87818	13 88179	11 56407
H	5 90266	13 29243	11 91493
н	5 72703	11 52791	11 98455
Н	4 55239	12 56411	12 81120
Н	2 65884	11 35686	9 77658
Н	2.63004	11 41664	11 55226
Н	3 80785	10 37861	10 70587
**	2.00/02	10.07001	10.10201

(*BuL1)ZnCl2 (S0,eq) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

Zn	8.84287	10.16366	6.19944
Cl	8.27707	8.97220	4.37081
Cl	11.03286	10.22975	6.78513
Ν	7.81070	11.99389	6.11472
Ν	7.79254	10.05557	7.99645
Ν	8.52158	7.98464	8.73166
Ν	8.72762	9.81594	10.16739
С	6.96390	11.15760	8.20621
Č	6.09008	11.31198	9.28395
Н	6.07572	10.53978	10.05382
C	6.08666	13.28481	7.27958
Č	5.22986	13.39128	8.40067
H	4.56632	14.24967	8.47030
C	6.95481	12.16535	7.18333
Č	6.12766	14.26595	6.20364
Č	5 21665	12 42115	9 40103
Č	8.31654	9.30516	8.97247
Č	5.32411	15.43185	6.16408
H	4 62301	15 64238	6 97269
C	7.74035	7.27485	7.72478
H	6.76717	7.76090	7.58467
Н	8.25340	7.24756	6.74795
Н	7.57811	6.23950	8.06577
C	7.02824	14.03895	5.12018
С	3.40355	13.77466	10.59994
С	5.41500	16.31972	5.10254
Н	4.78441	17.21292	5.09357
С	7.84404	12.86426	5.14128
Н	8.52698	12.66639	4.30782
С	8.66787	9.06500	11.41554
Н	8.16334	9.67891	12.18114
Н	8.09040	8.14199	11.28221
Н	9.67168	8.80745	11.79473
С	9.22226	11.18222	10.27186
Н	9.54818	11.53828	9.28642
Н	8.46663	11.87476	10.68167
Η	10.09597	11.18927	10.94393
С	3.33662	11.27553	10.62824
С	9.70555	7.27735	9.20973
Η	10.40320	7.97239	9.69017
Н	9.44817	6.47245	9.91857
Н	10.22223	6.82624	8.34600
С	4.27440	12.50556	10.62083
С	6.30846	16.08695	4.03354
Н	6.36552	16.79752	3.20513
С	7.10639	14.95741	4.04337
Н	7.80462	14.75608	3.22638
С	5.11107	12.51657	11.92133
Н	2.75191	13.81584	9.71263
Н	4.01087	14.69373	10.62147
Н	2.75120	13.78968	11.48776
Н	5.80096	13.37642	11.94552
Н	5.70861	11.59913	12.03693
Н	4.44827	12.59118	12.79966
Н	2.71931	11.23972	9.71539
Н	2.65548	11.32043	11.49455
Н	3.89594	10.32921	10.69502

(^{*t*Bu}L1)ZnCl₂ (S_{1,eq}) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

Zn	8.99271	10.30373	6.14446
Cl	8.48543	8.84925	4.49477
Cl	11.12763	10.32505	6.91560
Ν	7.91328	12.01924	6.09102
Ν	7.91639	10.15905	8.01034
Ν	8.36731	8.02512	8.80839
Ν	8.88215	9.88178	10.14734
С	7.05327	11.18625	8.18725
Č	6.16148	11.29717	9.28724
H	6.19045	10.51669	10.04884
C	6.13177	13.24919	7.23572
Č	5.24888	13.30387	8.36228
H	4 54766	14 13376	8 41243
C	7 02866	12 17974	7 12808
Č	6 12919	14 27973	6 19076
Č	5 23934	12 34756	9 38942
C	8 36779	9 34943	9 01973
Č	5 30852	15 41422	6 19442
н	4 61330	15 58378	7 01917
C	7 45495	7 43132	7 82696
н	6 54097	8 03183	7.74610
Н	7 92804	7 37054	6 83304
н	7 18706	6 42088	8 16920
C II	7.13700	14 07476	5.09325
C	3 33478	13 62865	10 50901
C	5 3 5 5 6 4	16 35541	5 15120
U U	1.5550 4	17 22214	5.15120
II C	4.70434	17.23214	5.00284
U U	2 5 2 2 0	12.95150	J.09284 4 26201
II C	0.30200 9 9775	0 17702	4.20201
U U	8.52220	9.17703	12 20175
п u	0.33229	9.88209	12.20173
11 11	0.10317	0.52909	11.39032
II C	9.00197	0.02023	10.17054
с u	9.44017	11.23419	0.15025
11 11	9.74714	11.55250	9.13923
п	0./32/4	11.90205	10.30009
n C	2 20241	11.21/42	10.60064
C	5.59241	11.12040	10.38438
	9.41/11	7.14227	9.52146
п	10.27020	/./3304	9.03830
п	9.03840	6.30380	10.14393
п	9.74745	0.49008	0.49302
C	4.20493	12.40429	10.38092
C II	6.24863	16.15590	4.07600
П	0.28394	10.88/0/	3.20231
C II	7.07951	15.04924	4.03/09
П	/.//185	14.90158	3.20333
C II	5.0/182	12.4/951	11.89864
П	2./1008	13.01033	9.00108
п	3.89920 2.65045	14.3/400	10.32334
п	2.03943	13.02/21	11.3/89/
п	J.07/02 5.72029	13.38030	11.92008
п	J./JU28 4 29557	11.00381	12.02014
п	4.3833/	12.31008	12./0089
п	2.803/9	11.04842	9.033/4 11 42265
п	2.08980 4.00272	11.14988	11.43303
11	7.002/2	10.21432	10.0/910

$({}^{CF3}L2)_2Zn~(S_{0,eq})$ M06-L (gas phase/ def2-tzvpp def2/j)

Zn	10.04516	7.34683	2.39085
Ν	9.51023	7.69062	4.26095
Ν	11.33713	5.98224	3.46464
F	9.08485	6.07313	9.26318
Ν	7.99012	9.03812	5.49407
F	11.16086	5.75514	9.75878
Ν	8.19417	9.08905	3.10638
С	8.54040	8.62557	4.33964
С	10.13043	7.00509	5.25816
F	10.43007	7.75067	9.38447
С	11.13582	6.07571	4.81661
С	11.87997	5.30229	5.73264
С	11.61605	5.44152	7.10233
Н	12.16387	4.86656	7.83282
С	6.63244	10.51177	4.19343
Н	5.86758	11.27169	4.14083
С	12.24052	5.17502	2.98972
Н	12.35888	5.14779	1.90862
С	9.90677	7.10327	6.62857
Н	9.15765	7.79010	6.99103
С	10.64640	6.32586	7.51882
С	7.05148	9.97129	5.39558
Н	6.61279	10.30160	6.33407
С	13.05763	4.35211	3.80220
С	12.87904	4.40825	5.20604
С	7.25672	10.01510	3.05608
Н	6.99101	10.37771	2.06657
С	14.63055	2.75908	5.43704
Н	15.24632	2.13655	6.07347
С	14.02243	3.49810	3.24198
Н	14.13781	3.47645	2.16491
С	10.33828	6.47321	8.97971
С	14.80173	2.70936	4.04821
Н	15.54521	2.05185	3.61786
С	13.69227	3.58799	6.00425
Η	13.58381	3.60564	7.07975
Ν	10.60978	7.67442	0.52629
Ν	8.66857	6.08689	1.30397
F	10.63280	7.39471	-4.51712
Ν	12.21550	8.93528	-0.69053
F	9.97064	5.35523	-4.75770
Ν	12.01985	8.96259	1.69820
С	11.64081	8.54284	0.45893
С	9.94264	7.04506	-0.47706
F	8.54931	6.96854	-4.88303
С	8.87950	6.18047	-0.04686
С	8.08704	5.46589	-0.97286
С	8.36078	5.60627	-2.33661
Н	7.77840	5.07606	-3.07663
С	13.67009	10.29570	0.62843
Н	14.48333	11.00288	0.69017
С	7.71380	5.33623	1.77000
Н	7.59088	5.30810	2.85061
С	10.17385	7.14919	-1.84938
Н	10.96488	7.79061	-2.20151
С	9.38729	6.43456	-2.74541
С	13.21433	9.80250	-0.58049
Н	13.67261	10.11695	-1.51506

С	6.84777	4.57348	0.94790
С	7.03255	4.63018	-0.45468
С	13.01661	9.82371	1.75989
Н	13.30776	10.15244	2.75409
С	5.18381	3.09386	-0.70362
Н	4.53343	2.51492	-1.34666
С	5.83074	3.77651	1.49872
Н	5.71147	3.75285	2.57532
С	9.64379	6.54738	-4.22020
С	5.00651	3.04340	0.68401
Н	4.22295	2.42920	1.10717
С	6.17302	3.86876	-1.26159
Н	6.28598	3.88889	-2.33665

$({}^{CF3}L2)_2Zn~(S_{0,eq})~B3LYP~(SMD~``dichloromethane''/~def2-tzvpp~def2/j)$

Zn	10.03615	7.15726	2.38825
Ν	9.52103	7.69030	4.23990
Ν	11.31461	5.86941	3.49471
F	9.19211	6.49485	9.36549
Ν	8.08959	9.15160	5.46932
F	11.23919	5.97220	9.83701
Ν	8.15180	9.07805	3.07889
С	8.56976	8.65814	4.30809
С	10.16686	7.04146	5.26254
F	10.72186	8.02013	9.36327
С	11.14388	6.05068	4.85123
С	11.88921	5.30096	5.79922
С	11.66719	5.52977	7.17752
Н	12.22150	4.97096	7.92905
С	6.67296	10.59832	4.18283
Н	5.91191	11.37860	4.13587
С	12.17585	4.99876	3.03783
Н	12.26790	4.90164	1.95025
С	9.98675	7.22949	6.64061
Н	9.26075	7.96606	6.97695
С	10.73262	6.47650	7.56721
С	7.15818	10.10509	5.39280
Н	6.77975	10.49543	6.34597
С	12.98740	4.18470	3.88718
С	12.85002	4.32870	5.29932
С	7.22611	10.02601	3.02905
Н	6.90381	10.35087	2.03186
С	14.55260	2.61119	5.58296
Н	15.16655	1.99393	6.24439
С	13.90811	3.25374	3.34371
Н	13.99241	3.16505	2.25714
С	10.47818	6.73456	9.03070
С	14.68323	2.47444	4.18273
Н	15.39457	1.75524	3.76910
С	13.65758	3.51662	6.13247
Н	13.58171	3.59762	7.21775
Ν	10.57467	7.68071	0.54132
Ν	8.69113	5.94683	1.27196
F	10.82474	6.58997	-4.59573
Ν	12.09894	9.05550	-0.67605
F	8.76906	6.10345	-5.06917
Ν	12.01612	8.98273	1.71382
С	11.58155	8.59102	0.48107

С	9.89204	7.07932	-0.48635
F	9.31831	8.13819	-4.57552
С	8.86497	6.13714	-0.08297
С	8.07596	5.44164	-1.03695
С	8.30338	5.67722	-2.41322
Н	7.71556	5.16027	-3.16929
С	13.59560	10.40779	0.62257
Η	14.40397	11.13848	0.67600
С	7.78661	5.11732	1.72170
Η	7.69443	5.01045	2.80837
С	10.07678	7.27519	-1.86272
Н	10.84139	7.97454	-2.19296
С	9.28668	6.57657	-2.79527
С	13.08804	9.94829	-0.59151
Н	13.49659	10.31560	-1.54139
С	6.92870	4.35947	0.86588
С	7.06686	4.51533	-0.54495
С	12.99929	9.87041	1.77161
Н	13.33421	10.17344	2.77152
С	5.27337	2.89550	-0.84235
Η	4.62413	2.32116	-1.50872
С	5.96197	3.47184	1.40178
Н	5.87826	3.37279	2.48751
С	9.54317	6.84549	-4.25642
С	5.14201	2.74697	0.55660
Н	4.39486	2.06154	0.96441
С	6.21335	3.75884	-1.38453
Н	6.28907	3.84952	-2.46901

$(^{CF3}L2)_2Zn (S_{1,eq}) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)$

Zn	9.95754	6.97332	2.40522
Ν	9.56458	7.67490	4.22933
Ν	11.28406	5.76251	3.53376
F	9.28502	6.64567	9.39582
Ν	8.26831	9.28729	5.41772
F	11.34148	6.15739	9.86396
Ν	8.22600	9.06668	3.03334
С	8.67009	8.69742	4.27046
С	10.21497	7.05697	5.26745
F	10.80156	8.18390	9.32320
С	11.15483	6.01996	4.88338
С	11.90386	5.29856	5.85011
С	11.71172	5.59130	7.22086
Н	12.26329	5.04895	7.98638
С	6.87808	10.73202	4.09799
Н	6.15822	11.54910	4.03195
С	12.11086	4.84556	3.10273
Η	12.16522	4.68175	2.02065
С	10.06636	7.31064	6.63874
Н	9.36780	8.08138	6.95534
С	10.80572	6.57554	7.58456
С	7.38760	10.28629	5.31680
Η	7.07265	10.75499	6.25777
С	12.93113	4.06312	3.97317
С	12.83465	4.28454	5.37833
С	7.35067	10.06082	2.96165
Н	7.00457	10.34289	1.95931
С	14.51769	2.55600	5.70972

Η	15.14072	1.96560	6.38698
С	13.82084	3.08771	3.45616
Η	13.87254	2.93960	2.37403
С	10.56605	6.88503	9.04011
С	14.60687	2.34122	4.31531
Η	15.29487	1.58843	3.92259
С	13.65180	3.50486	6.23299
Η	13.60783	3.64729	7.31364
Ν	10.53532	7.63888	0.54311
Ν	8.72215	5.85323	1.26039
F	10.04963	8.18205	-4.49700
Ν	12.01503	9.10457	-0.61981
F	9.98971	6.06060	-4.92167
Ν	12.01516	8.84919	1.76259
С	11.54672	8.55939	0.52076
С	9.82789	7.09800	-0.48975
F	8.15778	7.20346	-4.90713
С	8.83336	6.11272	-0.07852
С	8.03875	5.47389	-1.05390
С	8.22165	5.82013	-2.41695
Н	7.60627	5.34070	-3.17934
С	13.55114	10.35413	0.72575
Н	14.36128	11.08052	0.80476
С	7.80259	4.93306	1.67179
Н	7.74158	4.75865	2.74946
С	9.97396	7.40374	-1.86056
Н	10.71568	8.14191	-2.15326
С	9.16915	6.76663	-2.81331
С	13.00402	9.99007	-0.50880
Н	13.37969	10.43005	-1.43977
С	6.96310	4.22626	0.79775
С	7.04980	4.47352	-0.62367
С	13.00072	9.73301	1.85614
Н	13.37181	9.96097	2.86187
С	5.28954	2.82161	-1.01321
Н	4.64639	2.28180	-1.71199
С	6.01285	3.25937	1.26525
Н	5.94235	3.06944	2.33995
С	9.34276	7.05940	-4.27702
С	5.20017	2.57843	0.37340
Н	4.48129	1.84398	0.74926
С	6.21235	3.76534	-1.49371
Н	6.26784	3.94104	-2.57009

(CF3L2)2Zn (T1,eq) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

7	0.022/2	(047(4	0 40000
Zn	9.93363	6.94/64	2.43083
Ν	9.52135	7.60813	4.26512
Ν	11.25054	5.71580	3.54501
F	9.38297	6.65429	9.45112
Ν	8.19723	9.19030	5.46419
F	11.44961	6.16524	9.87039
Ν	8.14587	8.97040	3.08237
С	8.60585	8.61050	4.31563
С	10.20134	7.00609	5.29324
F	10.90119	8.18532	9.31846
С	11.14461	5.97763	4.89569
С	11.92135	5.27040	5.85105
С	11.75987	5.57554	7.22308
Н	12.33566	5.04722	7.98053
С	6.76722	10.60298	4.15468

Н	6.02874	11.40369	4.09347
С	12.07543	4.80334	3.10177
Н	12.11279	4.63800	2.01929
С	10.08263	7.27155	6.66518
Н	9.38224	8.03736	6.99063
С	10.85450	6.55548	7.59955
Č	7.29369	10.16865	5.37008
н	6 97340	10.62972	6 31293
C	12 91619	4 02917	3 95968
C	12.91019	4 25905	5 36546
C	7 24806	9.04375	3.01510
U U	6 88000	10 21 9/1	2.01505
n C	0.00990	2 54200	2.01303
U U	14.34773	2.34200	5.07071
П	13.10043	1.93937	0.33613
C	13./9988	3.05514	3.43023
Н	13.83008	2.89982	2.34830
C	10.65424	6.88416	9.05/43
C	14.60772	2.31848	4.27682
Н	15.29096	1.56668	3.87395
С	13.68875	3.48952	6.20657
Н	13.66815	3.63809	7.28707
Ν	10.53651	7.62241	0.58905
Ν	8.68217	5.83925	1.24976
F	10.35213	8.02217	-4.46990
Ν	12.06316	9.07908	-0.52933
F	9.75836	5.99534	-4.95679
Ν	11.99254	8.82664	1.84634
С	11.55850	8.53928	0.59479
С	9.85091	7.09386	-0.44836
F	8.26256	7.54254	-4.79464
C	8.82732	6.10589	-0.05480
Č	8 03523	5 47271	-1 07091
C	8 25721	5 81891	-2 40285
н	7 66307	5 34974	-3 18916
C	13 57270	10 31638	0.85577
н	14 38708	11 03543	0.05771
C II	7 74020	102358	1 66604
U U	7.74020	4.92338	2 74402
II C	10.02504	7.40071	1 82072
U U	10.02304	/.400/1	-1.62972
П	10.78139	8.131/8	-2.10297
C	9.24014	0.77938	-2.76273
C II	13.05770	9.95623	-0.39152
Н	13.46282	10.39136	-1.31258
C	6.90669	4.23623	0.7/105
C	7.02697	4.48886	-0.64400
С	12.98345	9.70183	1.96872
Н	13.32600	9.92767	2.98516
С	5.24683	2.87035	-1.06815
Н	4.60605	2.34338	-1.77946
С	5.93520	3.28660	1.21984
Н	5.84469	3.09653	2.29321
С	9.41123	7.09002	-4.23871
С	5.12593	2.62135	0.31692
Н	4.38802	1.89842	0.67680
С	6.18817	3.79387	-1.53028
Н	6.26449	3.97100	-2.60539

$(^{CF3}L2)_2Zn (S_{0,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)$

Zn 10.03478 7.17792 2.38893

Ν	9.51488	7.68745	4.24377
Ν	11.31642	5.87843	3.49277
F	9.18439	6.46808	9.36404
Ν	8.07631	9.14018	5.47483
F	11.23387	5.95292	9.83387
Ν	8.14923	9.07760	3.08437
С	8.56211	8.65350	4.31361
С	10.16108	7.03708	5.26396
F	10.70709	8.00062	9.36895
С	11.14252	6.05220	4.84953
С	11.88947	5.30130	5.79570
С	11.66418	5.52356	7.17414
Н	12.21934	4.96483	7.92504
С	6.66594	10.59247	4.18831
Н	5.90521	11.37314	4.14156
С	12.18303	5.01513	3.03338
Н	12.27804	4.92518	1.94528
С	9.97780	7.21881	6.64258
Н	9.24840	7.95174	6.98000
С	10.72525	6.46517	7.56668
С	7.14541	10.09336	5.39844
Н	6.76237	10.47853	6.35199
С	12.99682	4.20004	3.88009
С	12.85515	4.33584	5.29255
С	7.22408	10.02534	3.03421
Н	6.90645	10.35387	2.03664
С	14.56454	2.62394	5.57159
Н	15.17931	2.00576	6.23146
С	13.92330	3.27609	3.33467
Н	14.01173	3.19313	2.24789
C	10.46877	6.71611	9.03158
C	14.69963	2.49558	4.17115
H	15.41530	1.78194	3.75526
C	13.66418	3.52242	6.12306
H	13.58487	3.59/16	7.20852
N	10.58002	/.6/651	0.53848
N E	8.08/33	5.95653	1.2/3/3
F N	10.83801	0.04450	-4.59214
N E	12.10941	9.04450	-0.6/995
Г N	8.78233 12.02055	0.07482	-3.00014
IN C	12.02033	8.97803 9 59779	1./0988
C	0.80782	0.30440 7.07351	0.47099
F	9.89782	8 11213	-0.46729
r C	8 86577	6 13808	-0.08141
C	8.07616	5 44085	-1.03402
C	8 30871	5 66823	-1.03+02 -2.41040
н	7 72150	5.15038	-3 16624
C	13 60136	10 40095	0.61917
н	14 40901	11 13250	0.67267
C	7 77710	5 13519	1 72570
H	7.68100	5.03653	2.81295
C	10.08731	7.26164	-1.86424
H	10.85567	7.95674	-2.19527
C	9.29697	6.56163	-2.79476
Č	13.09764	9.93736	-0.59523
Н	13.50883	10.30140	-1.54535
С	6.91769	4.37608	0.87201
С	7.06145	4.52252	-0.53920
С	13.00263	9.86610	1.76831
Н	13.33467	10.17097	2.76869
С	5.26073	2.90960	-0.83291

	4 (1000	0.00441	1 10000
Н	4.61092	2.33441	-1.49806
С	5.94447	3.49662	1.40945
Н	5.85565	3.40427	2.49544
С	9.55678	6.82195	-4.25745
С	5.12378	2.77054	0.56631
Н	4.37174	2.09158	0.97601
С	6.20678	3.76482	-1.37664
Н	6.28667	3.84860	-2.46135

$(^{CF3}L2)_2Zn (S_{1,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)$

Zn	9.88616	6.99678	2.42339
Ν	9.52913	7.68226	4.25639
Ν	11.24623	5.78235	3.52304
F	9.37591	6.67991	9.42435
Ν	8.22238	9.26583	5.47124
F	11.43863	6.17837	9.84936
Ν	8.15633	9.06006	3.08587
С	8.62024	8.69081	4.31564
С	10.20819	7.07114	5.27896
F	10.90033	8.20836	9.32000
С	11.14763	6.04172	4.87435
С	11.92608	5.32890	5.82472
С	11.76397	5.62352	7.19848
Н	12.33748	5.08853	7.95287
С	6.78497	10.68745	4.17782
Н	6.04649	11.48876	4.12598
С	12.06817	4.87044	3.07409
Н	12.09672	4.70471	1.99117
С	10.08984	7.32652	6.65298
Н	9.39050	8.09098	6.98301
С	10.85756	6.60036	7.58197
С	7.32019	10.24625	5.38749
Н	7.00826	10.70340	6.33514
С	12.91576	4.09596	3.92551
С	12.85308	4.32136	5.33193
С	7.25859	10.03451	3.03133
Н	6.89540	10.31601	2.03488
С	14.55813	2.60694	5.62581
Н	15.20303	2.02399	6.28886
С	13.79951	3.12541	3.38972
Н	13.82498	2.97317	2.30718
С	10.64991	6.91176	9.04269
С	14.61301	2.38780	4.23043
Н	15.29622	1.63887	3.82229
С	13.69832	3.55074	6.16743
Н	13.68060	3.69685	7.24832
Ν	10.51441	7.63193	0.56717
Ν	8.66140	5.88037	1.27004
F	10.01027	8.18526	-4.48093
Ν	12.06529	9.02288	-0.59281
F	10.38699	6.07884	-4.79009
Ν	11.96055	8.87336	1.79641
С	11.53871	8.53566	0.54945
С	9.83182	7.07166	-0.47564
F	8.38094	6.85332	-5.01289
С	8.81293	6.11039	-0.07401
С	8.03852	5.46503	-1.05643
С	8.26746	5.77891	-2.42535
Н	7.66626	5.29283	-3.19421
С	13.56754	10.30307	0.76079
14.38802	11.01745	0.84224	
----------	--	--	
7.71525	4.98329	1.66896	
7.61731	4.83030	2.74730	
10.02429	7.34497	-1.84413	
10.78449	8.06713	-2.12969	
9.23928	6.69751	-2.81137	
13.06547	9.89392	-0.47890	
13.48835	10.28472	-1.41170	
6.88956	4.27257	0.78543	
7.02116	4.48928	-0.63767	
12.95717	9.74295	1.89277	
13.28893	10.00999	2.90268	
5.24662	2.85706	-1.04473	
4.61529	2.31296	-1.75079	
5.91055	3.33053	1.24430	
5.80553	3.16377	2.31996	
9.49937	6.95706	-4.26891	
5.11325	2.64440	0.34255	
4.37184	1.92933	0.71192	
6.19857	3.77676	-1.51728	
6.28824	3.92866	-2.59487	
	14.38802 7.71525 7.61731 10.02429 10.78449 9.23928 13.06547 13.48835 6.88956 7.02116 12.95717 13.28893 5.24662 4.61529 5.91055 5.80553 9.49937 5.11325 4.37184 6.19857 6.28824	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

$(^{CF3}L2)_2Zn (T_{1,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)$

Zn	9.91927	6.95589	2.43376
Ν	9.51769	7.61022	4.27044
Ν	11.23945	5.71426	3.54497
F	9.40008	6.66864	9.45739
Ν	8.20682	9.20202	5.47074
F	11.46595	6.16800	9.86733
Ν	8.14365	8.97390	3.08999
С	8.60702	8.61672	4.32254
С	10.20077	7.00898	5.29573
F	10.92648	8.19099	9.31670
С	11.13992	5.97801	4.89543
С	11.91907	5.27011	5.84878
С	11.76386	5.57785	7.22050
Η	12.34084	5.05005	7.97733
С	6.77874	10.61707	4.16245
Н	6.04404	11.42134	4.10171
С	12.05988	4.79943	3.09950
Н	12.09159	4.63279	2.01691
С	10.08839	7.27706	6.66789
Н	9.39092	8.04542	6.99407
С	10.86229	6.56068	7.59957
С	7.30839	10.18428	5.37730
Η	6.99493	10.64998	6.32028
С	12.90260	4.02385	3.95462
С	12.84125	4.25596	5.36024
С	7.25085	9.95124	3.02296
Н	6.88976	10.22340	2.02319
С	14.53715	2.53440	5.66127
Н	15.17877	1.95092	6.32713
С	13.78160	3.04650	3.42364
Н	13.80757	2.88863	2.34189
С	10.67008	6.89180	9.05849
С	14.59085	2.30877	4.26761
Н	15.27021	1.55445	3.86280
С	13.68300	3.48500	6.19865
Н	13.66691	3.63514	7.27901
Ν	10.53220	7.62313	0.59201

Ν	8.67907	5.83741	1.24922
F	10.36083	8.01717	-4.46845
Ν	12.05415	9.08656	-0.52373
F	9.76436	5.99073	-4.95523
Ν	11.98368	8.83032	1.85149
С	11.55071	8.54298	0.59943
С	9.85007	7.09301	-0.44666
F	8.27050	7.54003	-4.79344
С	8.82758	6.10282	-0.05486
С	8.04026	5.46606	-1.07261
С	8.26537	5.81215	-2.40379
Η	7.67496	5.34099	-3.19161
С	13.55719	10.32876	0.86377
Н	14.36807	11.05153	0.96713
С	7.73805	4.92015	1.66454
Н	7.66420	4.75421	2.74171
С	10.02708	7.39968	-1.82819
Η	10.78192	8.13296	-2.10001
С	9.25267	6.77578	-2.78228
С	13.04424	9.96764	-0.38425
Н	13.44746	10.40548	-1.30507
С	6.90948	4.22914	0.76723
С	7.03398	4.47995	-0.64763
С	12.97008	9.70935	1.97556
Н	13.31062	9.93464	2.99297
С	5.26010	2.85597	-1.07509
Н	4.62321	2.32605	-1.78769
С	5.93906	3.27785	1.21408
Н	5.84482	3.08935	2.28740
С	9.41875	7.08633	-4.23842
С	5.13494	2.60902	0.30981
Н	4.39761	1.88484	0.66830
С	6.20014	3.78105	-1.53538
Н	6.27904	3.95623	-2.61047

$({}^{CF3}L2)_2Zn~(S_{0,eq})~B3LYP~(SMD~``toluene''/~def2-tzvpp~def2/j)$

10.03697	7.20854	2.38887
9.50926	7.68682	4.24815
11.32077	5.89326	3.48950
9.17078	6.43353	9.35976
8.05817	9.12477	5.48141
11.22140	5.92161	9.82871
8.14745	9.07952	3.09130
8.55307	8.64887	4.32034
10.15454	7.03275	5.26513
10.68833	7.97089	9.37742
11.14150	6.05553	4.84652
11.88896	5.30098	5.79004
11.65818	5.51325	7.16868
12.21289	4.95316	7.91881
6.65228	10.58124	4.19546
5.88962	11.35993	4.14919
12.19340	5.03883	3.02645
12.29290	4.95979	1.93778
9.96587	7.20458	6.64448
9.23205	7.93259	6.98350
10.71393	6.44843	7.56518
7.12523	10.07488	5.40551
6.73481	10.45149	6.35947
13.00818	4.22007	3.86924
	10.03697 9.50926 11.32077 9.17078 8.05817 11.22140 8.14745 8.55307 10.15454 10.68833 11.14150 11.88896 11.65818 12.21289 6.65228 5.88962 12.19340 12.29290 9.96587 9.23205 10.71393 7.12523 6.73481 13.00818	10.03697 7.20854 9.50926 7.68682 11.32077 5.89326 9.17078 6.43353 8.05817 9.12477 11.22140 5.92161 8.14745 9.07952 8.55307 8.64887 10.15454 7.03275 10.68833 7.97089 11.14150 6.05553 11.88896 5.30098 11.65818 5.51325 12.21289 4.95316 6.65228 10.58124 5.88962 11.35993 12.19340 5.03883 12.29290 4.95979 9.96587 7.20458 9.23205 7.93259 10.71393 6.44843 7.12523 10.07488 6.73481 10.45149 13.00818 4.22007

С	12.86017	4.34377	5.28220
С	7.22010	10.02416	3.04101
Н	6.90904	10.35809	2.04322
С	14.57585	2.63636	5.55442
Н	15.19027	2.01541	6.21185
С	13.94109	3.30445	3.32096
H	14.03496	3.23040	2.23400
C	10.45391	6.68890	9.03203
Ċ	14.71733	2.52024	4.15372
H	15.43766	1.81331	3.73469
C	13.66951	3.52651	6.10876
Ĥ	13.58475	3.59240	7.19429
N	10 58873	7 67372	0 53366
N	8 68467	5 97227	1 27712
F	10 85631	6 52309	-4 58794
N	12 12490	9.03220	-0.68660
F	8 80085	6.03453	-5.06112
N	12 02290	8 98055	1 70294
C	11 59832	8 58021	0.47005
C	9 90738	7.06672	-0 48886
F	9 35369	8 07509	-4 59489
C	8 86897	6 14067	-0 07849
C	8.07853	5 43987	-1 02844
C	8 31773	5 65494	-2 40518
н	7 73125	5 13535	-3 16029
C	13 60923	10 39623	0.61259
н	14 41644	11 12815	0.66592
C	7 76749	5 16171	1 73287
н	7 66689	5 07496	2 82086
C	10 10329	7 24280	-1 86666
н	10.10525	7.031/18	-1.00000
C	9 31231	6 54009	-2.19941
C	13 11201	9 92513	-0.60195
н	13 52787	10 28306	-0.00199
C	6 90615	4 39973	0.88313
C	7 05677	4 53227	-0 52877
C	13 00430	9.86835	1 76188
н	13 32995	10 17872	2 76263
C	5 24708	2 92742	-0.81547
н	4 59665	2.52742	-0.01347
C	5 92504	3 53111	1 42363
н	5 83038	3 44902	2 50994
C	9 57593	6 78818	-4 25869
č	5 10341	2 80218	0 58421
й	4 34558	2.00210	0.99719
C	6 20057	3 77181	-1 36226
й	6 28589	3 84581	-2 44717
11	0.20207	5.07501	2.77/1/

$({}^{CF3}L2)_2Zn~(S_{1,eq})~B3LYP~(SMD~``toluene''/~def2-tzvpp~def2/j)$

Zn	9.85534	7.03100	2.43066
Ν	9.53834	7.70590	4.27227
Ν	11.20972	5.77727	3.51728
F	9.39949	6.66173	9.43595
Ν	8.31197	9.34566	5.49539
F	11.46152	6.14145	9.84158
Ν	8.19833	9.12150	3.11322
С	8.66798	8.74666	4.33897
С	10.21270	7.07802	5.28629
F	10.93509	8.17871	9.32832
С	11.12623	6.03075	4.86995

С	11.89479	5.29529	5.81169
С	11.74709	5.58615	7.18741
Н	12.31170	5.03488	7.93670
С	6.91381	10.81343	4.21110
Н	6.20781	11.64369	4.16366
С	12.00716	4.84985	3.05783
H	12.02267	4.68874	1.97376
C	10 10916	7 32992	6 66218
н	9 43041	8 10971	6 99951
C	10 86538	6 58150	7 58205
C	7 44958	10 36055	5 41647
н	7.17119	10.83717	6 36503
C II	12 8/358	4 05130	3 808/3
C	12.04558	4.05157	5 30640
C	7 24074	10 12002	2.06241
U U	6.07200	10.13093	2.00341
II C	0.97200	2.51(1)	2.07012
U U	14.40372	2.31010	5.57699
П	13.09937	1.91494	0.23433
U U	13.70149	3.00399	3.33194
Н	13./1629	2.91621	2.26855
C	10.6/140	6.886/2	9.04677
C	14.50397	2.30355	4.18236
H	15.16681	1.54153	3.76509
С	13.62936	3.47609	6.13110
Н	13.62200	3.61666	7.21277
Ν	10.49707	7.65371	0.56868
Ν	8.65498	5.89604	1.27937
F	9.35375	8.18405	-4.57337
Ν	11.96337	9.12884	-0.59505
F	10.86357	6.63969	-4.58946
Ν	11.91756	8.92740	1.79309
С	11.48317	8.59450	0.54802
С	9.83750	7.06238	-0.47750
F	8.81108	6.14823	-5.08533
С	8.82704	6.09524	-0.07164
С	8.08481	5.41435	-1.04747
С	8.34391	5.68839	-2.42524
Н	7.77480	5.16368	-3.19163
С	13.42452	10.45958	0.75446
Н	14.20713	11.21542	0.83410
С	7.71143	4.99694	1.67602
Н	7.59412	4.86574	2.75549
С	10.05663	7.30049	-1.84430
Н	10.81375	8.02591	-2.13395
С	9.30451	6.60571	-2.81436
С	12.91859	10.04761	-0.48318
Н	13.30078	10.47754	-1.41648
С	6.90873	4.25784	0.79520
С	7.06755	4.43999	-0.62947
С	12.86967	9.84385	1.88671
Н	13.21078	10.10490	2.89522
С	5.31264	2.78632	-1.03184
Н	4.69890	2.22130	-1.73672
С	5.92762	3.31966	1.25749
H	5.80120	3.17824	2.33433
С	9.57620	6.88838	-4.26491
С	5,15368	2.60646	0.35648
H	4.40977	1.89540	0.72832
C	6.26805	3.70164	-1.50774
Н	6.37668	3.82878	-2.58665

$(^{CF3}L2)_2Zn (T_{1,eq}) B3LYP (SMD "toluene"/ def2-tzvpp def2/j)$

Zn	9.90509	6.97019	2.43600
Ν	9.51375	7.61289	4.27648
Ν	11.22865	5.71479	3.54488
F	9.41852	6.68518	9.46498
Ν	8.20833	9.20833	5.47728
F	11.48342	6.17121	9.86385
Ν	8.14445	8.97892	3.09689
С	8.60645	8.62195	4.32969
С	10.19961	7.01231	5.29867
F	10.95391	8.19731	9.31444
С	11.13495	5.97937	4.89517
С	11.91635	5.27023	5.84648
С	11.76742	5.58054	7.21780
Н	12.34558	5.05352	7.97414
С	6.78267	10.62432	4.16823
Н	6.04921	11.42960	4.10721
С	12.04447	4.79771	3.09701
Н	12.07095	4.63084	2.01419
С	10.09346	7.28278	6.67109
Н	9.39854	8.05329	6.99815
С	10.86974	6.56635	7.59982
С	7.31222	10.19155	5.38350
Н	7.00037	10.65813	6.32655
С	12.88852	4.01951	3.94891
С	12.83316	4.25305	5.35456
С	7.25352	9.95702	3.02893
Н	6.89334	10.22848	2.02869
С	14.52455	2.52553	5.65088
Н	15.16632	1.94037	6.31496
С	13.76245	3.03861	3.41630
Н	13.78423	2.87905	2.33471
С	10.68678	6.90052	9.06012
С	14.57236	2.29868	4.25737
Н	15.24735	1.54174	3.85042
С	13.67568	3.47943	6.18990
Н	13.66332	3.63069	7.27004
Ν	10.53061	7.62435	0.59376
Ν	8.67637	5.83960	1.24911
F	10.37347	8.00762	-4.46904
Ν	12.05209	9.08998	-0.51929
F	9.77483	5.98079	-4.95294
Ν	11.97658	8.83457	1.85571
С	11.54676	8.54548	0.60286
С	9.85227	7.09192	-0.44592
F	8.28261	7.53180	-4.79411
С	8.82930	6.10141	-0.05480
С	8.04646	5.46053	-1.07368
С	8.27592	5.80489	-2.40433
Н	7.68899	5.33184	-3.19344
С	13.54586	10.33928	0.87147
Н	14.35311	11.06578	0.97657
C	7.73471	4.92281	1.66334
H	7.65595	4.76158	2.74078
C	10.03341	7.39644	-1.82798
H	10.78793	8.13048	-2.09902
C	9.26298	6.76976	-2.78254
C	13.03780	9.97451	-0.37764
H	13.44159	10.41248	-1.29825
C	0.91084	4.22/54	0./6540
U	/.04084	4.4/390	-0.64962

12.95823	9.71721	1.98201
13.29465	9.94333	3.00067
5.27173	2.84557	-1.07862
4.63878	2.31211	-1.79188
5.94009	3.27652	1.21129
5.84141	3.09185	2.28475
9.43047	7.07830	-4.23962
5.14103	2.60339	0.30642
4.40329	1.87952	0.66429
6.21179	3.77026	-1.53800
6.29463	3.94165	-2.61334
	12.95823 13.29465 5.27173 4.63878 5.94009 5.84141 9.43047 5.14103 4.40329 6.21179 6.29463	12.958239.7172113.294659.943335.271732.845574.638782.312115.940093.276525.841413.091859.430477.078305.141032.603394.403291.879526.211793.770266.294633.94165

(^{CF3}L2)₂Zn (S_{0,eq}) B3LYP (SMD "n-hexane"/ def2-tzvpp def2/j) Zn 10.03812 7.22508 2.38901

Zn	10.03812	7.22508	2.38901
Ν	9.50518	7.68600	4.25022
Ν	11.32249	5.90089	3.48807
F	9.16038	6.41772	9.35686
Ν	8.04748	9.11634	5.48431
F	11.21030	5.90278	9.82632
Ν	8.14749	9.08204	3.09409
С	8.54782	8.64672	4.32322
С	10.14964	7.02991	5.26575
F	10.67875	7.95420	9.38233
С	11.13978	6.05693	4.84521
С	11.88721	5.30050	5.78761
С	11.65305	5.50743	7.16627
Н	12.20731	4.94657	7.91611
С	6.64634	10.57741	4.19834
Н	5.88336	11.35576	4.15226
С	12.19844	5.05093	3.02364
Η	12.30083	4.97750	1.93474
С	9.95747	7.19627	6.64539
Η	9.22088	7.92138	6.98479
С	10.70568	6.43897	7.56464
С	7.11433	10.06579	5.40832
Η	6.71940	10.43753	6.36236
С	13.01332	4.23019	3.86470
С	12.86154	4.34764	5.27781
С	7.21978	10.02597	3.04385
Η	6.91320	10.36385	2.04597
С	14.58042	2.64256	5.54718
Η	15.19448	2.02018	6.20356
С	13.94969	3.31884	3.31527
Н	14.04672	3.24936	2.22827
С	10.44362	6.67408	9.03249
С	14.72564	2.53270	4.14639
Н	15.44848	1.82917	3.72604
С	13.67079	3.52846	6.10265
Н	13.58287	3.58984	7.18814
Ν	10.59180	7.67527	0.53127
Ν	8.68436	5.98050	1.27924
F	10.86242	6.50889	-4.58546
Ν	12.13190	9.02657	-0.69175
F	8.80726	6.01793	-5.05838
Ν	12.02692	8.98210	1.69808
С	11.60326	8.57941	0.46566
С	9.91054	7.06603	-0.48945
F	9.35936	8.06049	-4.59957
С	8.87031	6.14330	-0.07664
С	8.07960	5.44025	-1.02506

С	8.32081	5.65017	-2.40204
Н	7.73486	5.12910	-3.15651
С	13.61690	10.39169	0.60555
Н	14.42527	11.12239	0.65766
С	7.76509	5.17375	1.73698
Н	7.66302	5.09219	2.82533
С	10.10827	7.23705	-1.86773
Н	10.88359	7.92342	-2.20137
С	9.31719	6.53250	-2.79297
С	13.12030	9.91769	-0.60833
Н	13.53790	10.27179	-1.55943
С	6.90319	4.40968	0.88941
С	7.05591	4.53640	-0.52281
С	13.00958	9.86820	1.75569
Н	13.33422	10.18065	2.75614
С	5.24358	2.93337	-0.80561
Н	4.59302	2.35480	-1.46690
С	5.91974	3.54486	1.43169
Η	5.82322	3.46707	2.51817
С	9.58208	6.77536	-4.25904
С	5.09786	2.81394	0.59435
Н	4.33837	2.14665	1.00913
С	6.19924	3.77398	-1.35412
Н	6.28631	3.84394	-2.43912

$({}^{CF3}L2)_2Zn~(S_{1,eq})~B3LYP~(SMD~``n-hexane''/~def2-tzvpp~def2/j)$

Zn	9.84578	7.03326	2.43278
Ν	9.53508	7.70692	4.27610
Ν	11.20325	5.77709	3.51953
F	9.41674	6.68962	9.44324
Ν	8.31305	9.34889	5.49989
F	11.47632	6.15309	9.84115
Ν	8.19379	9.12137	3.11821
С	8.66581	8.74831	4.34345
С	10.21287	7.08172	5.28875
F	10.96444	8.19310	9.32410
С	11.12392	6.03277	4.87175
С	11.89415	5.29771	5.81285
С	11.75222	5.59305	7.18796
Н	12.31816	5.04331	7.93736
С	6.91226	10.81480	4.21675
Н	6.20617	11.64499	4.16984
С	11.99628	4.84643	3.05957
Н	12.00825	4.68403	1.97556
С	10.11505	7.33781	6.66447
Н	9.43817	8.11943	7.00156
С	10.87383	6.59141	7.58335
С	7.45096	10.36347	5.42157
Н	7.17513	10.84124	6.37034
С	12.83258	4.04646	3.89895
С	12.78987	4.26909	5.30658
С	7.33639	10.13061	3.06905
Η	6.96550	10.41441	2.07605
С	14.45277	2.50916	5.57775
Η	15.08843	1.90708	6.23247
С	13.68527	3.05469	3.35235
Н	13.69624	2.90391	2.26929
H C	13.69624 10.68826	2.90391 6.90293	2.26929 9.04837
H C C	13.69624 10.68826 14.48774	2.90391 6.90293 2.29323	2.26929 9.04837 4.18159

С	13.62369	3.47331	6.13000
Н	13.62000	3.61632	7.21134
Ν	10.49316	7.65591	0.57149
Ν	8.65836	5.89007	1.27894
F	9.35081	8.19438	-4.56980
Ν	11.96341	9.12714	-0.59138
F	10.86150	6.65082	-4.58906
Ν	11.90780	8.93346	1.79782
С	11.47731	8.59623	0.55177
С	9.83459	7.06403	-0.47816
F	8.80961	6.15970	-5.08841
С	8.82854	6.09324	-0.07469
С	8.08888	5.41287	-1.04977
С	8.34634	5.69115	-2.42946
Н	7.77873	5.16566	-3.19627
С	13.41858	10.46235	0.76009
Н	14.20086	11.21845	0.84049
С	7.71841	4.98644	1.67024
Н	7.60065	4.85050	2.74924
С	10.05230	7.30701	-1.84266
Н	10.80664	8.03588	-2.13075
С	9.30158	6.61143	-2.81606
С	12.91785	10.04567	-0.47835
Н	13.30428	10.47180	-1.41177
С	6.91801	4.24674	0.78812
С	7.07522	4.43389	-0.63588
С	12.85871	9.84999	1.89212
Н	13.19538	10.11402	2.90144
С	5.32576	2.77595	-1.04207
Н	4.71319	2.21138	-1.74822
С	5.94064	3.30356	1.24840
Н	5.81532	3.15801	2.32476
С	9.57391	6.89824	-4.26600
С	5.16870	2.59092	0.34549
Н	4.42752	1.87607	0.71541
С	6.27778	3.69613	-1.51595
Н	6.38448	3.82697	-2.59453

(^{CF3}L2)₂Zn (T_{1,eq}) B3LYP (SMD "n-hexane"/ def2-tzvpp def2/j)

Zn	9.89596	6.97516	2.43754
Ν	9.51058	7.61299	4.27966
Ν	11.22170	5.71312	3.54551
F	9.43392	6.70291	9.47054
Ν	8.20972	9.21154	5.48089
F	11.49798	6.17922	9.86194
Ν	8.14257	8.97970	3.10055
С	8.60528	8.62372	4.33336
С	10.19928	7.01423	5.30032
F	10.97633	8.20690	9.31019
С	11.13227	5.97979	4.89550
С	11.91581	5.27121	5.84586
С	11.77187	5.58486	7.21671
Η	12.35160	5.05933	7.97282
С	6.78399	10.62751	4.17192
Η	6.05131	11.43345	4.11102
С	12.03464	4.79413	3.09686
Н	12.05759	4.62586	2.01407
С	10.09804	7.28785	6.67260
Η	9.40478	8.05986	6.99978
С	10.87680	6.57287	7.59998

С	7.31486	10.19542	5.38708
Н	7.00500	10.66321	6.33021
С	12.87992	4.01541	3.94733
С	12.82904	4.25155	5.35270
С	7.25273	9.95847	3.03267
Н	6.89185	10.22895	2.03240
С	14.51784	2.52075	5.64729
Н	15.16011	1.93535	6.31063
С	13.75043	3.03172	3.41428
Н	13.76895	2.86995	2.33294
С	10.70111	6.91133	9.06071
С	14.56126	2.29145	4.25404
Н	15.23338	1.53241	3.84634
С	13.67249	3.47736	6.18670
Н	13.66307	3.63059	7.26656
Ν	10.52872	7.62404	0.59586
Ν	8.67370	5.83902	1.24844
F	10.37964	8.00617	-4.46796
N	12.04998	9.09112	-0.51529
F	9.78051	5.97924	-4.95200
Ν	11.97265	8.83479	1.85984
С	11.54398	8.54570	0.60642
С	9.85246	7.09124	-0.44492
F	8.28861	7.53071	-4.79387
С	8.82925	6.10015	-0.05520
С	8.04907	5.45788	-1.07538
С	8.28096	5.80251	-2.40544
Н	7.69600	5.32903	-3.19568
С	13.54012	10.34272	0.87744
Н	14.34588	11.07072	0.98354
С	7.73164	4.92183	1.66090
Н	7.65003	4.76186	2.73829
С	10.03591	7.39579	-1.82704
Н	10.79025	8.13046	-2.09691
С	9.26779	6.76846	-2.78256
С	13.03387	9.97698	-0.37223
Н	13.43778	10.41543	-1.29265
С	6.91063	4.22499	0.76177
С	7.04388	4.47036	-0.65304
С	12.95233	9.71888	1.98719
Н	13.28716	9.94475	3.00650
С	5.27777	2.83967	-1.08495
Н	4.64727	2.30484	-1.79927
С	5.93978	3.27346	1.20601
Н	5.83852	3.08974	2.27937
С	9.43634	7.07721	-4.23992
С	5.14377	2.59867	0.29996
Н	4.40589	1.87443	0.65660
С	6.21781	3.76485	-1.54268
Н	6.30305	3.93525	-2.61799

(*BuL3)₂Zn (S_{0,eq}) M06-L (gas phase/ def2-tzvpp def2/j)

Zn	0.00000	0.00000	0.27705
Ν	-1.07684	-1.40509	-0.81680
Ν	0.95159	-1.60696	0.93135
С	0.44037	-2.78204	0.43793
С	-0.65593	-2.67970	-0.49748
С	-0.80653	-5.11190	-0.65277
Н	-1.27077	-5.99525	-1.07048
С	0.83400	-4.08116	0.80546

Н	1.62347	-4.18701	1.54100
С	-1.27244	-3.83671	-1.04291
С	-2.76616	-2.29840	-2.28018
С	-2.07425	-1.21940	-1.65364
С	0.23057	-5.23950	0.27425
С	-2.36720	-3.63439	-1.97827
С	2.15279	-1.54395	1.65546
С	-3.06870	-4.69118	-2.60759
Н	-2.79637	-5.72088	-2.40463
С	3.31013	-2.28212	1.31520
Н	3.28064	-2.96470	0.47130
С	0.73583	-6.61477	0.74728
С	-3.83209	-2.05043	-3.18115
Н	-4.11673	-1.02282	-3.39014
С	-4.49740	-3.10423	-3.78038
Н	-5.31417	-2.91761	-4.47035
С	-4.10805	-4.43049	-3.48794
Н	-4.63014	-5.25842	-3.95825
С	2.25122	-0.63064	2.72843
Н	1.37472	-0.04522	2.99594
С	4.49951	-2.12030	2.03010
Н	5.37446	-2.69650	1.73952
С	4.57932	-1.21789	3.09865
Н	5.50637	-1.09607	3.65079
С	3.44478	-0.46912	3.43542
Н	3.48490	0.24175	4.25663
Ν	1.07684	1.40509	-0.81680
Ν	-0.95159	1.60696	0.93135
С	-0.44037	2.78204	0.43793
С	0.65593	2.67970	-0.49748
С	0.80653	5.11190	-0.65277
Н	1.27077	5.99525	-1.07048
С	-0.83400	4.08116	0.80546
Н	-1.62347	4.18701	1.54100
С	1.27244	3.83671	-1.04291
С	2.76616	2.29840	-2.28018
С	2.07425	1.21940	-1.65364
С	-0.23057	5.23950	0.27425
С	2.36720	3.63439	-1.97827
С	-2.15279	1.54395	1.65546
С	3.06870	4.69118	-2.60759
Н	2.79637	5.72088	-2.40463
С	-3.31013	2.28212	1.31520
Н	-3.28064	2.96470	0.47130
С	-0.73583	6.61477	0.74728
С	3.83209	2.05043	-3.18115
Н	4.11673	1.02282	-3.39014
C	4.49740	3.10423	-3.78038
Н	5.31417	2.91761	-4.47035
C	4.10805	4.43049	-3.48794
Н	4.63014	5.25842	-3.95825
C	-2.25122	0.63064	2.72843
H	-1.3/4/2	0.04522	2.99594
C	-4.49951	2.12030	2.03010
H	-5.37446	2.69650	1.73952
C	-4.57932	1.21789	3.09865
H	-5.50637	1.09607	3.65079
C	-3.4447/8	0.46912	3.43542
H	-3.48490	-0.24175	4.25663
H	-2.36605	-0.19253	-1.85902
Н	2.36603	0.19253	-1.85902
C	-0.52303	6./4064	2.27555

Н	-0.88315	7.71567	2.62455
Н	-1.06504	5.96427	2.82460
Н	0.53970	6.65693	2.52808
С	-2.24482	6.74810	0.43150
Н	-2.83408	5.97540	0.93506
Н	-2.61228	7.72487	0.76755
Н	-2.42457	6.66637	-0.64620
С	0.00000	7.78216	0.06307
Н	1.07399	7.76886	0.27917
Н	-0.13630	7.76614	-1.02412
Н	-0.40261	8.73037	0.43548
С	0.52303	-6.74064	2.27555
Η	0.88315	-7.71567	2.62455
Н	1.06504	-5.96427	2.82460
Н	-0.53970	-6.65693	2.52808
С	2.24482	-6.74810	0.43150
Н	2.83408	-5.97540	0.93506
Н	2.61228	-7.72487	0.76755
Н	2.42457	-6.66637	-0.64620
С	0.00000	-7.78216	0.06307
Н	-1.07399	-7.76886	0.27917
Н	0.13630	-7.76614	-1.02412
Н	0.40261	-8.73037	0.43548

$({^{\prime Bu}L3})_2 Zn~(S_{0,eq})~B3LYP~(SMD~``dichloromethane''/~def2-tzvpp~def2/j)$

Zn	0.02117	0.05096	-0.00948
Ν	-1.04985	-1.40535	-1.02766
Ν	0.97936	-1.51996	0.74987
С	0.42598	-2.71353	0.36219
С	-0.66424	-2.65510	-0.59233
С	-0.89887	-5.08783	-0.53499
Н	-1.39857	-5.98792	-0.88321
С	0.76415	-3.99120	0.84571
Н	1.54724	-4.06605	1.59841
С	-1.31081	-3.83597	-1.04656
С	-2.73083	-2.36658	-2.44862
С	-2.01946	-1.25803	-1.89507
С	0.12011	-5.17240	0.41646
С	-2.38124	-3.68353	-2.02354
С	2.17534	-1.38552	1.45905
С	-3.10113	-4.77027	-2.57996
Н	-2.86377	-5.79266	-2.28293
С	3.30897	-2.21713	1.28053
Н	3.27037	-3.04156	0.56676
С	0.56213	-6.52122	1.02680
С	-3.76673	-2.16580	-3.39633
Н	-4.01280	-1.14501	-3.70176
С	-4.44973	-3.24734	-3.92097
Н	-5.24823	-3.09626	-4.65177
С	-4.10974	-4.55476	-3.50668
Н	-4.64977	-5.40987	-3.92238
С	2.31004	-0.29751	2.35669
Н	1.45557	0.36922	2.50563
С	4.49561	-1.97865	1.97937
Н	5.35277	-2.63808	1.81072
С	4.60407	-0.90748	2.87418
Н	5.53463	-0.72806	3.41916
С	3.49933	-0.06456	3.04881
Н	3.56026	0.78439	3.73664
Ν	1.10653	1.49470	-1.03112

Ν	-0.94582	1.63154	0.71789
С	-0.38632	2.82009	0.32379
С	0.71624	2.74973	-0.61559
С	0.95247	5.18276	-0.58296
Н	1.45780	6.07833	-0.93468
С	-0.72958	4.10342	0.78822
H	-1.52241	4.18743	1.52969
C	1.36966	3.92482	-1.07495
Č	2.80691	2.43828	-2.44085
Č	2.08755	1.33670	-1.88369
Č	-0.07864	5.27907	0.35420
C	2 45248	3 76035	-2 03617
C	-2 15129	1 50622	1 41255
C	3 17992	4 84014	-2 59628
ч	2 03885	5 86614	2 31506
II C	2.93003	2 3 3 5 5 7	1 20808
U U	-3.26217	2.55557	0.48450
II C	-3.23300	5.15090	0.46439
C	-0.52/14	0.03309	0.94547
U U	3.83321	2.22381	-3.3/221
П	4.10485	1.20135	-3.66209
C	4.54560	3.30076	-3.900/2
H	5.35370	3.14064	-4.61893
C	4.20062	4.61319	-3.50689
Н	4.74635	5.46307	-3.92585
С	-2.29833	0.42967	2.32194
Н	-1.44593	-0.23496	2.49085
С	-4.47830	2.10585	1.89356
Н	-5.33304	2.76297	1.70481
С	-4.59913	1.04602	2.80025
Н	-5.53711	0.87342	3.33460
С	-3.49698	0.20544	3.00068
Н	-3.56742	-0.63474	3.69830
Н	-2.28496	-0.23864	-2.19477
Н	2.35641	0.31371	-2.16778
С	-0.30302	6.62655	2.47400
Н	-0.61540	7.58954	2.91213
Н	-0.88079	5.83207	2.97152
Н	0.76115	6.47418	2.71958
С	-2.02918	6.85718	0.65013
Н	-2.65970	6.07641	1.10312
H	-2.35887	7.82724	1.05880
Н	-2.22664	6.86414	-0.43482
C	0.25612	7.82078	0.35115
H	1.33607	7.74849	0.55659
Н	0.12082	7.90303	-0.73925
Н	-0 10138	8 76168	0 79977
C	0.31629	-6 49621	2 55382
н	0.62370	-7.45385	3 00694
Н	0.82570	-7.45505	3 05074
н	-0 75147	-5.075-5	2 78256
C	2 06844	-0.34273	0.75721
ч	2.000	5 05795	1 21054
п	2.09132	-3.93/83	1.21054
п	2.39343	-7.70943	1.10114
Н	2.2812/	-0./0294	-0.32468
C	-0.21106	-/./1451	0.43646
H	-1.29392	-/.641/2	0.62576
H	-0.06018	-7.80844	-0.65094
Н	0.14134	-8.64991	0.90037

(* $^{fBu}L3$)₂Zn (S_{1,eq}) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

Zn	-0.24665	0.01131	-0.17492
Ν	-1.11468	-1.49119	-1.14176
Ν	0.85117	-1.52353	0.67616
С	0.34458	-2.75276	0.31450
С	-0.70661	-2.73068	-0.67746
С	-0.81234	-5.16426	-0.52430
Н	-1.26166	-6.09105	-0.87445
C	0.70476	-3.97793	0.90119
H	1.42312	-3.96/41	1.72040
C	-1.25480	-3.94110	-1.12108
C	-2.0/340	-2.004/1	-2.032/4
C	-2.08895	-1.43014	-2.09495
C	0.13041	-3.20808	2 18265
C	2.27173	-1 32364	1 20024
C	-2 85971	-5.05161	-2 74715
н	-2.56220	-6.04519	-2 40553
C	3 18881	-2 18460	1 16269
Н	3.12764	-3.05910	0.51432
C	0.58012	-6.51329	1.17993
Č	-3.67510	-2.52767	-3.67922
Н	-3.98590	-1.54158	-4.03618
С	-4.23663	-3.67789	-4.20862
Н	-4.99885	-3.59667	-4.98997
С	-3.83685	-4.95194	-3.75338
Н	-4.28234	-5.85583	-4.17516
С	2.22126	-0.13754	2.07080
Н	1.36974	0.53956	2.17041
С	4.39006	-1.88236	1.79906
Н	5.24764	-2.54750	1.66624
С	4.51488	-0.72924	2.58753
Н	5.46072	-0.50238	3.08548
С	3.42126	0.14224	2.71376
Н	3.51067	1.04932	3.31727
N	0.89055	1.46790	-1.12680
N	-1.07873	1.58292	0.71809
C	-0.47510	2.76715	0.37837
C	0.58289	2.70882	-0.61081
C	0.93861	5.12101	-0.43116
H C	1.46983	6.01450	-0./4852
U U	-0./303/	4.03062	0.93989
п	-1.49514	4.10035	1./1/90
C	2 56007	2 42657	-1.02098
C	1 82041	1 32420	-2.03776
C	-0.04873	5 20198	0 55358
C	2 30446	3 73180	-2 03999
C	-2.26417	1.47432	1.45092
č	3.06310	4.81204	-2.55656
H	2.88999	5.82504	-2.19081
C	-3.35776	2.36802	1.33601
Н	-3.29077	3.22285	0.66100
С	-0.41292	6.53548	1.24180
С	3.56191	2.23002	-3.54711
Н	3.74222	1.21791	-3.92005
С	4.28420	3.30500	-4.03234
Н	5.04872	3.15747	-4.79928
С	4.02852	4.60135	-3.52979
Н	4.59989	5.45098	-3.91355
С	-2.43261	0.35434	2.30161
Н	-1.60751	-0.35678	2.40260
С	-4.54107	2.15428	2.04884

Н	-5.36788	2.86151	1.93005
С	-4.68482	1.04720	2.89441
Η	-5.61286	0.88626	3.44925
С	-3.61891	0.14519	3.00722
Н	-3.70838	-0.73133	3.65619
Н	-2.41135	-0.46729	-2.42704
Η	2.02036	0.31261	-2.40702
С	-0.14313	6.41819	2.76099
Н	-0.39627	7.36566	3.26556
Н	-0.74396	5.62016	3.22377
Н	0.92012	6.20169	2.95645
С	-1.91148	6.84278	1.01053
Н	-2.56111	6.05829	1.42830
Н	-2.18212	7.79591	1.49476
Η	-2.13348	6.93215	-0.06575
С	0.40860	7.71945	0.69858
Н	1.48894	7.57896	0.86151
Н	0.24191	7.87420	-0.37931
Н	0.11014	8.64345	1.21908
С	0.22442	-6.44052	2.68407
Н	0.54040	-7.36532	3.19494
Η	0.72442	-5.59508	3.18252
Η	-0.86265	-6.32579	2.82641
С	2.10926	-6.68857	1.02398
Н	2.66615	-5.85320	1.47659
Н	2.43774	-7.61709	1.51980
Н	2.39204	-6.75101	-0.03979
С	-0.11203	-7.74856	0.57605
Н	-1.20692	-7.70145	0.68810
Н	0.11829	-7.86381	-0.49520
Н	0.23773	-8.65601	1.09344

(^{tBu}L3)₂Zn (T_{1,eq}) B3LYP (SMD "dichloromethane"/ def2-tzvpp def2/j)

Zn	0.23929	-0.01158	-0.18827
Ν	-0.91650	-1.43950	-1.14700
Ν	1.08788	-1.59920	0.65604
С	0.47050	-2.77427	0.30772
С	-0.60644	-2.69123	-0.65947
С	-0.97824	-5.10276	-0.51320
Н	-1.52405	-5.98614	-0.83385
С	0.73215	-4.04917	0.84274
Н	1.50416	-4.13855	1.60525
С	-1.31453	-3.85038	-1.07611
С	-2.63363	-2.35954	-2.55199
С	-1.86546	-1.27225	-2.03358
С	0.02605	-5.20810	0.45156
С	-2.36514	-3.67616	-2.07070
С	2.28951	-1.50472	1.36297
С	-3.14135	-4.74134	-2.59192
Н	-2.96663	-5.76279	-2.25127
С	3.37253	-2.40773	1.22314
Н	3.28646	-3.25786	0.54469
С	0.38670	-6.55567	1.11587
С	-3.64632	-2.13804	-3.51996
Н	-3.82929	-1.11810	-3.86938
С	-4.38568	-3.19887	-4.00934
Н	-5.16644	-3.03189	-4.75568
С	-4.12648	-4.50582	-3.53883
Н	-4.71104	-5.34456	-3.92670
С	2.48683	-0.38901	2.21346

Н	1.67239	0.33161	2.33292
С	4.57102	-2.20849	1.91394
Н	5.38838	-2.92323	1.77603
С	4.74186	-1.10736	2.76126
Н	5.68168	-0.95831	3.29940
С	3.68801	-0.19507	2.89703
Н	3.79880	0.67829	3.54698
Ν	1.14098	1.51014	-1.10812
Ν	-0.85548	1.51534	0.68858
С	-0.35924	2.73147	0.33872
С	0.72500	2.71538	-0.63683
С	0.81151	5.14406	-0.47512
Н	1.26208	6.08016	-0.79955
С	-0.76124	3.97378	0.90807
Н	-1.51189	3.95491	1.69768
С	1.28569	3.95235	-1.05630
С	2.76474	2.62510	-2.55496
С	2.15612	1.47170	-2.04397
С	-0.19444	5.18470	0.52192
С	2.34646	3.92589	-2.07922
С	-2.04351	1.30271	1.38287
С	2.96175	5.07052	-2.60542
Н	2.65505	6.06079	-2.26132
С	-3.20907	2.08886	1.20323
Н	-3.20461	2.91058	0.48554
С	-0.64366	6.49958	1.19524
С	3.80192	2.56186	-3.54399
Н	4.12266	1.57999	-3.90459
С	4.38698	3.71561	-4.03565
Н	5.17664	3.64439	-4.79005
С	3.97231	4.98316	-3.57318
Н	4.43490	5.89277	-3.96425
С	-2.11451	0.18704	2.25279
Н	-1.22818	-0.43865	2.38232
С	-4.38056	1.78289	1.89631
Н	-5.27351	2.39266	1.73263
С	-4.42519	0.69917	2.78244
Н	-5.34565	0.46812	3.32484
С	-3.28498	-0.09834 `	2.95209
Н	-3.31023	-0.95390	3.63252
Н	-2.06665	-0.25255	-2.37881
Н	2.46844	0.48017	-2.38091
С	-0.29867	6.44434	2.70198
Н	-0.61456	7.37427	3.20453
Н	-0.80334	5.60532	3.20700
Н	0.78664	6.32837	2.85813
C	-2.17097	6.67435	1.03046
Н	-2.73339	5.85076	1.49775
Н	-2.50314	7.61237	1.50632
Н	-2.45522	6.71697	-0.03413
C	0.04863	7.73216	0.58545
H	1.14270	7.69971	0.71132
H	-0.16839	1.83925	-0.48970
H	-0.31176	8.64457	1.08/23
C	0.13994	-6.45/02	2.63971
H	0.38/61	-/.41345	3.13042
H	0.75642	-5.67420	3.10843
H	-0.91691	-6.23020	2.85798
C	1.87773	-6.8/698	0.86101
H	2.54516	-6.11133	1.28610
H	2.14485	-/.84232	1.32307
Н	2.09095	-6.94980	-0.21849

С	-0.45440	-7.72355	0.56910
Η	-1.53161	-7.57946	0.74978
Н	-0.30644	-7.86961	-0.51292
Η	-0.15946	-8.65911	1.07121

(^{tBu}L3)₂Zn (S_{0,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)

Zn	0.00001	-0.00000	0.00478
N	-1.06985	-1 46234	-1 01079
N	0.98326	-1 56536	0.73899
C	0.78520	2 76128	0.25214
C	0.45082	2.70138	0.55514
C	-0.00007	-2.70971	-0.38720
U U	-0.8/339	-5.14452	-0.55801
H	-1.3/060	-6.04826	-0.88384
C	0.79399	-4.03802	0.82604
Н	1.58668	-4.10703	1.56926
С	-1.30694	-3.89511	-1.03863
С	-2.76223	-2.43261	-2.41172
С	-2.05402	-1.32005	-1.86231
С	0.15643	-5.22297	0.39947
С	-2.39216	-3.74809	-1.99962
С	2.18518	-1.42467	1.43815
С	-3.10828	-4.83898	-2.55265
Н	-2 85519	-5 86040	-2 26554
C	3 32720	-2 23737	1 23187
н	3 29025	-3 04983	0 50420
C	0.61890	-6 56000	0.00420
C	2 81420	2 22810	2 24266
п	4.07606	1 21961	-3.34200
п	-4.0/090	-1.21001	-3.03833
C II	-4.49309	-3.32370	-3.86398
П	-5.30410	-3.1/684	-4.58180
C	-4.13254	-4.62958	-3.46303
H	-4.66901	-5.48824	-3.8/610
C	2.31480	-0.35018	2.35157
Н	1.45272	0.30143	2.52207
С	4.51862	-1.99417	1.92037
Н	5.38292	-2.63844	1.73081
С	4.62274	-0.93641	2.83114
Н	5.55725	-0.75291	3.36792
С	3.50904	-0.11214	3.03307
Н	3.56675	0.72602	3.73424
Ν	1.06986	1.46234	-1.01078
Ν	-0.98325	1.56534	0.73899
С	-0.43682	2.76138	0.35314
С	0.66608	2.70972	-0.58726
С	0.87559	5,14452	-0.53861
Н	1 37060	6 04826	-0.88384
Ĉ	-0 79399	4 03801	0.82604
н	-1 58668	4 10702	1 56925
C	1 30694	3 89511	-1 03863
C	2 76224	2 43262	-1.03803
C	2.70224	1 32005	1 86231
C	0.15642	5 22207	-1.80231
C	-0.13043	3.22297	1.00062
C	2.39210	5.74809	-1.99902
C	-2.18318	1.4240/	1.43813
U U	5.10828	4.83898	-2.35265
Н	2.85518	5.86040	-2.26553
C	-3.32/19	2.23/3/	1.23187
H	-3.29025	3.04983	0.50420
C	-0.61891	6.56998	0.99843
С	3.81431	2.23820	-3.34266

Н	4.07698	1.21862	-3.63834
С	4.49310	3.32371	-3.86397
Η	5.30411	3.17685	-4.58179
С	4.13254	4.62960	-3.46303
Н	4.66901	5.48825	-3.87610
С	-2.31479	0.35018	2.35157
Η	-1.45272	-0.30144	2.52207
С	-4.51862	1.99416	1.92038
Н	-5.38292	2.63844	1.73081
С	-4.62273	0.93641	2.83114
Н	-5.55725	0.75291	3.36792
С	-3.50903	0.11214	3.03308
Н	-3.56674	-0.72602	3.73424
Н	-2.33431	-0.30140	-2.15117
Н	2.33433	0.30140	-2.15116
С	-0.39001	6.55411	2.52812
Н	-0.71214	7.51017	2.97447
Н	-0.95624	5.74948	3.02250
Н	0.67647	6.41207	2.76959
С	-2.12405	6.77670	0.71027
Η	-2.74487	5.98651	1.16022
Н	-2.46460	7.74054	1.12489
Н	-2.32480	6.78694	-0.37403
С	0.14883	7.76846	0.41163
Н	1.23004	7.70828	0.61446
Η	0.01003	7.85612	-0.67795
Η	-0.21822	8.70286	0.86622
С	0.38999	-6.55411	2.52812
Н	0.71212	-7.51017	2.97448
Η	0.95623	-5.74949	3.02251
Η	-0.67649	-6.41207	2.76959
С	2.12404	-6.77672	0.71028
Η	2.74485	-5.98653	1.16024
Η	2.46459	-7.74055	1.12491
Н	2.32479	-6.78695	-0.37401
С	-0.14885	-7.76847	0.41164
Η	-1.23006	-7.70827	0.61446
Η	-0.01004	-7.85612	-0.67795
Н	0.21820	-8.70286	0.86623

(^{fBu}L3)₂Zn (S_{1,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)

Zn	-0.26442	0.00953	-0.16471
Ν	-1.10471	-1.49077	-1.15444
Ν	0.83566	-1.52163	0.69002
С	0.33302	-2.75618	0.31928
С	-0.70045	-2.73463	-0.68716
С	-0.80720	-5.16810	-0.53615
Н	-1.24927	-6.09436	-0.89644
С	0.68126	-3.97657	0.91433
Н	1.38514	-3.96476	1.74612
С	-1.23956	-3.94260	-1.14106
С	-2.62996	-2.60800	-2.69724
С	-2.05969	-1.46137	-2.12476
С	0.12220	-5.21086	0.49339
С	-2.23573	-3.91584	-2.22124
С	2.04784	-1.32287	1.30252
С	-2.81128	-5.05444	-2.79734
Н	-2.51955	-6.04796	-2.45092
С	3.16948	-2.19489	1.17709
Н	3.10020	-3.07750	0.54093

С	0.55650	-6.51440	1.19045
С	-3.61169	-2.53052	-3.74240
Н	-3.91717	-1.54452	-4.10392
С	-4.16164	-3.68081	-4.28322
Н	-4.90918	-3.59985	-5.07855
С	-3.76942	-4.95445	-3.82186
Н	-4.20626	-5.85814	-4.25279
С	2.21964	-0.12561	2.05736
Н	1.37343	0.55906	2.14911
С	4.37348	-1.89274	1.80655
Н	5.22591	-2.56596	1.68171
С	4.50916	-0.72902	2.57794
Н	5.45766	-0.50258	3.07080
С	3.42266	0.15333	2.69303
Н	3.52072	1.06834	3.28298
Ν	0.87096	1.46499	-1.12567
Ν	-1.07751	1.58266	0.74146
С	-0.47753	2.76482	0.39295
С	0.57067	2.70559	-0.60688
С	0.92900	5.11757	-0.43417
Н	1.45686	6.01081	-0.75750
С	-0.73412	4.03003	0.95369
Н	-1.48593	4.10037	1.73822
С	1.25867	3.87671	-1.02492
С	2.53819	2.41957	-2.56789
С	1.79080	1.31907	-2.04617
С	-0.05021	5.20001	0.55896
С	2.27977	3.72533	-2.05291
С	-2.25354	1.48027	1.49253
С	3.03620	4.80381	-2.57621
Н	2.86809	5.81684	-2.20838
С	-3.35276	2.36502	1.37125
Н	-3.29769	3.20480	0.67637
С	-0.40918	6.53505	1.24712
С	3.52081	2.22198	-3.57148
Н	3.69611	1.20984	-3.94683
С	4.24099	3.29533	-4.06287
Н	4.99828	3.14640	-4.83666
С	3.99259	4.59191	-3.55775
Н	4.56226	5.44050	-3.94623
С	-2.40381	0.37802	2.36795
Η	-1.57326	-0.32602	2.47264
С	-4.52599	2.16007	2.10260
Н	-5.35877	2.85925	1.97862
С	-4.65223	1.07061	2.97309
Н	-5.57265	0.91595	3.54211
С	-3.58024	0.17725	3.09214
Н	-3.65710	-0.68583	3.76033
Н	-2.38261	-0.47158	-2.46001
Н	1.98334	0.30690	-2.41801
С	-0.12839	6.42124	2.76446
Н	-0.37809	7.36942	3.26947
Н	-0.72499	5.62393	3.23373
Н	0.93615	6.20516	2.95287
С	-1.90923	6.84185	1.02542
Н	-2.55607	6.05814	1.44878
Н	-2.17759	7.79583	1.50930
Н	-2.13874	6.92852	-0.04942
С	0.40835	7.71793	0.69563
Н	1.48989	7.57777	0.85070
Н	0.23336	7.87121	-0.38116
Н	0.11457	8.64335	1.21628

С	0.17738	-6.44246	2.68879
Н	0.48779	-7.36590	3.20553
Н	0.66643	-5.59565	3.19573
Н	-0.91193	-6.33044	2.81435
С	2.08823	-6.68644	1.05782
Н	2.63702	-5.85046	1.51921
Н	2.41224	-7.61423	1.55796
Н	2.38760	-6.74742	-0.00142
С	-0.12324	-7.75145	0.57650
Н	-1.21985	-7.70634	0.67068
Н	0.12468	-7.86732	-0.49072
Н	0.21912	-8.65847	1.09960

(^{fBu}L3)₂Zn (T_{1,eq}) B3LYP (SMD "diethyl ether"/ def2-tzvpp def2/j)

Zn	0.25350	-0.01157	-0.18766
Ν	-0.89637	-1.44591	-1.14883
Ν	1.08543	-1.59266	0.68028
С	0.47212	-2.76872	0.33306
С	-0.59327	-2.69327	-0.64765
С	-0.96699	-5.10333	-0.48797
Н	-1.50857	-5.98942	-0.80810
С	0.72796	-4.04016	0.87973
Н	1.49143	-4.12269	1.65163
С	-1.29704	-3.85571	-1.06362
С	-2.59835	-2.37535	-2.56593
С	-1.83450	-1.28493	-2.04781
С	0.02683	-5.20132	0.48873
С	-2.33639	-3.68815	-2.07079
С	2.27595	-1.49829	1.40814
С	-3.10846	-4.75642	-2.59173
Н	-2.93863	-5.77506	-2.24044
С	3.36509	-2.39313	1.27056
Н	3.29255	-3.23304	0.57764
С	0.38023	-6.54407	1.16643
С	-3.60018	-2.16149	-3.54672
Н	-3.77881	-1.14459	-3.90729
С	-4.33543	-3.22527	-4.03528
Н	-5.10778	-3.06358	-4.79151
С	-4.08294	-4.52829	-3.55096
Н	-4.66425	-5.36973	-3.93797
С	2.45338	-0.39405	2.27616
Н	1.63330	0.32049	2.39316
С	4.55211	-2.19759	1.98128
Н	5.37586	-2.90523	1.84497
С	4.70373	-1.10777	2.84634
Н	5.63490	-0.96095	3.39989
С	3.64347	-0.20329	2.97965
Н	3.74028	0.66143	3.64320
Ν	1.14884	1.50546	-1.11927
Ν	-0.85009	1.51748	0.67488
С	-0.35730	2.73224	0.31644
С	0.72696	2.71198	-0.65945
С	0.80275	5.14175	-0.51953
Н	1.24915	6.07670	-0.85276
С	-0.76286	3.97794	0.87674
Н	-1.51133	3.96158	1.66851
С	1.28080	3.94823	-1.09170
С	2.76521	2.61472	-2.57876
С	2.16427	1.46310	-2.05524
С	-0.20145	5.18719	0.48032

С	2.33888	3.91734	-2.11673
С	-2.03743	1.30621	1.37033
С	2.94488	5.06005	-2.65742
Н	2.63158	6.05223	-2.32492
С	-3.20479	2.08873	1.18682
Н	-3.20216	2.90632	0.46436
С	-0.65172	6.50591	1.14537
С	3.80158	2.54747	-3.56757
Н	4.12944	1.56397	-3.91703
С	4.37759	3.69919	-4.07325
Н	5.16707	3.62499	-4.82749
С	3.95405	4.96877	-3.62523
Н	4.40930	5.87705	-4.02783
С	-2.10667	0.19512	2.24612
Н	-1.21942	-0.42874	2.37836
С	-4.37559	1.78425	1.88154
Н	-5.26979	2.39142	1.71458
С	-4.41826	0.70535	2.77325
Н	-5.33824	0.47537	3.31694
С	-3.27658	-0.08887	2.94660
Н	-3.30001	-0.94127	3.63108
Н	-2.02946	-0.26768	-2.40396
Н	2.48329	0.46993	-2.38052
С	-0.29553	6.46545	2.64998
Н	-0.61095	7.39824	3.14765
Н	-0.79264	5.62889	3.16646
Н	0.79120	6.35437	2.79927
С	-2.18078	6.67351	0.98977
Н	-2.73748	5.85298	1.46921
Н	-2.51412	7.61486	1.45831
Н	-2.47304	6.70395	-0.07305
С	0.03082	7.73629	0.52019
Н	1.12576	7.71087	0.63998
Н	-0.19310	7.83287	-0.55457
H	-0.33055	8.65200	1.01527
C	0.11608	-6.43482	2.68657
H	0.35808	-7.38/41	3.18759
H	0.72650	-5.64842	3.15710
H	-0.94308	-6.20615	2.89113
C	1.8/398	-6.86663	0.93005
H	2.53682	-6.09822	1.35721
H	2.13/13	-7.82890	1.40086
П	2.09928	-0.945/2	-0.14651
	-0.4542/	-/./101/	0.0185/
П II	-1.33333	-/.3/1/0	0./8030
п	-0.29413	-/.8/010	-0.40065
н	-0.16506	-8.04831	1.12998

($^{tBu}L3$)₂Zn (S_{0,eq}) B3LYP (SMD "toluene"/ def2-tzvpp def2/j)

Zn	0.00000	0.00000	0.02193
Ν	-1.07930	-1.45945	-0.99337
Ν	0.98914	-1.56711	0.73742
С	0.44104	-2.76112	0.35173
С	-0.67002	-2.70735	-0.57930
С	-0.87565	-5.14220	-0.53994
Η	-1.37195	-6.04548	-0.88414
С	0.80410	-4.03976	0.81516
Η	1.60265	-4.10973	1.55183
С	-1.31373	-3.89190	-1.03005
С	-2.78639	-2.42448	-2.37979

С	-2.07336	-1.31406	-1.83252
С	0.16488	-5.22305	0.38867
С	-2.40889	-3.74133	-1.97887
С	2.19427	-1.42822	1.43304
С	-3.12912	-4.83029	-2.53035
Η	-2.87004	-5.85233	-2.25129
С	3.33731	-2.23481	1.21269
Η	3.29812	-3.04001	0.47716
С	0.63408	-6.57213	0.97803
С	-3.84956	-2.22804	-3.29749
Н	-4.11851	-1.20764	-3.58454
С	-4.53194	-3.31175	-3.81716
Н	-5.35151	-3.16250	-4.52454
С	-4.16387	-4.61884	-3.42774
Н	-4.70293	-5.47645	-3.83937
С	2.32429	-0.36203	2.35501
Н	1.46055	0.28450	2.53574
С	4.53136	-1.99395	1.89696
Н	5.39697	-2.63318	1.69721
С	4.63625	-0.94429	2.81636
Н	5.57285	-0.76236	3.34976
С	3.52119	-0.12595	3.03192
Н	3.57997	0.70592	3.74020
Ν	1.07931	1.45945	-0.99337
Ν	-0.98914	1.56712	0.73743
С	-0.44103	2.76112	0.35172
С	0.67002	2.70735	-0.57930
С	0.87566	5.14220	-0.53995
Н	1.37195	6.04548	-0.88414
С	-0.80409	4.03976	0.81516
Н	-1.60264	4.10974	1.55183
С	1.31373	3.89190	-1.03006
С	2.78639	2.42448	-2.37979
С	2.07336	1.31406	-1.83252
С	-0.16487	5.22305	0.38867
С	2.40889	3.74134	-1.97888
С	-2.19428	1.42823	1.43303
С	3.12912	4.83030	-2.53036
Н	2.87003	5.85233	-2.25130
С	-3.33731	2.23481	1.21267
Н	-3.29812	3.04001	0.47715
С	-0.63407	6.57214	0.97803
С	3.84956	2.22803	-3.29749
Н	4.11851	1.20764	-3.58454
С	4.53194	3.31175	-3.81717
Н	5.35151	3.16249	-4.52455
С	4.16387	4.61884	-3.42775
Н	4.70293	5.47645	-3.83938
С	-2.32430	0.36202	2.35499
Н	-1.46056	-0.28451	2.53573
С	-4.53137	1.99394	1.89694
Н	-5.39698	2.63317	1.69718
C	-4.63626	0.94428	2.81633
H	-5.57287	0.76235	3.34971
С	-3.52121	0.12594	3.03189
H	-3.57998	-0.70594	3.74016
H	-2.35805	-0.29384	-2.11155
H	2.35804	0.29384	-2.11155
C	-0.41609	6.56410	2.50935
H	-0.74389	7.52108	2.94957
H	-0.98308	5.76017	3.00368
Н	0.64871	6.42549	2.75932

С	-2.13733	6.77536	0.67799
Н	-2.76049	5.98651	1.12678
Н	-2.48309	7.74036	1.08552
Н	-2.33064	6.77987	-0.40756
С	0.13559	7.76955	0.39142
Н	1.21523	7.71318	0.60321
Н	0.00495	7.85208	-0.69955
Н	-0.23650	8.70571	0.83814
С	0.41609	-6.56410	2.50935
Н	0.74390	-7.52108	2.94956
Η	0.98309	-5.76017	3.00368
Н	-0.64870	-6.42548	2.75932
С	2.13734	-6.77536	0.67799
Н	2.76050	-5.98651	1.12678
Н	2.48310	-7.74036	1.08552
Η	2.33065	-6.77987	-0.40756
С	-0.13558	-7.76955	0.39141
Н	-1.21522	-7.71317	0.60321
Η	-0.00495	-7.85207	-0.69955
Н	0.23650	-8.70570	0.83815

(* $^{tBu}L3$)₂Zn (S_{1,eq}) B3LYP (SMD "toluene"/ def2-tzvpp def2/j)

Zn	-0.30693	0.00583	-0.14607
Ν	-1.10668	-1.49503	-1.16135
Ν	0.80185	-1.51632	0.71497
С	0.31225	-2.76082	0.32969
С	-0.69797	-2.74361	-0.69513
С	-0.79007	-5.17790	-0.55482
Н	-1.21611	-6.10514	-0.93118
С	0.65229	-3.97415	0.93130
Н	1.33749	-3.95912	1.77868
С	-1.21692	-3.95024	-1.16617
С	-2.57779	-2.62223	-2.74992
С	-2.03533	-1.47390	-2.15393
С	0.11127	-5.21644	0.49334
С	-2.18486	-3.92850	-2.27066
С	2.01459	-1.31184	1.31167
С	-2.73569	-5.06848	-2.86610
Η	-2.44494	-6.06133	-2.51735
С	3.13663	-2.18935	1.19826
Η	3.06270	-3.08184	0.57701
С	0.54448	-6.51676	1.19631
С	-3.53294	-2.54666	-3.81908
Н	-3.83804	-1.56152	-4.18297
С	-4.05931	-3.69857	-4.37885
Н	-4.78744	-3.61986	-5.19207
С	-3.66847	-4.97068	-3.91409
Н	-4.08724	-5.87543	-4.36020
С	2.19568	-0.10042	2.04699
Н	1.35111	0.58714	2.13113
С	4.34247	-1.87968	1.81790
Н	5.19303	-2.55675	1.70155
С	4.48480	-0.70296	2.56884
Н	5.43563	-0.47121	3.05444
С	3.40104	0.18510	2.67210
Н	3.50437	1.10961	3.24595
Ν	0.83065	1.45586	-1.12365
Ν	-1.09604	1.58676	0.76402
С	-0.49179	2.76339	0.40921
С	0.54492	2.69770	-0.60241

С	0.92121	5.10672	-0.43445
Н	1.45009	5.99700	-0.76383
С	-0.73281	4.03057	0.97301
Н	-1.47550	4.10478	1.76583
С	1.23591	3.86449	-1.02881
С	2.48619	2.39789	-2.58723
С	1.73737	1.30313	-2.05566
С	-0.04609	5,19524	0.57004
С	2.24329	3.70527	-2.06874
С	-2.25988	1.49824	1.53827
С	3.00142	4.77799	-2.60127
Н	2.84455	5.79180	-2.23080
С	-3.35914	2.38129	1.41510
Н	-3.31309	3.20506	0.70045
C	-0.38864	6.53276	1.26169
Č	3.45504	2.19448	-3.60283
Ĥ	3.61893	1.18155	-3.98130
C	4 17689	3 26237	-4 10275
н	4.92337	3.10810	-4.88589
C	3 94415	4 56030	-3 59414
н	4 51 502	5 40496	-3 98926
C	-2 39551	0.41548	2 43828
н	-1 56377	-0 28698	2.15020
C	-4 52027	2 19383	2.5 152 1
н	-5 35479	2.199053	2.10911
C	-4 63254	1 12340	3 06456
н	-5 54380	0.98165	3 65126
C	-3 56015	0.23156	3 18537
н	-3.62749	-0.61711	3 87264
н	-2.36627	-0.48636	-2 48886
н	1 91658	0.28880	-2.40000
C II	-0.09100	6 41793	2.77569
н	-0.32958	7 36719	3 28409
н	-0.52558	5 62378	3 25230
и П	0.00500	6 10563	2 05108
п С	-1 88000	6 8/1920	1.05664
ч	2 53661	6.07031	1.05004
н Н	-2.55001	7 80518	1.40720
н	-2.14001	6 03633	-0.01550
C II	0.42070	7 71057	0.70057
н	1 51209	7.56451	0.84387
и П	0.24346	7.50451	0.37/17
и Ц	0.24340	8 638/13	-0.37417 1 22344
n C	0.14785	6 45427	2 68563
с и	0.12997	7 37400	2.08505
п ц	0.43943	-7.37490	2 20602
11 11	0.59500	-5.00504	2 78612
n C	-0.90300	-0.33300	2.76013
с u	2.08000	-0.0/242	1.09850
п u	2.01102	-3.03404	1.5/039
п u	2.40570	-1.J7717 6 70120	0.04414
п С	2.40333	-0./2438	0.04010
с u	-0.10/11	-1.13923	0.30323
п u	-1.20393	-1.12003	0.03200
п	0.10032	-/.80883	-0.49855
п	0.23233	-8.00493	1.09041

(^{*t*Bu}L3)₂Zn (T_{1,eq}) B3LYP (SMD "toluene"/ def2-tzvpp def2/j)

Zn	0.27636	-0.00959	-0.17916
Ν	-0.87787	-1.43802	-1.15068
Ν	1.09215	-1.59519	0.69040

С	0.47629	-2.76694	0.33778
С	-0.58291	-2.68642	-0.64960
С	-0.96631	-5.09500	-0.49689
Н	-1.50833	-5.97904	-0.82149
С	0.72409	-4.04083	0.88309
Н	1.48269	-4.12644	1.65933
С	-1.28866	-3.84590	-1.07205
С	-2.57504	-2.35744	-2.57990
С	-1.80930	-1.27150	-2.05531
С	0.02155	-5.19801	0.48560
С	-2.32122	-3.67193	-2.08488
С	2.27617	-1.50908	1.43220
С	-3.09506	-4.73582	-2.61210
Н	-2.93096	-5.75523	-2.26070
С	3.36513	-2.40276	1.29307
Н	3.29742	-3.23274	0.58782
С	0.36611	-6.54339	1.16299
С	-3.57029	-2.13897	-3.56626
Н	-3.74304	-1.12113	-3.92702
С	-4.30715	-3.19864	-4.06054
Н	-5.07423	-3.03256	-4.82103
С	-4.06294	-4.50311	-3.57640
Н	-4.64530	-5.34170	-3.96771
С	2.44525	-0.41625	2.31479
Н	1.62459	0.29752	2.43158
С	4.54516	-2.21749	2.01744
Н	5.37001	-2.92342	1.87997
С	4.68870	-1.13895	2.89731
Н	5.61462	-0.99967	3.46125
С	3.62848	-0.23531	3.03187
Н	3.72001	0.62105	3.70666
Ν	1.15591	1.50894	-1.12066
Ν	-0.83394	1.51476	0.68389
С	-0.34968	2.73102	0.31931
С	0.72865	2.71340	-0.66384
С	0.79007	5.14338	-0.53460
H	1.22823	6.07952	-0.87496
С	-0.75795	3.97682	0.87847
Н	-1.49981	3.95804	1.67627
C	1.27119	3.95193	-1.10599
С	2.75477	2.62204	-2.59655
C	2.16616	1.46888	-2.06294
C	-0.2068/	5.18/21	0.4/402
C	2.32108	3.92323	-2.13901
C	-2.01531	1.29/9/	1.38/3/
C II	2.91345	5.06/44	-2.69133
П	2.39399	0.03897	-2.30290
U U	-3.18/22	2.07620	1.21486
П	-3.19244	2.89338	0.49430
C	-0.03/08	0.30004	2 50128
U U	5.76472	2.33739	-3.39128
C II	4.110/0	3 71026	-3.93030
н	5 132/1	3.63810	-4.86678
C	3 01502	A 97871	-3 66507
н	4 36043	5 88810	-3.00507
C	-2 07472	0 18453	2 26085
н	-1 18460	-0 43705	2.20005
C	-4 35164	1 76588	1 91737
н	-5 24920	2 37019	1 75867
Ċ	-4.38403	0.68473	2.80635
Ĥ	-5.29903	0.45002	3.35616

С	-3.23836	-0.10560	2.96874
Н	-3.25364	-0.96029	3.65041
Н	-1.99641	-0.25252	-2.41092
Н	2.49129	0.47634	-2.38346
С	-0.28043	6.47544	2.63925
Н	-0.59510	7.40814	3.13759
Н	-0.76436	5.63806	3.16665
Н	0.80866	6.37167	2.77479
С	-2.18906	6.66431	1.00385
Н	-2.73510	5.84367	1.49513
Н	-2.52226	7.60590	1.47194
Н	-2.49657	6.68715	-0.05472
С	0.00871	7.73844	0.49988
Н	1.10507	7.72240	0.60681
Н	-0.22880	7.82856	-0.57248
Н	-0.35294	8.65437	0.99428
С	0.09148	-6.43681	2.68145
Н	0.32814	-7.39052	3.18286
Н	0.69943	-5.65234	3.15807
Н	-0.96837	-6.20612	2.87925
С	1.86035	-6.87049	0.93641
Н	2.52296	-6.10524	1.36925
Н	2.11786	-7.83432	1.40709
Η	2.09331	-6.94789	-0.13850
С	-0.46787	-7.71213	0.60710
Н	-1.54782	-7.56548	0.76827
Н	-0.30068	-7.86477	-0.47119
Н	-0.18522	-8.64668	1.11808

(^{*t*Bu}L3)₂Zn (S_{0,eq}) B3LYP (SMD "n-hexane"/ def2-tzvpp def2/j)

Zn	0.00000	0.00000	0.02981
Ν	-1.08520	-1.45829	-0.98394
Ν	0.99236	-1.56790	0.73579
С	0.44313	-2.76089	0.35065
С	-0.67286	-2.70637	-0.57453
С	-0.87622	-5.14128	-0.53903
Н	-1.37332	-6.04450	-0.88207
С	0.80984	-4.04036	0.80920
Н	1.61227	-4.11026	1.54164
С	-1.31842	-3.89071	-1.02386
С	-2.80135	-2.42147	-2.36055
С	-2.08517	-1.31186	-1.81581
С	0.16971	-5.22304	0.38358
С	-2.41973	-3.73881	-1.96516
С	2.20019	-1.43095	1.42812
С	-3.14283	-4.82703	-2.51436
Н	-2.88048	-5.84922	-2.23913
С	3.34391	-2.23250	1.19520
Н	3.30232	-3.03140	0.45289
С	0.64346	-6.57294	0.96741
С	-3.87120	-2.22436	-3.27028
Н	-4.14353	-1.20365	-3.55307
С	-4.55617	-3.30738	-3.78774
Н	-5.38090	-3.15721	-4.48886
С	-4.18398	-4.61494	-3.40396
Н	-4.72494	-5.47222	-3.81375
С	2.33118	-0.37248	2.35819
Η	1.46624	0.26969	2.54826
С	4.54053	-1.99432	1.87569
Η	5.40698	-2.62937	1.66665

С	4.64675	-0.95205	2.80312
Н	5.58542	-0.77192	3.33339
С	3.53072	-0.13869	3.03109
Н	3.59084	0.68733	3.74599
Ν	1.08521	1.45829	-0.98394
Ν	-0.99236	1.56790	0.73579
С	-0.44313	2.76089	0.35065
С	0.67287	2.70637	-0.57453
С	0.87622	5.14128	-0.53903
Н	1.37332	6.04449	-0.88208
С	-0.80984	4.04036	0.80919
Н	-1.61227	4.11026	1.54163
С	1.31842	3.89071	-1.02386
С	2.80136	2.42148	-2.36055
С	2.08518	1.31186	-1.81581
С	-0.16971	5.22304	0.38357
С	2.41973	3.73882	-1.96516
С	-2.20019	1.43094	1.42812
С	3.14284	4.82704	-2.51436
Н	2.88048	5.84922	-2.23913
С	-3.34391	2.23250	1.19519
Η	-3.30232	3.03140	0.45288
С	-0.64347	6.57295	0.96740
С	3.87120	2.22436	-3.27028
Н	4.14355	1.20366	-3.55306
С	4.55618	3.30739	-3.78774
Н	5.38091	3.15720	-4.48886
С	4.18398	4.61495	-3.40396
Н	4.72494	5.47222	-3.81376
С	-2.33118	0.37248	2.35819
Н	-1.46624	-0.26970	2.54825
С	-4.54053	1.99431	1.87568
Н	-5.40698	2.62936	1.66664
С	-4.64675	0.95204	2.80311
Н	-5.58542	0.77191	3.33338
С	-3.53072	0.13868	3.03109
Н	-3.59084	-0.68734	3.74598
Н	-2.37236	-0.29104	-2.09023
Н	2.37237	0.29104	-2.09022
С	-0.43360	6.56866	2.49998
Н	-0.76518	7.52606	2.93637
Н	-1.00174	5.76478	2.99287
Н	0.63001	6.43182	2.75548
С	-2.14533	6.77403	0.65846
Н	-2.76994	5.98516	1.10500
Н	-2.49459	7.73932	1.06224
Н	-2.33214	6.77598	-0.42815
С	0.12809	7.77004	0.38232
Н	1.20651	7.71517	0.60047
Н	0.00330	7.84967	-0.70952
Н	-0.24746	8.70685	0.82468
С	0.43360	-6.56866	2.49998
Н	0.76517	-7.52607	2.93637
Н	1.00174	-5.76479	2.99289
Н	-0.63001	-6.43182	2.75549
С	2.14532	-6.77403	0.65846
Н	2.76994	-5.98516	1.10500
Н	2.49458	-7.73932	1.06224
Н	2.33213	-6.77597	-0.42815
С	-0.12809	-7.77004	0.38232
Н	-1.20652	-7.71516	0.60048
Н	-0.00332	-7.84966	-0.70952

Н	0.24745	-8.70685	0.82469
---	---------	----------	---------

(*BuL3)2Zn (S1,eq) B3LYP (SMD "n-hexane"/ def2-tzvpp def2/j)

Zn	-0 32537	0.00364	-0 13761
N	-0.32337	-1 49672	-1 16827
N	0.78556	-1 51366	0.72859
C	0.30061	-2 76359	0.33663
C	-0.69398	-2 74806	-0 70034
C	-0.78418	-5.18215	-0.56204
ч	1 20200	6 10067	0.94667
II C	-1.20200	-0.10907	0.94007
U U	1 20488	-3.97238	1 80102
II C	1.30400	-3.95570	1.00192
C	-1.20301	-3.93336	-1.18039
C	-2.33/99	-2.02000	-2.76011
C	-2.01139	-1.4/920	-2.1/050
C	0.09830	-3.21831	0.49895
C	-2.15080	-3.93302	-2.30101
C	2.00029	-1.30/93	1.31294
C II	-2.68/98	-5.0/38/	-2.90811
H	-2.40152	-6.06653	-2.55553
C	3.11994	-2.19199	1.20608
H	3.03937	-3.09165	0.59635
C	0.52604	-6.51685	1.20848
С	-3.47345	-2.55267	-3.8/221
Н	-3.77445	-1.56783	-4.24014
С	-3.98706	-3.70494	-4.44272
Н	-4.70065	-3.62681	-5.26868
С	-3.60189	-4.97640	-3.97262
Н	-4.01084	-5.88136	-4.42720
С	2.19171	-0.08750	2.03410
Η	1.35010	0.60404	2.11463
С	4.32907	-1.87997	1.81649
Н	5.17628	-2.56200	1.70486
С	4.48035	-0.69454	2.55237
Н	5.43429	-0.46133	3.03096
С	3.40070	0.19983	2.64938
Η	3.51085	1.13063	3.21163
Ν	0.81064	1.45293	-1.12363
Ν	-1.10244	1.58697	0.77722
С	-0.49809	2.76171	0.41880
С	0.53131	2.69473	-0.60026
С	0.91339	5.10266	-0.43446
Н	1.44100	5.99237	-0.76725
С	-0.73229	4.02933	0.98487
Н	-1.46934	4.10392	1.78290
С	1.22141	3.86050	-1.03155
С	2.45643	2.39151	-2.60018
Ċ	1.70941	1.29841	-2.06284
Č	-0.04647	5.19241	0.57721
Ċ	2.22030	3.69916	-2.07916
Č	-2.25820	1.50391	1.56548
Ĉ	2.97669	4.77023	-2.61739
Ĥ	2.82467	5.78409	-2.24517
Ĉ	-3.35942	2.38390	1.44287
Ĥ	-3.32.089	3.19886	0.71764
C	-0.38166	6 53040	1 27155
č	3 41683	2 18694	-3 62344
й	3 57585	1 17400	-4 00403
C	4 13701	3 25329	-4 12861
Ĥ	4 87686	3 09764	-4 91771
		2.07701	

С	3.91108	4.55133	-3.61757
Н	4.48052	5.39503	-4.01676
С	-2.38228	0.43174	2.47884
Н	-1.54833	-0.26815	2.58280
С	-4.51227	2.20404	2.21123
Н	-5.34925	2.89782	2.08635
С	-4.61339	1.14399	3.11969
Н	-5.51838	1.00779	3.71726
С	-3.53890	0.25504	3.23990
Н	-3.59829	-0.58565	3.93756
Н	-2.34395	-0.49279	-2.51374
Н	1.88262	0.28357	-2.43752
С	-0.07369	6.41480	2.78339
Н	-0.30741	7.36401	3.29414
Н	-0.66581	5.62120	3.26410
Н	0.99233	6.19082	2.95230
С	-1.88272	6.84989	1.07669
Н	-2.52910	6.07208	1.51109
Н	-2.13581	7.80606	1.56451
Н	-2.13105	6.93739	0.00629
С	0.43487	7.70697	0.70520
Н	1.51798	7.55912	0.84102
Н	0.24136	7.86228	-0.36809
Н	0.15866	8.63541	1.23005
С	0.09177	-6.45481	2.69214
Н	0.39716	-7.37384	3.21965
Н	0.54726	-5.60180	3.21947
Н	-1.00271	-6.35937	2.77818
С	2.06374	-6.66861	1.13058
Н	2.58624	-5.82928	1.61590
Н	2.38326	-7.59446	1.63714
Н	2.40255	-6.71931	0.08287
С	-0.11370	-7.76160	0.56791
Н	-1.21342	-7.73160	0.62230
Н	0.17442	-7.87169	-0.48968
Н	0.22053	-8.66634	1.10014

(^{*t*Bu}L3)₂Zn (T_{1,eq}) B3LYP (SMD "n-hexane"/ def2-tzvpp def2/j)

Zn	0.28898	-0.00817	-0.17604
Ν	-0.86684	-1.43398	-1.15365
Ν	1.09574	-1.59595	0.69521
С	0.47822	-2.76543	0.34019
С	-0.57700	-2.68268	-0.65137
С	-0.96629	-5.09024	-0.50052
Н	-1.50857	-5.97334	-0.82703
С	0.72110	-4.04015	0.88606
Н	1.47672	-4.12677	1.66507
С	-1.28387	-3.84075	-1.07666
С	-2.56080	-2.34898	-2.58959
С	-1.79411	-1.26515	-2.06206
С	0.01783	-5.19542	0.48569
С	-2.31209	-3.66398	-2.09329
С	2.27650	-1.51507	1.44412
С	-3.08687	-4.72579	-2.62335
Н	-2.92640	-5.74534	-2.27082
С	3.36543	-2.40773	1.30189
Н	3.29978	-3.23120	0.58879
С	0.35709	-6.54166	1.16405
С	-3.55184	-2.12860	-3.57975
Н	-3.72085	-1.11051	-3.94162

С	-4.28961	-3.18630	-4.07661
Н	-5.05336	-3.01833	-4.84001
С	-4.05056	-4.49122	-3.59120
Н	-4.63354	-5.32848	-3.98440
С	2.44129	-0.43001	2.33629
Н	1.62015	0.28285	2.45479
С	4.54211	-2.22919	2.03314
Н	5.36759	-2.93385	1.89338
С	4.68162	-1.15821	2.92266
Н	5.60502	-1.02390	3.49182
С	3.62129	-0.25544	3.06018
Н	3.71019	0.59517	3.74245
Ν	1.15930	1.51159	-1.12333
Ν	-0.82447	1.51309	0.68819
С	-0.34505	2.73038	0.32063
С	0.72945	2.71476	-0.66698
С	0.78299	5.14479	-0.54197
Н	1.21635	6.08180	-0.88593
С	-0.75435	3.97578	0.88041
Н	-1.49196	3.95501	1.68207
С	1.26560	3.95474	-1.11390
С	2.74777	2.62793	-2.60825
С	2.16613	1.47357	-2.06979
С	-0.20932	5.18711	0.47197
С	2.31057	3.92800	-2.15168
С	-2.00264	1.29299	1.39572
С	2.89552	5.07337	-2.70938
Н	2.57316	6.06427	-2.38197
С	-3.17672	2.06948	1.22989
Н	-3.18588	2.89014	0.51118
С	-0.65962	6.50548	1.13821
С	3.77359	2.56540	-3.60696
Н	4.11042	1.58328	-3.95117
С	4.32899	3.71923	-4.12879
Н	5.11111	3.64869	-4.89065
С	3.89383	4.98676	-3.68703
Н	4.33253	5.89704	-4.10272
С	-2.05705	0.17739	2.26681
Н	-1.16562	-0.44345	2.38357
С	-4.33775	1.75572	1.93636
Н	-5.23693	2.35890	1.78265
С	-4.36491	0.67251	2.82288
Н	-5.27726	0.43506	3.37581
С	-3.21735	-0.11633	2.97851
Н	-3.22854	-0.97293	3.65781
Н	-1.97655	-0.24555	-2.41849
Н	2.49421	0.48168	-2.38905
С	-0.27309	6.47881	2.63583
Н	-0.58756	7.41124	3.13476
Н	-0.75055	5.64062	3.16769
Н	0.81711	6.37852	2.76409
С	-2.19302	6.65897	1.01217
H	-2.73339	5.83720	1.50773
H	-2.52642	7.59998	1.48123
H	-2.50696	6.67929	-0.04449
С	-0.00204	7.73929	0.49264
H	1.09492	7.72725	0.59331
H	-0.24626	7.82649	-0.57843
H	-0.36395	8.65487	0.98741
C	0.07628	-6.43509	2.68149
H	0.30972	-7.38913	3.18374
Н	0.68294	-5.65125	3.16057

Н	-0.98403	-6.20288	2.87450
С	1.85169	-6.87158	0.94319
Н	2.51386	-6.10733	1.37826
Н	2.10578	-7.83576	1.41495
Н	2.08829	-6.94915	-0.13082
С	-0.47675	-7.70887	0.60444
Н	-1.55697	-7.56015	0.76158
Н	-0.30538	-7.86115	-0.47322
Н	-0.19782	-8.64415	1.11605

References

- 1 I. B. Lozada, T. Murray and D. E. Herbert, *Polyhedron*, 2019, 161, 261–267.
- 2 Bruker-AXS. APEX3 V2016.1-0, 2016, .
- 3 G. M. Sheldrick, Acta Cryst A, 2015, 71, 3–8.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- 5 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, 466–470.
- 6 F. Neese, WIREs Comp. Mol. Sci., 2012, 2, 73–78.
- 7 F. Neese, WIREs Comp. Mol. Sci., 2022, 12, e1606.
- 8 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- 9 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, NBO 7.0 2018.
- 10 Y. Zhao and D. G. Truhlar, Theor Chem Account, 2008, 120, 215–241.
- 11K. P. Jensen, Inorg. Chem., 2008, 47, 10357-10365.
- 12 A. J. Cohen and N. C. Handy, Mol. Phys., 2001, 99, 607-615.
- 13 M. Reiher, O. Salomon and B. Artur Hess, Theor. Chem. Acc., 2001, 107, 48-55.
- 14C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 15T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
- 16T. Lu and F. Chen, J. Comp. Chem., 2011, 33, 580-592.
- 17A.-R. Allouche, J. Comp. Chem., 2011, 32, 174–182.
- 18T. Lu and F. Chen, J. Theor. Comput. Chem., 2012, 163-183.
- 19Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- 20G. Frenking and S. Shaik, *The Chemical Bond: Fundamental Aspects of Chemical Bonding*, 2014.
- 21N. C. Handy and A. J. Cohen, Mol. Phys, 2001, 99, 403-412.
- 22P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
- 23 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2008, 128, 184109.