Electronic Supplementary Information

Silver(I)-catalyzed highly *para*-selective phosphonation of 2aryloxazolines

Peng-Cheng Cui^a and Guan-Wu Wang*abc

^a Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. E-mail: gwang@ustc.edu.cn

^b Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

Table of Contents

1. General information	S2
2. Synthesis of 2-aryloxazolines 1 and phosphine oxides 2	S2
3. Optimization of the reaction conditions	S3
4. Synthesis and characterization of compounds 3	S5
5. Preliminary mechanistic studies	S18
6. Typical reaction at the 5.0-mmol scale	S22
7. Synthesis and characterization of product 4	S23
8. References	S23
9. NMR spectra of compounds 3 and 4	S24

1. General information

All the reactions were performed in sealed Schlenk tubes. NMR spectra were recorded on a Bruker spectrometer (400 MHz or 500 MHz for ¹H NMR; 101 MHz or 126 MHz for ¹³C NMR; 376 MHz or 471 MHz for ¹⁹F NMR and 162 MHz or 202 MHz for ³¹P NMR). ¹H NMR chemical shifts were determined relative to the internal TMS at δ 0.00 ppm. ¹³C NMR chemical shifts were determined relative to that of CDCl₃ at δ 77.16 ppm. The ¹H NMR and ¹³C NMR data were recorded as follows: chemical shift (δ , ppm) and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Highresolution mass spectral analysis (HRMS) was performed on a Waters XEVO G2 Q-TOF. **1a–i**¹ and **2c–q**² were synthesized according to the reported literature. Other chemicals were purchased from *J&K*, *Adamas-beta* and *Aladdin* and were used directly. Solvents were purchased from *Sinopharm Chemical Reagent Co., Ltd.* and used directly.

2. Synthesis of 2-aryloxazolines 1 and phosphine oxides 2 General procedure for the synthesis of 2-aryloxazolines 1

According to the reported literature,¹ a mixture of a nitrile (5.0 mmol), 2-amino-2methyl-1-propanol (15.0 mmol), [CuCl(IPr)] (0.15 mmol) and NaOAc (0.75 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. The resulting mixture was stirred at 100 °C for 16 h. Then the organic phase was collected and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) as the eluent to give the corresponding 2-aryloxazoline **1**.

General procedure for the synthesis of phosphine oxides 2

According to the reported literature,² to a 100 mL round bottom flask, the corresponding Grignard reagent (30.0 mmol, 1.0 mol/L in THF) was added and cooled to 0 °C. Subsequently, diethyl phosphite (10.0 mmol) was dissolved in dry THF (5.0 mL) and added dropwise to the solution. After the addition, the reaction mixture was gradually warmed up to room temperature and stirred for 2 h. Then, the mixture was cooled to 0 °C, and NH₄Cl (10 mL) was added to quench the reaction. The crude mixture was then extracted with dichloromethane and dried over Na₂SO₄, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give the corresponding phosphine oxide 2c-i. Phosphine oxides 2p and 2q could be similarly prepared by using the corresponding Grignard reagent.

$$\begin{array}{cccc} MgBr & O & dry THF \\ \hline Ar & + & H-P'-OEt \\ Ph & Ph \end{array} \xrightarrow{-78 °C-rt, 2 h} Ph H Ar \\ 2.2 equiv & 1.0 equiv \end{array}$$

According to the reported literature,² to a 100 mL round bottom flask, the corresponding Grignard reagent (22.0 mmol, 1.0 mol/L in THF) was added and cooled to -78 °C. Subsequently, ethyl phenylphosphinate (10.0 mmol) was dissolved in dry THF (5.0 mL) and added dropwise to the solution. After the addition, the reaction mixture was gradually warmed up to room temperature and stirred for 2 h. Then, the mixture was cooled to 0 °C, and NH₄Cl (10 mL) was added to quench the reaction. The crude mixture was then extracted with dichloromethane and dried over Na₂SO₄, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give the corresponding phosphine oxide 2j-n.

3. Optimization of the reaction conditions

In our initial investigation, we chose 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (1a) and di-p-tolylphosphine oxide (2a) as model substrates to screen the reaction conditions (Table S1). Initially, when Ag₂CO₃, AgOAc, Ag₂O and AgNO₃ were used as catalysts, (4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-p-tolylphosphine oxide (3aa)could be obtained in 16-34% yields (entries 1-4). Gratifyingly, if AgNTf₂ was employed as a catalyst, 3aa was isolated in 73% yield (entry 5). However, the yield of **3aa** was slightly decreased to 65% when AgSbF₆ was utilized as the catalyst (entry 6). In the presence of other Lewis acids, such as FeCl₃, CuCl₂ and AlCl₃, **3aa** was obtained in yields of 0-21% (entries 7-9). Subsequently, no better results were obtained with $Na_2S_2O_8$, $(NH_4)_2S_2O_8$ and Oxone as oxidants (entries 10–12). When we replaced pivalic acid (PivOH) with P'Bu₃·HBF₄, PPh₃ and MesCO₂H as additives, the yields of **3aa** were decreased to 6–64% (entries 13–15). The solvent had an important effect on the reaction; when DMSO, DMF or 1,4-dioxane was used in place of MeCN, 3aa could not be obtained (entries 16-18). In addition, a reaction temperature of 120 °C was found to be optimal. Either lowering the temperature to 110 °C or raising the temperature to 130 °C resulted in a lower efficiency (entries 19 and 20). Finally, the yield of 3aa was reduced to 17% when the reaction mixture was exposed to air (entry 21), indicating that O_2 in air had a detrimental effect. Control experiments showed that K₂S₂O₈ played a crucial role in this system, and **3aa** was not obtained in its absence; both AgNTf₂ and PivOH also had important effects on the yield of 3aa (entries 22-25). Regardless of whether the amounts of 2a and K₂S₂O₈ were reduced or increased, the yield of 3aa dropped to 12-15% (entries 26 and 27).

Table S1 Optimization of the reaction conditions^a

	\nearrow	0	catalyst		
	O _↓ N	+ H-Ё-< →	oxidant, additive	→ \ _	
	\square	so	Ivent, 120 °C, Ar, 24	h O=P	
	H				
	1a	2a		3aa	
Entry	Catalyst	Oxidant	Additive	Solvent	Yield $(\%)^b$
1	Ag ₂ CO ₃	$K_2S_2O_8$	PivOH	MeCN	25
2	AgOAc	$K_2S_2O_8$	PivOH	MeCN	34
3	Ag ₂ O	$K_2S_2O_8$	PivOH	MeCN	16
4	AgNO ₃	$K_2S_2O_8$	PivOH	MeCN	22
5	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	73
6	AgSbF ₆	$K_2S_2O_8$	PivOH	MeCN	65
7	FeCl ₃	$K_2S_2O_8$	PivOH	MeCN	0
8	CuCl ₂	$K_2S_2O_8$	PivOH	MeCN	0
9	AlCl ₃	$K_2S_2O_8$	PivOH	MeCN	21
10	AgNTf ₂	$Na_2S_2O_8$	PivOH	MeCN	37
11	AgNTf ₂	$(NH_4)_2S_2O_8$	PivOH	MeCN	31
12	AgNTf ₂	Oxone	PivOH	MeCN	0
13	AgNTf ₂	$K_2S_2O_8$	P ^t Bu ₃ ·HBF ₄	MeCN	64
14	AgNTf ₂	$K_2S_2O_8$	PPh ₃	MeCN	6
15	AgNTf ₂	$K_2S_2O_8$	MesCO ₂ H	MeCN	14
16	AgNTf ₂	$K_2S_2O_8$	PivOH	DMSO	0
17	AgNTf ₂	$K_2S_2O_8$	PivOH	DMF	0
18	AgNTf ₂	$K_2S_2O_8$	PivOH	1,4-Dioxane	0
19 ^c	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	37
20^d	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	23
21^e	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	17
22	AgNTf ₂		PivOH	MeCN	0
23		$K_2S_2O_8$		MeCN	13
24		$K_2S_2O_8$	PivOH	MeCN	19
25	AgNTf ₂	$K_2S_2O_8$		MeCN	26
26 ^f	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	12
27 ^g	AgNTf ₂	$K_2S_2O_8$	PivOH	MeCN	15

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), catalyst (10 mol%), oxidant (0.6 mmol), additive (0.1 mmol), solvent (1.0 mL) at 120 °C for 24 h under an argon atmosphere. ^{*b*}Isolated yields based on **1a**. ^{*c*}110 °C. ^{*d*}130 °C. ^{*e*}under an air atmosphere. ^{*f*}**2a** (0.4 mmol), K₂S₂O₈ (0.4 mmol). ^{*g*}**2a** (0.8 mmol), K₂S₂O₈ (0.8 mmol).

4. Synthesis and characterization of compounds 3

General procedure for the silver(I)-catalyzed highly *para*-selective phosphonation of 2-aryloxazolines.

To a 25 mL Schlenk tube with a magnetic stir bar were added 1 (0.2 mmol), phosphine oxide 2 (0.6 mmol, 3.0 equiv), AgNTf₂ (0.02 mmol, 10 mol%), K₂S₂O₈ (0.6 mmol, 3.0 equiv) and PivOH (0.1 mmol, 0.5 equiv). The mixture was then evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. After stirring at 120 °C for 24 h, the reaction mixture was cooled to room temperature. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give compound **3**.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-p-tolylphosphine oxide (3aa)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (8.0 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3aa** (58.5 mg, 73% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.7 Hz, 2H), 7.71 (dd, J = 11.2, 7.7 Hz, 2H), 7.53 (dd, J = 11.7, 7.5 Hz, 4H), 7.26 (d, J = 7.5 Hz, 4H), 4.12 (s, 2H), 2.40 (s, 6H), 1.38 (s, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 161.4, 142.7 (2C, d, $J_{C-P} = 2.8$ Hz), 136.1 (1C, d, $J_{C-P} = 102.3$ Hz), 132.15 (4C, d, $J_{C-P} = 10.3$ Hz), 132.09 (2C, d, $J_{C-P} = 10.0$ Hz), 131.2 (1C, d, $J_{C-P} = 2.8$ Hz), 129.4 (4C, d, $J_{C-P} = 12.6$ Hz), 129.0 (2C, d, $J_{C-P} = 106.7$ Hz), 128.1 (2C, d, $J_{C-P} = 12.1$ Hz), 79.4 (1C), 67.9 (1C), 28.4 (2C), 21.7 (2C); ³¹P NMR (162 MHz, CDCl₃) δ 28.9;

HRMS (ESI) m/z: Calcd for C₂₅H₂₇NO₂P [M+H]⁺ 404.1774; found 404.1776.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-methylphenyl)di-*p*-tolylphosphine oxide (3ba)

By following the general procedure, the reaction of **1b** (37.1 mg, 0.2 mmol) with **2a** (138.3 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (163.8 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ba** (49.9 mg, 61% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.1, 2.6 Hz, 1H), 7.62 (d, *J* = 12.2 Hz, 1H), 7.52 (dd, *J* = 11.8, 7.4 Hz, 4H), 7.42 (dd, *J* = 10.7, 8.1 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 4H), 4.08 (s, 2H), 2.56 (s, 3H), 2.40 (s, 6H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (1C), 142.6 (2C, d, *J*_{C-P} = 2.7 Hz), 138.9 (1C, d, *J*_{C-P} = 11.8 Hz), 135.0 (1C, d, *J*_{C-P} = 102.6 Hz), 134.6 (1C, d, *J*_{C-P} = 12.5 Hz), 129.3 (4C, d, *J*_{C-P} = 12.6 Hz), 129.14 (1C, d, *J*_{C-P} = 10.1 Hz), 129.135 (2C, d, *J*_{C-P} = 107.1 Hz),

78.9 (1C), 68.2 (1C), 28.5 (2C), 21.7 (2C), 21.5 (1C);

³¹P NMR (162 MHz, CDCl₃) δ 29.0;

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₉NO₂P [M+H]⁺ 418.1930; found 418.1934.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-fluorophenyl)di-*p*-tolylphosphine oxide (3ca)

By following the general procedure, the reaction of **1c** (38.4 mg, 0.2 mmol) with **2a** (138.1 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), $K_2S_2O_8$ (162.3 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ca** (38.5 mg, 46% yield). Colorless oil;

¹H NMR (400 MHz, CDCl₃) δ 7.80 (ddd, J = 10.4, 7.4, 3.2 Hz, 1H), 7.57–7.47 (m, 5H), 7.42 (t, J = 11.3, Hz, 1H), 7.28 (dd, J = 7.6, 2.1 Hz, 4H), 4.11 (s, 2H), 2.41 (s, 6H), 1.40 (s, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 160.6 (1C, dd, $J_{C-F} = 261.7$ Hz, $J_{C-P} = 16.5$ Hz), 158.3 (1C, d, $J_{C-F} = 5.0$ Hz), 143.0 (2C, d, $J_{C-P} = 2.8$ Hz), 138.9 (1C, dd, $J_{C-P} = 100.4$ Hz, $J_{C-F} = 6.2$ Hz), 132.1 (4C, d, $J_{C-P} = 10.4$ Hz), 131.5 (1C, d, $J_{C-P} = 13.2$ Hz), 129.5 (4C, d, $J_{C-P} = 12.7$ Hz), 128.4 (2C, d, $J_{C-P} = 108.0$ Hz), 127.4 (1C, dd, $J_{C-P} = 8.9$ Hz, $J_{C-F} = 4.0$ Hz), 120.3 (1C, dd, $J_{C-F} = 23.3$ Hz, $J_{C-P} = 10.8$ Hz), 119.6 (1C, dd, $J_{C-F} = 10.9$ Hz, $J_{C-P} = 2.6$ Hz), 79.1 (1C), 68.2 (1C), 28.4 (2C), 21.7 (2C);

¹⁹F NMR (377 MHz, CDCl₃) δ –108.1 (1F, d, J = 4.3 Hz);

³¹P NMR (162 MHz, CDCl₃) δ 27.7 (1P, d, J = 4.1 Hz);

HRMS (ESI) *m/z*: Calcd for C₂₅H₂₆FNO₂P [M+H]⁺ 422.1680; found 422.1682.

Methyl 5-(di-*p*-tolylphosphoryl)-2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)benzoate (3da)

By following the general procedure, the reaction of **1d** (47.2 mg, 0.2 mmol) with **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3da** (39.2 mg, 42% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 11.6 Hz, 1H), 7.85–7.78 (m, 2H), 7.50 (dd, *J* = 12.0, 7.8 Hz, 4H), 7.27 (d, *J* = 7.8 Hz, 4H), 4.12 (s, 2H), 3.84 (s, 3H), 2.41 (s, 6H), 1.39 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 167.4 (1C), 161.4 (1C), 143.0 (2C, d, $J_{C-P} = 2.6$ Hz), 136.2 (1C, d, $J_{C-P} = 101.5$ Hz), 134.5 (1C, d, $J_{C-P} = 9.5$ Hz), 132.4 (1C, d, $J_{C-P} = 10.9$ Hz), 132.3 (1C, d, $J_{C-P} = 11.9$ Hz), 132.2 (4C, d, $J_{C-P} = 10.3$ Hz), 131.6 (1C, d, $J_{C-P} = 2.5$ Hz), 129.8 (1C, d, $J_{C-P} = 11.8$ Hz), 129.6 (4C, d, $J_{C-P} = 12.8$ Hz), 128.4 (2C, d, $J_{C-P} = 108.2$ Hz), 80.1 (1C), 68.4 (1C), 52.7 (1C), 28.2 (2C), 21.8 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 28.2;

HRMS (ESI) *m/z*: Calcd for C₂₇H₂₉NO₄P [M+H]⁺ 462.1829; found 462.1825.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2-methoxyphenyl)di-*p*-tolylphosphine oxide (3ea)

By following the general procedure, the reaction of **1e** (41.2 mg, 0.2 mmol) with **2a** (138.0 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), $K_2S_2O_8$ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ea** (67.9 mg, 78% yield). Colorless oil;

¹H NMR (500 MHz, CDCl₃) *δ* 7.71 (dd, *J* = 13.1, 7.9 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.53–7.46 (m, 5H), 7.19 (dd, *J* = 8.1, 2.3 Hz, 4H), 4.12 (s, 2H), 3.60 (s, 3H), 2.38 (s, 6H), 1.38 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 160.8 (1C, d, $J_{C-P} = 3.1$ Hz), 142.2 (2C, d, $J_{C-P} = 2.6$ Hz), 134.9 (1C, d, $J_{C-P} = 7.3$ Hz), 133.7 (1C), 131.8 (4C, d, $J_{C-P} = 10.9$ Hz), 129.2 (2C, d, $J_{C-P} = 111.0$ Hz), 129.1 (4C, d, $J_{C-P} = 13.0$ Hz), 123.6 (1C, d, $J_{C-P} = 102.0$ Hz), 120.7 (1C, d, $J_{C-P} = 11.8$ Hz), 111.1 (1C, d, $J_{C-P} = 6.4$ Hz), 79.4 (1C), 67.9 (1C), 55.8 (1C), 28.4 (2C), 21.7 (2C);

³¹P NMR (202 MHz, CDCl₃) δ 28.1;

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₉NO₃P [M+H]⁺ 434.1880; found 434.1869.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2-fluorophenyl)di-*p*-tolylphosphine oxide (3fa)

By following the general procedure, the reaction of **1f** (38.8 mg, 0.2 mmol) with **2a** (138.1 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3fa** (35.2 mg, 41% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (ddd, *J* = 12.4, 7.8, 6.6 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.50 (ddd, *J* = 10.1, 4.6, 1.2 Hz, 1H), 7.60 (dd, *J* = 12.6, 8.0 Hz, 4H), 7.27 (dd, *J* = 8.0, 2.6 Hz, 4H), 4.12 (s, 2H), 2.40 (s, 6H), 1.38 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (1C, dd, *J*_{C-F} = 250.9 Hz, *J*_{C-P} = 1.9 Hz), 160.5 (1C, d, *J*_{C-F} = 2.6 Hz), 142.9 (2C, d, *J*_{C-P} = 2.7 Hz), 135.0 (1C, dd, *J*_{C-F} = 4.8 Hz, *J*_{C-P} = 4.8 Hz), 134.5 (1C, dd, *J*_{C-P} = 8.7 Hz, *J*_{C-F} = 2.0 Hz), 131.8 (4C, dd, *J*_{C-F} = 11.0 Hz, *J*_{C-F} = 1.3 Hz), 129.4 (4C, d, *J*_{C-P} = 13.3 Hz), 128.8 (2C, d, *J*_{C-F} = 17.6 Hz), 115.9 (1C, dd, *J*_{C-F} = 25.5 Hz, *J*_{C-P} = 5.6 Hz), 79.6 (1C), 68.1 (1C), 28.4 (2C), 21.8 (2C); ¹⁹F NMR (471 MHz, CDCl₃) δ 24.1; HRMS (ESI) *m*/*z*: Calcd for C₂₅H₂₆FNO₂P [M+H]⁺ 422.1680; found 422.1680.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2,6-dimethoxyphenyl)di-*p*-tolylphosphine oxide (3ga)

By following the general procedure, the reaction of **1g** (47.0 mg, 0.2 mmol) with **2a** (138.1 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ga** (48.9 mg, 53% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 12.4, 8.0 Hz, 4H), 7.18 (dd, *J* = 8.0, 2.5 Hz, 4H), 7.08 (d, *J* = 4.1 Hz, 2H), 4.12 (s, 2H), 3.42 (s, 6H), 2.36 (s, 6H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (2C), 161.4 (1C), 140.8 (2C, d, *J*_{C-P} = 2.9 Hz), 133.9 (1C), 133.1 (2C, d, *J*_{C-P} = 112.3 Hz), 130.7 (4C, d, *J*_{C-P} = 10.4 Hz), 128.7 (4C, d, *J*_{C-P} = 13.1 Hz), 111.7 (1C, d, *J*_{C-P} = 101.4 Hz), 104.5 (2C, d, *J*_{C-P} = 6.0 Hz), 79.3 (1C), 68.0 (1C), 55.9 (2C), 28.4 (2C), 21.6 (2C, d, $J_{C-P} = 1.1 \text{ Hz}$); ³¹P NMR (162 MHz, CDCl₃) δ 22.9; HRMS (ESI) *m/z*: Calcd for C₂₇H₃₁NO₄P [M+H]⁺ 464.1985; found 464.1984.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-5-fluoro-2-methoxyphenyl)di-*p*-tolylphosphine oxide (3ha)

By following the general procedure, the reaction of **1h** (44.6 mg, 0.2 mmol) with **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ha** (56.8 mg, 63% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.48 (m, 5H), 7.36 (dd, *J* = 5.4, 5.4 Hz, 1H), 7.22 (dd, *J* = 7.9, 2.8 Hz, 4H), 4.12 (s, 2H), 3.58 (s, 3H), 2.39 (s, 6H), 1.40 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7 (1C, d, *J*_{C-F} = 5.2 Hz), 156.3 (1C, dd, *J*_{C-P} = 2.5 Hz, *J*_{C-F} = 2.4 Hz), 155.2 (1C, dd, *J*_{C-F} = 253.7 Hz, *J*_{C-P} = 15.4 Hz), 142.5 (2C, d, *J*_{C-P} = 2.8 Hz), 131.9 (4C, d, *J*_{C-P} = 99.2 Hz, *J*_{C-F} = 5.6 Hz), 122.9 (1C, dd, *J*_{C-F} = 25.7 Hz, *J*_{C-P} = 7.7 Hz), 120.7 (1C, dd, *J*_{C-P} = 12.6 Hz, *J*_{C-F} = 2.3 Hz), 113.4 (1C, d, *J*_{C-F} = 7.2 Hz), 79.3 (1C), 68.0 (1C), 56.2 (1C), 28.4 (2C), 21.7 (2C, d, *J*_{C-P} = 1.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -118.9 (1F, d, *J* = 2.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 26.3 (1P, d, *J* = 2.4 Hz); HRMS (ESI) *m/z*: Calcd for C₂₆H₂₈FNO₃P [M+H]⁺ 452.1785; found 452.1790.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)naphthalen-1-yl)di-*p*-tolylphosphine oxide (3ia)

By following the general procedure, the reaction of **1i** (45.6 mg, 0.2 mmol) with **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (8.0 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ia** (44.9 mg, 49% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 9.03 (d, *J* = 8.6 Hz, 1H), 8.70 (d, *J* = 8.6 Hz, 1H), 7.88 (dd, *J* = 7.4, 2.1 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.52 (dd, *J* = 11.9, 7.4 Hz, 4H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.31 (dd, *J* = 15.5, 7.5 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 4H), 4.16 (s, 2H), 2.39 (s, 6H), 1.48 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 142.5 (2C, d, $J_{C-P} = 2.7$ Hz), 134.2 (1C, d, $J_{C-P} = 8.3$ Hz), 132.8 (1C, d, $J_{C-P} = 99.9$ Hz), 132.4 (1C, d, $J_{C-P} = 11.4$ Hz), 132.1 (4C, d, $J_{C-P} = 10.2$ Hz), 131.5 (1C, d, $J_{C-P} = 8.5$ Hz), 129.8 (1C), 129.7 (1C, d, $J_{C-P} = 2.7$ Hz), 129.45 (4C, d, $J_{C-P} = 12.7$ Hz), 129.40 (2C, d, $J_{C-P} = 107.4$ Hz), 129.0 (1C), 128.1 (1C, d, $J_{C-P} = 5.8$ Hz), 127.7 (1C), 127.6 (1C), 126.9 (1C), 126.6 (1C, d, $J_{C-P} = 14.3$ Hz), 78.6 (1C), 68.8 (1C), 28.6 (2C), 21.7 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 32.6;

HRMS (ESI) *m/z*: Calcd for C₂₉H₂₉NO₂P [M+H]⁺ 454.1930; found 454.1929.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)diphenylphosphine oxide (3ab)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2b** (121.7 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ab** (50.2 mg, 67% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.4, 2.5 Hz, 2H), 7.71 (dd, *J* = 11.6, 8.4 Hz, 2H), 7.64 (11 L, 12.1, 7.74 Hz), 7.55 (11 L, 7.5, 11 Hz) (2.9)

2H), 7.64 (dd, *J* = 12.1, 7.7 Hz, 4H), 7.55 (td, *J* = 7.5, 1.1 Hz, 2H), 7.55 (td, *J* = 7.6, 2.8 Hz, 4H), 4.12 (s, 2H), 1.38 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.3 (1C), 135.5 (1C, d, $J_{C-P} = 102.6$ Hz), 132.3 (2C, d, $J_{C-P} = 2.6$ Hz), 132.16 (6C, d, $J_{C-P} = 10.0$ Hz), 132.14 (2C, d, $J_{C-P} = 104.7$ Hz), 131.5 (1C, d, $J_{C-P} = 2.7$ Hz), 128.7 (4C, d, $J_{C-P} = 12.5$ Hz), 128.3 (2C, d, $J_{C-P} = 12.4$ Hz), 79.4 (1C), 68.0 (1C), 28.5 (2C);

³¹P NMR (202 MHz, CDCl₃) δ 28.8;

HRMS (ESI) *m/z*: Calcd for C₂₃H₂₃NO₂P [M+H]⁺ 376.1461; found 376.1464.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-*m*-tolylphosphine oxide (3ac)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2c** (137.8 mg, 0.6 mmol), AgNTf₂ (8.0 mg, 0.02 mmol), K₂S₂O₈ (162.8 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3ac** (44.7 mg, 56% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.5, 2.5 Hz, 2H), 7.72 (dd, *J* = 11.6, 8.5 Hz, 2H), 7.54 (d, *J* = 12.5 Hz, 2H), 7.38–7.33 (m, 6H), 4.13 (s, 2H), 2.36 (s, 6H), 1.39 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 138.7 (2C, d, *J*_{C-P} = 12.1 Hz), 135.9 (1C, d, *J*_{C-P} = 101.5 Hz), 133.1 (2C, d, *J*_{C-P} = 2.7 Hz), 132.6 (2C, d, *J*_{C-P} = 9.7 Hz), 132.2 (2C,

d, $J_{C-P} = 10.1$ Hz), 132.1 (2C, d, $J_{C-P} = 104.1$ Hz), 131.3 (1C, d, $J_{C-P} = 2.7$ Hz), 129.3 (2C, d, $J_{C-P} = 10.2$ Hz), 128.5 (2C, d, $J_{C-P} = 12.9$ Hz), 128.2 (2C, d, $J_{C-P} = 12.1$ Hz), 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.6 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 29.0; HRMS (ESI) *m/z*: Calcd for C₂₅H₂₇NO₂P [M+H]⁺ 404.1774; found 404.1772.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(3-methoxyphenyl)phosphine oxide (3ad)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2d** (157.6 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.2 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ad** (54.6 mg, 63% yield). Colorless oil;

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.5, 2.6 Hz, 2H), 7.71 (dd, J = 11.7, 8.5 Hz, 2H), 7.36 (ddd, J = 11.8, 7.9, 3.9 Hz, 2H), 7.26 (ddd, J = 13.5, 2.5, 1.3 Hz, 2H), 7.12 (dd, J = 11.9, 7.5 Hz, 2H), 7.08 (dd, J = 8.3, 2.6 Hz, 2H), 4.13 (s, 2H), 3.79 (s, 6H), 1.39 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 159.7 (2C, d, $J_{C-P} = 14.8$ Hz), 135.4 (1C, d, $J_{C-P} = 102.9$ Hz), 133.3 (2C, d, $J_{C-P} = 104.1$ Hz), 132.1 (2C, d, $J_{C-P} = 10.1$ Hz), 131.5 (1C, d, $J_{C-P} = 2.7$ Hz), 129.9 (2C, d, $J_{C-P} = 14.6$ Hz), 128.3 (2C, d, $J_{C-P} = 12.1$ Hz), 124.4 (2C, d, $J_{C-P} = 10.2$ Hz), 118.5 (2C, d, $J_{C-P} = 2.5$ Hz), 116.8 (2C, d, $J_{C-P} = 10.9$ Hz), 79.4 (1C), 68.0 (1C), 55.6 (2C), 28.5 (2C);

³¹P NMR (202 MHz, CDCl₃) δ 29.3;

HRMS (ESI) *m/z*: Calcd for C₂₅H₂₇NO₄P [M+H]⁺ 436.1672; found 436.1667.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(4-methoxyphenyl)phosphine oxide (3ae)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2e** (157.8 mg, 0.6 mmol), AgNTf₂ (8.0 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3ae** (58.9 mg, 68% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.2, 2.0 Hz, 2H), 7.69 (dd, J = 11.6, 8.2 Hz, 2H), 7.54 (dd, J = 11.5, 8.7 Hz, 4H), 6.94 (dd, J = 8.7, 1.7 Hz, 4H), 4.12 (s, 2H), 3.84 (s, 6H), 1.38 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 162.6 (2C, d, $J_{C-P} = 2.6$ Hz), 161.4 (1C), 136.5 (1C, d, $J_{C-P} = 103.1$ Hz), 134.0 (4C, d, $J_{C-P} = 11.6$ Hz), 132.0 (2C, d, $J_{C-P} = 10.0$ Hz), 131.2 (1C), 128.2 (2C, d, $J_{C-P} = 12.1$ Hz), 123.6 (2C, d, $J_{C-P} = 111.6$ Hz), 114.2 (4C, d, $J_{C-P} = 13.1$ Hz), 79.4 (1C), 68.0 (1C), 55.5 (2C), 28.5 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 28.6; HRMS (ESI) *m/z*: Calcd for C₂₅H₂₆NO₄PNa [M+Na]⁺ 458.1492; found 458.1501.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(4-fluorophenyl)phosphine oxide (3af)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2f** (117 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (95.9 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3af** (50.8 mg, 62% yield). Colorless oil;

¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, J = 8.3, 2.5 Hz, 2H), 7.73–7.61 (m, 6H), 7.18 (td, J = 8.7, 2.0 Hz, 4H), 4.14 (s, 2H), 1.39 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 165.3 (2C, dd, $J_{C-F} = 254.3$ Hz, $J_{C-P} = 3.2$ Hz), 161.2 (1C), 135.0 (1C, d, $J_{C-P} = 105.5$ Hz), 134.6 (4C, dd, $J_{C-P} = 11.4$ Hz, $J_{C-F} = 9.0$ Hz), 132.0 (2C, d, $J_{C-P} = 10.1$ Hz), 131.8 (1C, d, $J_{C-P} = 2.7$ Hz), 128.4 (2C, d, $J_{C-P} = 12.5$ Hz), 128.0 (2C, dd, $J_{C-P} = 108.1$ Hz, $J_{C-F} = 3.1$ Hz), 116.3 (4C, dd, $J_{C-F} = 21.5$ Hz, $J_{C-P} = 13.4$ Hz), 79.5 (1C), 68.0 (1C), 28.5 (2C);

¹⁹F NMR (471 MHz, CDCl₃) δ –105.8;

³¹P NMR (202 MHz, CDCl₃) δ 27.2;

HRMS (ESI) *m/z*: Calcd for C₂₃H₂₁F₂NO₂P [M+H]⁺ 412.1272; found 412.1287.

Bis(4-chlorophenyl)(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3ag)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2g** (162.5 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ag** (41.5 mg, 47% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.5, 2.7 Hz, 2H), 7.68 (dd, *J* = 11.9, 8.5 Hz, 2H), 7.57 (dd, *J* = 11.6, 8.6 Hz, 4H), 7.46 (dd, *J* = 8.6, 2.3 Hz, 4H), 4.14 (s, 2H), 1.39

(s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.2 (1C), 139.2 (2C, d, $J_{C-P} = 3.0$ Hz), 134.6 (1C, d, $J_{C-P} = 104.4$ Hz), 133.5 (4C, d, $J_{C-P} = 10.9$ Hz), 132.04 (2C, d, $J_{C-P} = 10.3$ Hz), 131.96 (1C, d, $J_{C-P} = 2.6$ Hz), 130.3 (2C, d, $J_{C-P} = 106.4$ Hz), 129.3 (4C, d, $J_{C-P} = 12.9$ Hz), 128.5 (2C, d, $J_{C-P} = 12.3$ Hz), 79.5 (1C), 68.1 (1C), 28.5 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 27.4; HRMS (ESI) *m/z*: Calcd for C₂₃H₂₁³⁵Cl₂NO₂P [M+H]⁺ 444.0681; found 444.0693.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(3,5-

dimethylphenyl)phosphine oxide (3ah)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2h** (155.1 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.4 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3ah** (52.3 mg, 61% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, *J* = 8.4, 2.5 Hz, 2H), 7.72 (dd, *J* = 11.6, 8.4 Hz, 2H), 7.25 (d, *J* = 12.4 Hz, 4H), 7.17 (s, 2H), 4.13 (s, 2H), 2.31 (s, 12H), 1.39 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.5 (1C), 138.4 (2C, d, *J*_{C-P} = 12.8 Hz), 136.1 (1C, d, *J*_{C-P} = 101.4 Hz), 134.0 (2C, d, *J*_{C-P} = 2.7 Hz), 132.2 (4C, d, *J*_{C-P} = 10.0 Hz), 132.0 (2C, d, *J*_{C-P} = 103.7 Hz), 131.2 (1C, d, *J*_{C-P} = 2.7 Hz), 129.7 (4C, d, *J*_{C-P} = 10.0 Hz), 128.1 (2C, d, *J*_{C-P} = 12.2 Hz), 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.4 (4C); ³¹P NMR (202 MHz, CDCl₃) δ 29.3; HRMS (ESI) *m/z*: Calcd for C₂₇H₃₁NO₂P [M+H]⁺ 432.2087; found 432.2090.

Bis(3,5-di-*tert*-butylphenyl)(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3ai)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2i** (259.6 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ai** (69.2 mg, 58% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, *J* = 8.3, 2.3 Hz, 2H), 7.74 (dd, *J* = 11.3, 8.3 Hz, 2H), 7.59 (d, *J* = 1.0 Hz, 2H), 7.49 (dd, *J* = 12.9, 1.8 Hz, 4H), 4.13 (s, 2H), 1.39 (s, 6H), 1.27 (s, 36H);

¹³C NMR (126 MHz, CDCl₃) δ 161.6 (1C), 151.1 (4C, d, *J*_{C-P} = 11.9 Hz), 137.0 (1C, d, *J*_{C-P} = 100.5 Hz), 132.2 (2C, d, *J*_{C-P} = 9.8 Hz), 131.3 (2C, d, *J*_{C-P} = 104.0 Hz), 131.0 (1C,

d, $J_{C-P} = 2.6$ Hz), 128.0 (2C, d, $J_{C-P} = 11.9$ Hz), 126.4 (4C, d, $J_{C-P} = 10.5$ Hz), 126.2 (2C, d, $J_{C-P} = 2.5$ Hz), 79.4 (1C), 67.9 (1C), 35.1 (4C), 31.4 (12C), 28.5 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 30.8; HRMS (ESI) *m/z*: Calcd for C₃₉H₅₅NO₂P [M+H]⁺ 600.3965; found 600.3967.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)(*m*-tolyl)phosphine oxide (3aj)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2j** (129.9 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3aj** (50.4 mg, 65% yield). Colorless oil;

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.4, 2.5 Hz, 2H), 7.71 (dd, J = 11.6, 8.4 Hz, 2H), 7.65 (dd, J = 12.1, 7.7 Hz, 2H), 7.57–7.51 (m, 2H), 7.46 (td, J = 7.7, 2.7 Hz, 2H), 7.38–7.31 (m, 3H), 4.13 (s, 2H), 2.36 (s, 3H), 1.38 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 138.7 (1C, d, $J_{C-P} = 12.0$ Hz), 135.7 (1C, d, $J_{C-P} = 102.2$ Hz), 133.1 (1C, d, $J_{C-P} = 2.6$ Hz), 132.5 (1C, d, $J_{C-P} = 9.5$ Hz), 132.24 (1C, d, $J_{C-P} = 3.4$ Hz), 132.22 (1C, d, $J_{C-P} = 104.7$ Hz), 132.16 (4C, d, $J_{C-P} = 10.3$ Hz), 131.4 (1C, d, $J_{C-P} = 2.9$ Hz), 131.0 (1C, d, $J_{C-P} = 98.8$ Hz), 129.3 (1C, d, $J_{C-P} = 10.3$ Hz), 128.7 (2C, d, $J_{C-P} = 12.2$ Hz), 128.5 (1C, d, $J_{C-P} = 13.0$ Hz), 128.2 (2C, d, $J_{C-P} = 12.1$ Hz), 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.5 (1C);

³¹P NMR (202 MHz, CDCl₃) δ 29.0;

HRMS (ESI) *m/z*: Calcd for C₂₄H₂₅NO₂P [M+H]⁺ 390.1617; found 390.1626.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(3methoxyphenyl)(phenyl)phosphine oxide (3ak)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2k** (139.1 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3ak** (55.6 mg, 69% yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 8.5, 2.6 Hz, 2H), 7.71 (dd, J = 11.7, 8.5 Hz, 2H), 7.64 (dd, J = 12.1, 7.7 Hz, 2H), 7.56 (td, J = 7.4, 1.5 Hz, 1H), 7.46 (td, J = 7.4, 3.0 Hz, 2H), 7.37 (ddd, J = 11.8, 7.9, 3.9 Hz, 1H), 7.28–7.23 (m, 1H), 7.15–7.05 (m, 2H), 4.13 (s, 2H), 3.79 (s, 3H), 1.39 (s, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 161.4 (1C), 159.7 (1C, d, *J*_{C-P} = 15.0 Hz), 135.4 (1C, d,

 $J_{C-P} = 102.7 \text{ Hz}$), 133.3 (1C, d, $J_{C-P} = 104.0 \text{ Hz}$), 132.3 (1C, d, $J_{C-P} = 2.8 \text{ Hz}$), 132.1 (4C, d, $J_{C-P} = 10.1 \text{ Hz}$), 132.0 (1C, d, $J_{C-P} = 104.8 \text{ Hz}$), 131.5 (1C, d, $J_{C-P} = 2.9 \text{ Hz}$), 129.9 (1C, d, $J_{C-P} = 14.5 \text{ Hz}$), 128.7 (2C, d, $J_{C-P} = 12.3 \text{ Hz}$), 128.3 (2C, d, $J_{C-P} = 12.3 \text{ Hz}$), 124.4 (1C, d, $J_{C-P} = 10.2 \text{ Hz}$), 118.5 (1C, d, $J_{C-P} = 2.6 \text{ Hz}$), 116.8 (1C, d, $J_{C-P} = 10.9 \text{ Hz}$), 79.4 (1C), 68.0 (1C), 55.6 (1C), 28.5 (2C); ³¹P NMR (162 MHz, CDCl₃) δ 29.1;

HRMS (ESI) *m/z*: Calcd for C₂₄H₂₅NO₃P [M+H]⁺ 406.1567; found 406.1583.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)(p-tolyl)phosphine oxide (3al)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2l** (129.9 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3al** (49.6 mg, 64% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 8.5, 2.6 Hz, 2H), 7.71 (dd, J = 11.6, 8.5 Hz, 2H), 7.64 (dd, J = 12.1, 7.6 Hz, 2H), 7.57–7.49 (m, 3H), 7.45 (td, J = 7.5, 2.9 Hz, 2H), 7.27 (dd, J = 8.3, 2.2 Hz, 2H), 4.12 (s, 2H), 2.41 (s, 3H), 1.38 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 142.9 (1C, d, J_{C-P} = 2.7 Hz), 135.8 (1C, d, J_{C-P} = 102.3 Hz), 132.4 (1C, d, J_{C-P} = 104.7 Hz), 132.20 (2C, d, J_{C-P} = 10.1 Hz), 132.18 (1C), 132.14 (4C, d, J_{C-P} = 100 Hz), 131.4 (1C, d, J_{C-P} = 2.7 Hz), 129.5 (2C, d, J_{C-P} = 12.8 Hz), 128.70 (1C, d, J_{C-P} = 106.8 Hz), 128.67 (2C, d, J_{C-P} = 12.1 Hz), 128.2 (2C, d, J_{C-P} = 12.1 Hz), 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.8 (1C); ³¹P NMR (202 MHz, CDCl₃) δ 28.9;

HRMS (ESI) *m/z*: Calcd for C₂₄H₂₅NO₂P [M+H]⁺ 390.1617; found 390.1636.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(4methoxyphenyl)(phenyl)phosphine oxide (3am)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2m** (139.2 mg, 0.6 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (162.4 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3am** (57.2 mg, 71% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, *J* = 8.5, 2.6 Hz, 2H), 7.70 (dd, *J* = 11.6, 8.5 Hz, 2H), 7.64 (dd, *J* = 12.1, 7.7 Hz, 2H), 7.59–7.52 (m, 3H), 7.45 (td, *J* = 7.5, 2.9 Hz, 2H), 6.96 (dd, *J* = 8.9, 2.3 Hz, 2H), 4.13 (s, 2H), 3.85 (s, 3H), 1.38 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.8 (1C, d, $J_{C-P} = 2.7$ Hz), 161.4 (1C), 136.0 (1C, d, $J_{C-P} = 102.9$ Hz), 134.1 (2C, d, $J_{C-P} = 11.6$ Hz), 132.6 (1C, d, $J_{C-P} = 103.9$ Hz), 132.2 (1C), 132.1 (4C, d, $J_{C-P} = 9.9$ Hz), 131.4 (1C, d, $J_{C-P} = 2.7$ Hz), 128.7 (2C, d, $J_{C-P} = 12.3$ Hz), 128.2 (2C, d, $J_{C-P} = 12.1$ Hz), 123.1 (1C, d, $J_{C-P} = 111.2$ Hz), 114.3 (2C, d, $J_{C-P} = 13.5$ Hz), 79.4 (1C), 68.0 (1C), 55.5 (1C), 28.5 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 28.7;

HRMS (ESI) *m/z*: Calcd for C₂₄H₂₄NO₃PNa [M+Na]⁺ 428.1386; found 428.1397.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(4fluorophenyl)(phenyl)phosphine oxide (3an)

By following the general procedure, the reaction of **1a** (34.0 µL, 0.2 mmol) with **2n** (129.7 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.7 mg, 0.6 mmol) and PivOH (11.0 µL, 0.1 mmol) afforded **3an** (46.2 mg, 59% yield). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 8.5, 2.6 Hz, 2H), 7.70 (dd, J = 11.7, 8.5 Hz, 2H), 7.68–7.61 (m, 4H), 7.57 (td, J = 7.5, 1.5 Hz, 1H), 7.48 (td, J = 7.6, 3.0 Hz, 2H), 7.16 (ddd, J = 10.8, 8.8, 2.1 Hz, 2H), 4.13 (s, 2H), 1.39 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3 (1C, dd, J_{C-F} = 254.0 Hz, J_{C-P} = 3.2 Hz), 161.3 (1C), 135.2 (1C, d, J_{C-P} = 103.6 Hz), 134.7 (2C, dd, J_{C-P} = 11.4 Hz, J_{C-F} = 8.9 Hz), 132.5 (1C, d, J_{C-P} = 2.6 Hz), 132.1 (4C, d, J_{C-P} = 10.1 Hz), 131.9 (1C, d, J_{C-P} = 105.6 Hz), 131.7 (1C, d, J_{C-P} = 107.4 Hz, J_{C-F} = 3.3 Hz), 116.2 (2C, dd, J_{C-F} = 21.4 Hz, J_{C-P}

= 13.4 Hz), 79.5 (1C), 68.0 (1C), 28.5 (2C);

¹⁹F NMR (471 MHz, CDCl₃) δ –106.1;

³¹P NMR (202 MHz, CDCl₃) δ 28.2;

HRMS (ESI) *m/z*: Calcd for C₂₃H₂₂FNO₂P [M+H]⁺ 394.1367; found 394.1377.

Ethyl (4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)phosphinate (3ao)

O_N O=P-OEt

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2o** (90 μ L, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ao** (25.3 mg, 37% yield). White solid;

¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 8.5, 3.2 Hz, 2H), 7.85 (dd, J = 11.9, 8.5 Hz, 2H), 7.80 (dd, J = 12.0, 8.0 Hz, 2H), 7.55–7.50 (m, 1H), 7.45 (td, J = 7.4, 3.5 Hz, 2H),

4.14–4.09 (m, 4H), 1.39–1.35 (m, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 134.6 (1C, d, $J_{C-P} = 135.4$ Hz), 132.4 (1C, d, $J_{C-P} = 2.6$ Hz), 131.8 (2C, d, $J_{C-P} = 3.4$ Hz), 131.7 (2C, d, $J_{C-P} = 3.2$ Hz), 131.6 (1C, d, $J_{C-P} = 2.8$ Hz), 131.3 (1C, d, $J_{C-P} = 138.1$ Hz), 128.7 (2C, d, $J_{C-P} = 13.0$ Hz), 128.3 (2C, d, $J_{C-P} = 13.0$ Hz), 79.4 (1C), 68.0 (1C), 61.5 (1C, d, $J_{C-P} = 5.7$ Hz), 28.5 (2C), 16.6 (1C, d, $J_{C-P} = 6.5$ Hz);

³¹P NMR (202 MHz, CDCl₃) δ 30.5;

HRMS (ESI) *m/z*: Calcd for C₁₉H₂₃NO₃P [M+H]⁺ 344.1410; found 344.1418.

Dibenzyl(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3ap)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2p** (137.5 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3ap** (57.7 mg, 72% yield). White solid; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, *J* = 8.4, 2.6 Hz, 2H), 7.53 (dd, *J* = 10.6, 8.4 Hz 2H), 7.25, 7.18 (m, (H), 7.12, 7.08 (m, 4H), 4.12 (n, 2H), 2.27 (dd, *J* = 12.0, 2.4

Hz, 2H), 7.25-7.18 (m, 6H), 7.13-7.08 (m, 4H), 4.12 (s, 2H), 3.37 (dd, J = 13.9, 2.4 Hz, 4H), 1.39 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 161.4 (1C), 133.9 (1C, d, $J_{C-P} = 92.9$ Hz), 131.26 (2C, d, $J_{C-P} = 8.5$ Hz), 131.25 (1C, d, $J_{C-P} = 3.4$ Hz), 131.1 (2C, d, $J_{C-P} = 7.5$ Hz), 130.0 (4C, d, $J_{C-P} = 5.3$ Hz), 128.8 (4C, d, $J_{C-P} = 2.6$ Hz), 128.0 (2C, d, $J_{C-P} = 11.3$ Hz), 127.1 (2C, d, $J_{C-P} = 2.8$ Hz), 79.4 (1C), 68.0 (1C), 37.5 (2C, d, $J_{C-P} = 63.6$ Hz), 28.5 (2C); ³¹P NMR (202 MHz, CDCl₃) δ 35.2;

HRMS (ESI) *m/z*: Calcd for C₂₅H₂₇NO₂P [M+H]⁺ 404.1774; found 404.1789.

Dicyclohexyl(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3aq)

By following the general procedure, the reaction of **1a** (34.0 μ L, 0.2 mmol) with **2q** (128.9 mg, 0.6 mmol), AgNTf₂ (8.0 mg, 0.02 mmol), K₂S₂O₈ (163.6 mg, 0.6 mmol) and PivOH (11.0 μ L, 0.1 mmol) afforded **3aq** (33.9 mg, 44% yield). White solid;

¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 8.5, 2.2 Hz, 2H), 7.71 (dd, J = 9.3, 8.5 Hz, 2H), 4.14 (s, 2H), 2.07–2.03 (m, 4H), 1.86–1.72 (m, 4H), 1.71–1.58 (m, 4H), 1.40 (s, 6H), 1.28–1.10 (m, 10H);

¹³C NMR (126 MHz, CDCl₃) δ 161.6 (1C), 133.4 (1C, d, J_{C-P} = 83.0 Hz), 131.6 (2C, d,

 $J_{\text{C-P}} = 8.0 \text{ Hz}$), 130.9 (1C, d, $J_{\text{C-P}} = 2.6 \text{ Hz}$), 128.0 (2C, d, $J_{\text{C-P}} = 10.5 \text{ Hz}$), 79.4 (1C), 67.9 (1C), 35.3 (2C, d, $J_{\text{C-P}} = 67.2 \text{ Hz}$), 28.5 (2C), 26.5 (2C, d, $J_{\text{C-P}} = 12.5 \text{ Hz}$), 26.4 (2C, d, $J_{\text{C-P}} = 11.8 \text{ Hz}$), 25.9 (2C), 25.6 (2C, d, $J_{\text{C-P}} = 2.4 \text{ Hz}$), 24.7 (2C, d, $J_{\text{C-P}} = 3.0 \text{ Hz}$);

³¹P NMR (202 MHz, CDCl₃) δ 45.2;

HRMS (ESI) *m/z*: Calcd for C₂₃H₃₅NO₂P [M+H]⁺ 388.2400; found 388.2415.

5. Preliminary mechanistic studies

5.1 Trapping experiments with TEMPO

To a 25 mL Schlenk tube with a magnetic stir bar were added **1a** (34.0 μ L, 0.2 mmol), **2a** (138.0 mg, 0.6 mmol), AgNTf₂ (7.9 mg, 0.02 mmol), K₂S₂O₈ (162.4 mg, 0.6 mmol), PivOH (11 μ L, 0.1 mmol) and 2,2,6,6-tetramethylpiperidinooxy (TEMPO, 94.0 mg, 0.6 mmol). The mixture was then evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. After stirring at 120 °C for 24 h, the mixture was analyzed by thin layer chromatography (TLC), and it was found that no desired product **3aa** could be identified. However, the TEMPO-**2a** adduct could be detected by high-resolution mass spectrometry (HRMS). HRMS (ESI) *m/z*: Calcd for C₂₃H₃₂NO₂PNa [M+Na]⁺ 408.2063; found 408.2048 (Figure S1).

Figure S1 HRMS of the TEMPO-2a adduct

5.2 H/D exchange experiment

A mixture of **1a-D**⁵ (36.1 mg, 0.2 mmol), **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.6 mg, 0.6 mmol) and PivOH (11 μ L, 0.1 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. The resulting mixture was stirred at 120 °C for 24 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product **3aa-D**₄ (49.7 mg, 61% yield). According to the ¹H NMR analysis, no H/D exchange occurred (**Figure S2**).

Figure S2¹H NMR (400 MHz, CDCl₃) spectrum of compound 3aa-D4

A mixture of **1a-D**₅ (36.2 mg, 0.2 mmol), **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.2 mg, 0.6 mmol), PivOH (11 μ L, 0.1 mmol) and H₂O (3.6 μ L, 0.2 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. The resulting mixture was stirred at 120 °C for 24 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product **3aa-D**₄ (44.1 mg, 54% yield). According to the ¹H NMR analysis, no H/D exchange occurred (**Figure S3**).

Figure S3 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3aa-D4

5.3 Intermolecular kinetic isotope effect study

A mixture of **1a** (17.0 µL, 0.1 mmol), **1a-Ds** (18.0 mg, 0.1 mmol), **2a** (138.2 mg, 0.6 mmol), AgNTf₂ (7.7 mg, 0.02 mmol), K₂S₂O₈ (162.5 mg, 0.6 mmol) and PivOH (11 µL, 0.1 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. The resulting mixture was stirred at 120 °C for 4 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give products **3aa** and **3aa-D4** (12.9 mg, 16% yield). Based on the integrations related to different proton resonances (**Figure S4**), the kinetic isotope effect (KIE) was determined to be $k_{\rm H}/k_{\rm D} = 5.7$.

Figure S4¹H NMR (400 MHz, CDCl₃) spectra of compounds 3aa and 3aa-D4

A mixture of **1a** (17.0 µL, 0.1 mmol), **1a-D**₅ (18.1 mg, 0.1 mmol), **2a** (23.1 mg, 0.1 mmol), AgNTf₂ (7.8 mg, 0.02 mmol), K₂S₂O₈ (27.5 mg, 0.1 mmol) and PivOH (11 µL, 0.1 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, MeCN (1.0 mL) was added via syringe. The resulting mixture was stirred at 120 °C for 4 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give products **3aa** and **3aa-D**₄ (4.7 mg, 6% yield). Based on the integrations related to different proton resonances (**Figure S5**), the kinetic isotope effect (KIE) was determined to be $k_{\rm H}/k_{\rm D} = 4.0$.

Figure S5¹H NMR (500 MHz, CDCl₃) spectra of compounds 3aa and 3aa-D₄

6. Typical reaction at the 5.0-mmol scale

To a 100 mL Schlenk tube with a magnetic stir bar were added **1a** (850 μ L, 5.0 mmol), **2b** (3.03 g, 15.0 mmol), AgNTf₂ (194.1 mg, 0.5 mmol), K2S2O8 (4.05 g, 15.0 mmol) and PivOH (275 μ L, 2.5 mmol). The mixture was then evacuated and backfilled with argon three times. Subsequently, MeCN (25 mL) was added via syringe. The resulting mixture

was stirred at 120 °C for 36 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (25 mL). The solution was extracted with dichloromethane (3×40 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product **3ab** (953.6 mg, 51% yield).

7. Synthesis and characterization of product 4

To a 25 mL tube with a magnetic stir bar were added **3ap** (80.5 mg, 0.2 mmol) and 6 N HCl (2.0 mL). After stirring at 100 °C for 12 h, the reaction mixture was cooled to room temperature. Then, the solution was concentrated under vacuum. Then, (trimethylsilyl)diazomethane (TMSCHN₂, 295.5 μ L, 2.0 mmol) was added, followed by Et₂O (4.0 mL). The resulting mixture was stirred at room temperature for another 6 h. Then, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The solution was extracted with dichloromethane (3 × 20 mL). The organic phase was collected, dried with anhydrous Na₂SO₄ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product **4** (53.7 mg, 74% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.4, 2.5 Hz, 2H), 7.58 (dd, J = 10.4, 8.4 Hz, 2H), 7.25–7.18 (m, 6H), 7.13–7.09 (m, 4H), 3.93 (s, 3H), 3.38 (dd, J = 13.9, 3.6 Hz, 4H);

¹³C NMR (126 MHz, CDCl₃) δ 166.4 (1C), 136.1 (1C, d, *J*_{C-P} = 91.4 Hz), 133.1 (1C, d, *J*_{C-P} = 2.8 Hz), 131.4 (2C, d, *J*_{C-P} = 8.6 Hz), 131.0 (2C, d, *J*_{C-P} = 7.5 Hz), 130.0 (4C, d, *J*_{C-P} = 5.4 Hz), 129.3 (2C, d, *J*_{C-P} = 11.6 Hz), 128.8 (4C, d, *J*_{C-P} = 2.5 Hz), 127.2 (2C, d, *J*_{C-P} = 2.8 Hz), 52.6 (1C), 37.4 (2C, d, *J*_{C-P} = 63.6 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 34.9;

HRMS (ESI) *m/z*: Calcd for C₂₂H₂₂O₃P [M+H]⁺ 365.1301; found 365.1299.

8. References

1) M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin, J. Org. Chem. 2015, 80, 9910-9914.

2) E. Jablonkai and G. Keglevich, *Tetrahedron Lett.* 2015, 56, 1638–1640.

9. NMR spectra of compounds 3 and 4

Figure S6¹H NMR (400 MHz, CDCl₃) spectrum of compound 3aa

Figure S7¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3aa

Figure S8 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3aa

Figure S9 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ba

Figure S10 ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ba

Figure S11 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3ba

Figure S12 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ca

Figure S13¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ca

Figure S14 Expanded ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ca

Figure S15¹⁹F NMR (377 MHz, CDCl₃) spectrum of compound 3ca

Figure S16 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3ca

Figure S17 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3da

Figure S18¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3da

Figure S19 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3da

Figure S20 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ea

Figure S21¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ea

Figure S22 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ea

Figure S23 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3fa

Figure S24 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3fa

Figure S25 Expanded ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3fa

Figure S26¹⁹F NMR (471 MHz, CDCl₃) spectrum of compound 3fa

Figure S27 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3fa

Figure S28 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ga

Figure S29¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ga

Figure S30 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3ga

Figure S31 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ha

Figure S32 ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ha

Figure S33 Expanded ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3ha

Figure S34¹⁹F NMR (377 MHz, CDCl₃) spectrum of compound 3ha

Figure S35 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3ha

Figure S37¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ia

Figure S38 Expanded ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ia

Figure S39 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ia

Figure S40 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ab

Figure S41¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ab

Figure S42 Expanded ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ab

Figure S43 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ab

Figure S44 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ac

Figure S45¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ac

Figure S46 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ac

Figure S47 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ad

Figure S48 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ad

Figure S49 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ad

Figure S50 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ae

Figure S51¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ae

Figure S52 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ae

Figure S53 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3af

Figure S54 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound **3af**

Figure S55 ¹⁹F NMR (471 MHz, CDCl₃) spectrum of compound 3af

Figure S56 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3af

Figure S57 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ag

Figure S58 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ag

Figure S59 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ag

Figure S60 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ah

Figure S61 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ah

Figure S62 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ah

Figure S63 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ai

Figure S64 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ai

Figure S65 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ai

Figure S66 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3aj

Figure S67¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3aj

Figure S68 Expanded ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3aj

Figure S69 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3aj

Figure S71 Expanded ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3ak**

Figure S72 ¹³C NMR (101 MHz, CDCl₃) spectrum of compound **3ak**

Figure S73 ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 3ak

Figure S74 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3al

Figure S75¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3al

Figure S76 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3al

Figure S77 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3am

Figure S78 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3am

Figure S79 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3am

Figure S80 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3an

Figure S81 Expanded ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3an

Figure S82 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3an

Figure S83 Expanded ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3an

Figure S84 ¹⁹F NMR (471 MHz, CDCl₃) spectrum of compound 3an

Figure S85 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3an

Figure S86 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ao

Figure S87¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ao

Figure S88 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ao

Figure S89 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ap

Figure S90 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3ap

Figure S91 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3ap

Figure S92 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3aq

Figure S93 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 3aq

Figure S94 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 3aq

Figure S95 ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4

Figure S96 ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 4

Figure S97 ³¹P NMR (202 MHz, CDCl₃) spectrum of compound 4