Electronic Supplementary Information

Silver(I)-catalyzed highly para-selective phosphonation of 2aryloxazolines

Peng-Cheng Cui ${ }^{\text {a }}$ and Guan-Wu Wang*abc
${ }^{a}$ Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. E-mail: gwang@ustc.edu.cn
${ }^{\text {b }}$ Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
${ }^{\mathrm{c}}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

Table of Contents

\qquad

1. General informationS2
2. Synthesis of 2-aryloxazolines $\mathbf{1}$ and phosphine oxides $\mathbf{2}$ S2
3. Optimization of the reaction conditions S3
4. Synthesis and characterization of compounds 3 S5
5. Preliminary mechanistic studies S18
6. Typical reaction at the $5.0-\mathrm{mmol}$ scale S22
7. Synthesis and characterization of product 4 S23
8. References S23
9. NMR spectra of compounds $\mathbf{3}$ and $\mathbf{4}$ S24

1. General information

All the reactions were performed in sealed Schlenk tubes. NMR spectra were recorded on a Bruker spectrometer (400 MHz or 500 MHz for ${ }^{1} \mathrm{H}$ NMR; 101 MHz or 126 MHz for ${ }^{13} \mathrm{C}$ NMR; 376 MHz or 471 MHz for ${ }^{19} \mathrm{~F}$ NMR and 162 MHz or 202 MHz for ${ }^{31} \mathrm{P}$ NMR). ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to the internal TMS at $\delta 0.00$ ppm. ${ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to that of CDCl_{3} at $\delta 77.16$ ppm. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded as follows: chemical shift (δ, ppm) and multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Highresolution mass spectral analysis (HRMS) was performed on a Waters XEVO G2 QTOF. $\mathbf{1 a}-\mathbf{i}^{1}$ and $\mathbf{2 c}-\mathbf{q}^{2}$ were synthesized according to the reported literature. Other chemicals were purchased from $J \& K$, Adamas-beta and Aladdin and were used directly. Solvents were purchased from Sinopharm Chemical Reagent Co., Ltd. and used directly.

2. Synthesis of 2-aryloxazolines 1 and phosphine oxides 2

General procedure for the synthesis of 2-aryloxazolines 1

According to the reported literature, ${ }^{1}$ a mixture of a nitrile (5.0 mmol), 2-amino-2-methyl-1-propanol (15.0 mmol), [$\mathrm{CuCl}(\mathrm{IPr})](0.15 \mathrm{mmol})$ and $\mathrm{NaOAc}(0.75 \mathrm{mmol})$ was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Then the organic phase was collected and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) as the eluent to give the corresponding 2-aryloxazoline $\mathbf{1}$.

General procedure for the synthesis of phosphine oxides 2

According to the reported literature, ${ }^{2}$ to a 100 mL round bottom flask, the corresponding Grignard reagent ($30.0 \mathrm{mmol}, 1.0 \mathrm{~mol} / \mathrm{L}$ in THF) was added and cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, diethyl phosphite (10.0 mmol) was dissolved in dry THF (5.0 mL) and added dropwise to the solution. After the addition, the reaction mixture was gradually warmed up to room temperature and stirred for 2 h . Then, the mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction. The crude mixture was then extracted with dichloromethane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give the corresponding phosphine oxide $\mathbf{2 c}-\mathbf{i}$. Phosphine oxides $\mathbf{2 p}$ and $\mathbf{2 q}$ could be similarly prepared by using the corresponding Grignard reagent.

According to the reported literature, ${ }^{2}$ to a 100 mL round bottom flask, the corresponding Grignard reagent ($22.0 \mathrm{mmol}, 1.0 \mathrm{~mol} / \mathrm{L}$ in THF) was added and cooled to $-78^{\circ} \mathrm{C}$. Subsequently, ethyl phenylphosphinate (10.0 mmol) was dissolved in dry THF (5.0 mL) and added dropwise to the solution. After the addition, the reaction mixture was gradually warmed up to room temperature and stirred for 2 h . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction. The crude mixture was then extracted with dichloromethane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give the corresponding phosphine oxide $\mathbf{2} \mathbf{j}-\mathbf{n}$.

3. Optimization of the reaction conditions

In our initial investigation, we chose 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (1a) and di-p-tolylphosphine oxide (2a) as model substrates to screen the reaction conditions (Table S1). Initially, when $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{AgOAc}, \mathrm{Ag}_{2} \mathrm{O}$ and AgNO_{3} were used as catalysts, (4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-p-tolylphosphine oxide (3aa) could be obtained in $16-34 \%$ yields (entries 1-4). Gratifyingly, if AgNTf_{2} was employed as a catalyst, 3aa was isolated in 73% yield (entry 5). However, the yield of 3aa was slightly decreased to 65% when AgSbF_{6} was utilized as the catalyst (entry 6). In the presence of other Lewis acids, such as $\mathrm{FeCl}_{3}, \mathrm{CuCl}_{2}$ and $\mathrm{AlCl}_{3}, \mathbf{3 a a}$ was obtained in yields of $0-21 \%$ (entries 7-9). Subsequently, no better results were obtained with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and Oxone as oxidants (entries $\left.10-12\right)$. When we replaced pivalic $\operatorname{acid}(\mathrm{PivOH})$ with $\mathrm{P}^{t} \mathrm{Bu}_{3} \cdot \mathrm{HBF}_{4}, \mathrm{PPh}_{3}$ and $\mathrm{MesCO}_{2} \mathrm{H}$ as additives, the yields of $\mathbf{3} \mathbf{a a}$ were decreased to $6-64 \%$ (entries $13-15$). The solvent had an important effect on the reaction; when DMSO, DMF or 1,4-dioxane was used in place of MeCN, 3aa could not be obtained (entries 16-18). In addition, a reaction temperature of $120^{\circ} \mathrm{C}$ was found to be optimal. Either lowering the temperature to $110^{\circ} \mathrm{C}$ or raising the temperature to $130^{\circ} \mathrm{C}$ resulted in a lower efficiency (entries 19 and 20). Finally, the yield of 3aa was reduced to 17% when the reaction mixture was exposed to air (entry 21), indicating that O_{2} in air had a detrimental effect. Control experiments showed that $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ played a crucial role in this system, and 3aa was not obtained in its absence; both AgNTf_{2} and PivOH also had important effects on the yield of 3aa (entries 22-25). Regardless of whether the amounts of $\mathbf{2 a}$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were reduced or increased, the yield of 3aa dropped to $12-15 \%$ (entries 26 and 27).

Table S1 Optimization of the reaction conditions ${ }^{a}$

	1a	 2a	catalyst oxidant, additiveolvent, $120^{\circ} \mathrm{C}, \mathrm{Ar}, 24$		
Entry	Catalyst	Oxidant	Additive	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	25
2	AgOAc	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	34
3	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	16
4	AgNO_{3}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	22
5	$\boldsymbol{A g N T f}_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	73
6	AgSbF_{6}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	65
7	FeCl_{3}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	0
8	CuCl_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	0
9	AlCl_{3}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	21
10	AgNTf_{2}	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	37
11	AgNTf_{2}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	31
12	AgNTf_{2}	Oxone	PivOH	MeCN	0
13	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{P}^{t} \mathrm{Bu}_{3} \cdot \mathrm{HBF}_{4}$	MeCN	64
14	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PPh_{3}	MeCN	6
15	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{MesCO}_{2} \mathrm{H}$	MeCN	14
16	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	DMSO	0
17	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	DMF	0
18	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	1,4-Dioxane	0
$19^{\text {c }}$	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	37
$20^{\text {d }}$	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	23
21^{e}	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	17
22	AgNTf_{2}	-	PivOH	MeCN	0
23	-	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	MeCN	13
24	-	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	19
25	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	MeCN	26
26^{f}	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	12
27^{8}	AgNTf_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	PivOH	MeCN	15

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, $\mathbf{2 a}(0.6 \mathrm{mmol})$, catalyst ($10 \mathrm{~mol} \%$), oxidant (0.6 $\mathrm{mmol})$, additive $(0.1 \mathrm{mmol})$, solvent $(1.0 \mathrm{~mL})$ at $120{ }^{\circ} \mathrm{C}$ for 24 h under an argon atmosphere. ${ }^{b}$ Isolated yields based on 1a. ${ }^{c} 110^{\circ} \mathrm{C} .{ }^{d} 130^{\circ} \mathrm{C}$. ${ }^{e}$ under an air atmosphere. ${ }^{f} \mathbf{2 a}(0.4 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol}) .{ }^{\mathbf{2}} \mathbf{2} \mathbf{a}(0.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.8 \mathrm{mmol})$.

4. Synthesis and characterization of compounds 3

General procedure for the silver(I)-catalyzed highly para-selective phosphonation of 2aryloxazolines.

To a 25 mL Schlenk tube with a magnetic stir bar were added $1(0.2 \mathrm{mmol})$, phosphine oxide 2 ($0.6 \mathrm{mmol}, 3.0$ equiv), AgNTf_{2} ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($0.6 \mathrm{mmol}, 3.0$ equiv) and PivOH ($0.1 \mathrm{mmol}, 0.5$ equiv). The mixture was then evacuated and backfilled with argon three times. Subsequently, $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added via syringe. After stirring at $120^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature. Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give compound 3.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-p-tolylphosphine oxide (3aa)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(8.0 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 a a}(58.5 \mathrm{mg}, 73 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=11.2,7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53 (dd, $J=11.7,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.12$ (s, 2H), $2.40(\mathrm{~s}, 6 \mathrm{H}), 1.38$ (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,142.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 136.1\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $102.3 \mathrm{~Hz}), 132.15\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 132.09\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.2(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 129.4\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 129.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=106.7 \mathrm{~Hz}\right), 128.1(2 \mathrm{C}$, d, $J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}$), 79.4 (1C), 67.9 (1C), 28.4 (2C), 21.7 (2C);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.9$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$404.1774; found 404.1776.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-methylphenyl)di-p-tolylphosphine oxide (3ba)

By following the general procedure, the reaction of $\mathbf{1 b}(37.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.3 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(163.8 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ba ($49.9 \mathrm{mg}, 61 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.52 (dd, $J=11.8,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{dd}, J=10.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 4 H), 4.08 (s, 2H), 2.56 ($\mathrm{s}, 3 \mathrm{H}$), 2.40 ($\mathrm{s}, 6 \mathrm{H}$), 1.39 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0$ (1C), 142.6 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}$), 138.9 ($1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 135.0\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=102.6 \mathrm{~Hz}\right), 134.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 132.1(4 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 131.0\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 129.63\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 129.3$ $\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 129.14\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 129.135\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=107.1 \mathrm{~Hz}\right)$, 78.9 (1C), 68.2 (1C), 28.5 (2C), 21.7 (2C), 21.5 (1C);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$418.1930; found 418.1934.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-fluorophenyl)di-p-tolylphosphine oxide (3ca)

By following the general procedure, the reaction of $\mathbf{1 c}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.3 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 c a}$ ($38.5 \mathrm{mg}, 46 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{ddd}, J=10.4,7.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 5 \mathrm{H})$, $7.42(\mathrm{t}, J=11.3, \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 1.40$ (s, 6H);
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=261.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=16.5 \mathrm{~Hz}\right), 158.3$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 143.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 138.9\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=100.4 \mathrm{~Hz}, J_{\mathrm{C}}\right.$ $\mathrm{F}=6.2 \mathrm{~Hz}), 132.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 131.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.2 \mathrm{~Hz}\right), 129.5(4 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.7 \mathrm{~Hz}\right), 128.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=108.0 \mathrm{~Hz}\right), 127.4\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=4.0\right.$ $\mathrm{Hz}), 120.3\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=23.3 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 119.6\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=10.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=2.6 \mathrm{~Hz}$), 79.1 (1C), 68.2 (1C), 28.4 (2C), 21.7 (2C);
${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.1(1 \mathrm{~F}, \mathrm{~d}, J=4.3 \mathrm{~Hz}$);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.7(1 \mathrm{P}, \mathrm{d}, J=4.1 \mathrm{~Hz})$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{FNO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 422.1680$; found 422.1682.

Methyl 5-(di-p-tolylphosphoryl)-2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)benzoate (3da)

By following the general procedure, the reaction of $\mathbf{1 d}(47.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3da ($39.2 \mathrm{mg}, 42 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}$, $J=12.0,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H})$, 1.39 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$ (1C), 161.4 (1C), $143.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}\right)$, $136.2\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=101.5 \mathrm{~Hz}\right), 134.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 132.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.9\right.$ $\mathrm{Hz}), 132.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 132.2\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 131.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.5 \mathrm{~Hz}), 129.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 129.6\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 128.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=108.2 \mathrm{~Hz}$), 80.1 (1C), 68.4 (1C), 52.7 (1C), 28.2 (2C), 21.8 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.2$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 462.1829$; found 462.1825 .

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2-methoxyphenyl)di-p-tolylphosphine oxide (3ea)

By following the general procedure, the reaction of $\mathbf{1 e}(41.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 e a}(67.9 \mathrm{mg}, 78 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=13.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.19$ (dd, $J=8.1,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.38$ (s, 6H), 1.38 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 160.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 142.2(2 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 134.9\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 133.7(1 \mathrm{C}), 131.8\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.9 \mathrm{~Hz}\right)$, $129.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=111.0 \mathrm{~Hz}\right), 129.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 123.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=102.0\right.$ $\mathrm{Hz}), 120.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 111.1\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right), 79.4(1 \mathrm{C}), 67.9(1 \mathrm{C})$, 55.8 (1C), 28.4 (2C), 21.7 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.1$;

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 434.1880$; found 434.1869.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2-fluorophenyl)di-p-tolylphosphine oxide (3fa)

By following the general procedure, the reaction of $\mathbf{1 f}(38.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 f a}$ ($35.2 \mathrm{mg}, 41 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{ddd}, J=12.4,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50$ (ddd, $J=10.1,4.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (dd, $J=12.6,8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.27 (dd, $J=8.0,2.6 \mathrm{~Hz}, 4 \mathrm{H}$), 4.12 ($\mathrm{s}, 2 \mathrm{H}$), 2.40 ($\mathrm{s}, 6 \mathrm{H}$), 1.38 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=250.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=1.9 \mathrm{~Hz}\right), 160.5$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 142.9\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 135.0\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $4.8 \mathrm{~Hz}), 134.5\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 131.8\left(4 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}, J_{\mathrm{C}}\right.$ $\mathrm{F}=1.3 \mathrm{~Hz}), 129.4\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.3 \mathrm{~Hz}\right), 128.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=111.0 \mathrm{~Hz}\right), 124.2(1 \mathrm{C}$, $\left.\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 123.7\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=96.3 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=17.6 \mathrm{~Hz}\right), 115.9$ (1C, dd, $J_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}$), 79.6 (1C), 68.1 (1C), 28.4 (2C), 21.8 (2C);
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-99.5$;
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{FNO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 422.1680$; found 422.1680.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-2,6-dimethoxyphenyl)di-ptolylphosphine oxide (3ga)

By following the general procedure, the reaction of $\mathbf{1 g}(47.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 g a}(48.9 \mathrm{mg}, 53 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, J=12.4,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,2.5$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.08 (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.12 ($\mathrm{s}, 2 \mathrm{H}$), 3.42 (s, 6H), 2.36 (s, 6H), 1.39 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1(2 \mathrm{C}), 161.4(1 \mathrm{C}), 140.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right)$, $133.9(1 \mathrm{C}), 133.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=112.3 \mathrm{~Hz}\right), 130.7\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 128.7(4 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}\right), 111.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=101.4 \mathrm{~Hz}\right), 104.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 79.3(1 \mathrm{C})$,
68.0 (1C), 55.9 (2C), 28.4 (2C), 21.6 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}$);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.9$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 464.1985$; found 464.1984.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-5-fluoro-2-methoxyphenyl)di-ptolylphosphine oxide (3ha)

By following the general procedure, the reaction of $\mathbf{1 h}(44.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\operatorname{PivOH}(11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ afforded 3ha ($56.8 \mathrm{mg}, 63 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{dd}, J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (dd, $J=7.9,2.8 \mathrm{~Hz}, 4 \mathrm{H}$), 4.12 ($\mathrm{s}, 2 \mathrm{H}$), 3.58 (s, 3H), 2.39 ($\mathrm{s}, 6 \mathrm{H}$), 1.40 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=5.2 \mathrm{~Hz}\right.$), 156.3 (1C, dd, $J_{\mathrm{C}-\mathrm{P}}=2.5$ $\left.\mathrm{Hz}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 155.2\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=253.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=15.4 \mathrm{~Hz}\right), 142.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.8 \mathrm{~Hz}), 131.9\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 129.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}\right), 128.7\left(2 \mathrm{C}, \mathrm{d}_{\mathrm{C}}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=111.6 \mathrm{~Hz}), 126.0\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=99.2 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}\right), 122.9\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=25.7\right.$ $\left.\mathrm{Hz}, J_{\mathrm{C}-\mathrm{P}}=7.7 \mathrm{~Hz}\right), 120.7\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 113.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 7.2 Hz), $79.3(1 \mathrm{C}), 68.0(1 \mathrm{C}), 56.2(1 \mathrm{C}), 28.4(2 \mathrm{C}), 21.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right)$; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.9(1 \mathrm{~F}, \mathrm{~d}, J=2.9 \mathrm{~Hz}$);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.3$ ($1 \mathrm{P}, \mathrm{d}, J=2.4 \mathrm{~Hz}$); HRMS (ESI) m / z : Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{FNO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 452.1785$; found 452.1790 .

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)naphthalen-1-yl)di-p-tolylphosphine oxide (3ia)

By following the general procedure, the reaction of $\mathbf{1 i}(45.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}\left(8.0 \mathrm{mg}, 0.02 \mathrm{mmol}\right.$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ia ($44.9 \mathrm{mg}, 49 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (dd, $J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=11.9,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.16$ (s, 2H), 2.39 ($\mathrm{s}, 6 \mathrm{H}$), 1.48 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 142.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 134.2(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 132.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=99.9 \mathrm{~Hz}\right), 132.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.4 \mathrm{~Hz}\right), 132.1(4 \mathrm{C}$, $\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 131.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 129.8(1 \mathrm{C}), 129.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right)$, $129.45\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.7 \mathrm{~Hz}\right), 129.40\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=107.4 \mathrm{~Hz}\right), 129.0(1 \mathrm{C}), 128.1(1 \mathrm{C}$, d, $J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}$), $127.7(1 \mathrm{C}), 127.6(1 \mathrm{C}), 126.9(1 \mathrm{C}), 126.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=14.3 \mathrm{~Hz}\right)$, 78.6 (1C), 68.8 (1C), 28.6 (2C), 21.7 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.6$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 454.1930$; found 454.1929.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)diphenylphosphine oxide (3ab)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 b}$ $(121.7 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ab ($50.2 \mathrm{mg}, 67 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=11.6,8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64(\mathrm{dd}, J=12.1,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,2.8$ $\mathrm{Hz}, 4 \mathrm{H}$), 4.12 (s, 2H), 1.38 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3$ (1C), 135.5 ($1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=102.6 \mathrm{~Hz}$), 132.3 (2C, d, $\left.J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.16\left(6 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 132.14\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.7 \mathrm{~Hz}\right), 131.5$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.7\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 128.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.4 \mathrm{~Hz}\right), 79.4$ (1C), 68.0 (1C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.8$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$376.1461; found 376.1464.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)di-m-tolylphosphine oxide (3ac)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 c}$ ($137.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(8.0 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.8 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ac ($44.7 \mathrm{mg}, 56 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}$, 2 H), $7.54(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}$, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 138.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 135.9(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=101.5 \mathrm{~Hz}\right), 133.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}\right), 132.2(2 \mathrm{C}$,
$\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 132.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.1 \mathrm{~Hz}\right), 131.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 129.3$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 128.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.9 \mathrm{~Hz}\right), 128.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right)$, 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.6 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$404.1774; found 404.1772.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(3-methoxyphenyl)phosphine oxide (3ad)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 d}$ ($157.6 \mathrm{mg}, 0.6 \mathrm{mmol}$), AgNTf_{2} ($7.7 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.2 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ad ($54.6 \mathrm{mg}, 63 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=11.7,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36$ (ddd, $J=11.8,7.9,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (ddd, $J=13.5,2.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (dd, $J=11.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (dd, $J=8.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ (s, 2H), 3.79 (s, 6H), 1.39 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4$ (1C), 159.7 (2C, d, $J_{\mathrm{C}-\mathrm{P}}=14.8 \mathrm{~Hz}$), 135.4 ($1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=102.9 \mathrm{~Hz}\right), 133.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.1 \mathrm{~Hz}\right), 132.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 131.5$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 129.9\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=14.6 \mathrm{~Hz}\right), 128.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 124.4$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 118.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 116.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.9 \mathrm{~Hz}\right), 79.4$ (1C), 68.0 (1C), $55.6(2 \mathrm{C}), 28.5$ (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.3$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 436.1672$; found 436.1667.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(4-methoxyphenyl)phosphine oxide (3ae)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 e}$ ($157.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(8.0 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ae ($58.9 \mathrm{mg}, 68 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=11.6,8.2 \mathrm{~Hz}$, 2 H), 7.54 (dd, $J=11.5,8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.94 (dd, $J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}$), 4.12 ($\mathrm{s}, 2 \mathrm{H}$), 3.84 (s, 6H), 1.38 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 161.4(1 \mathrm{C}), 136.5(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=103.1 \mathrm{~Hz}\right), 134.0\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 132.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.2$ (1C), $128.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 123.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=111.6 \mathrm{~Hz}\right), 114.2\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 13.1 Hz), 79.4 (1C), 68.0 (1C), 55.5 (2C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.6$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 458.1492$; found 458.1501.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(4-fluorophenyl)phosphine

 oxide (3af)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 f}$ $(117 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(95.9 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3af ($50.8 \mathrm{mg}, 62 \%$ yield). Colorless oil;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.18$ ($\mathrm{td}, J=8.7,2.0 \mathrm{~Hz}, 4 \mathrm{H}$), 4.14 (s, 2H), 1.39 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3\left(2 \mathrm{C}\right.$, dd, $J_{\mathrm{C}-\mathrm{F}}=254.3 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}$), 161.2 (1C), $135.0\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=105.5 \mathrm{~Hz}\right), 134.6\left(4 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=11.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 132.0$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 131.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 128.0$ $\left(2 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=108.1 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 116.3\left(4 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right)$, 79.5 (1C), 68.0 (1C), 28.5 (2C);
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.8$;
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.2$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$412.1272; found 412.1287.

Bis(4-chlorophenyl)(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine

 oxide (3ag)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 g}$ ($162.5 \mathrm{mg}, 0.6 \mathrm{mmol}$), AgNTf_{2} ($7.9 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded $\mathbf{3 a g}$ ($41.5 \mathrm{mg}, 47 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (dd, $J=8.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (dd, $J=11.9,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{dd}, J=11.6,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 1.39$
(s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2$ (1C), $139.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 134.6(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=104.4 \mathrm{~Hz}\right), 133.5\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.9 \mathrm{~Hz}\right), 132.04\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 131.96$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 130.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=106.4 \mathrm{~Hz}\right), 129.3\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.9 \mathrm{~Hz}\right)$, 128.5 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.3 \mathrm{~Hz}$), 79.5 (1C), 68.1 (1C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{21}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 444.0681$; found 444.0693 .

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)bis(3,5dimethylphenyl)phosphine oxide (3ah)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 h}$ ($155.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ah ($52.3 \mathrm{mg}, 61 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=11.6,8.4 \mathrm{~Hz}$, 2 H), 7.25 (d, $J=12.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17$ (s, 2H), 4.13 ($\mathrm{s}, 2 \mathrm{H}$), 2.31 (s, 12H), 1.39 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5(1 \mathrm{C}), 138.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 136.1(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=101.4 \mathrm{~Hz}\right), 134.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.2\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 132.0(2 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=103.7 \mathrm{~Hz}\right), 131.2\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 129.7\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 128.1$ ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}$), 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.4 (4C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.3$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 432.2087$; found 432.2090.

Bis(3,5-di-tert-butylphenyl)(4-(4,4-dimethyl-4,5-dihydrooxazol-2-

 yl)phenyl)phosphine oxide (3ai)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 i}$ ($259.6 \mathrm{mg}, 0.6 \mathrm{mmol}$), AgNTf_{2} ($7.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ai ($69.2 \mathrm{mg}, 58 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (dd, $J=8.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (dd, $J=11.3,8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59$ (d, $J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (dd, $J=12.9,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.13$ (s, 2H), 1.39 (s, 6H), 1.27 (s, 36H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6(1 \mathrm{C}), 151.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 137.0(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=100.5 \mathrm{~Hz}\right), 132.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.8 \mathrm{~Hz}\right), 131.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.0 \mathrm{~Hz}\right), 131.0(1 \mathrm{C}$,
$\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 128.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 126.4\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 126.2(2 \mathrm{C}$, d, $J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}$), 79.4 (1C), 67.9 (1C), 35.1 (4C), 31.4 (12C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.8$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 600.3965$; found 600.3967.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)(m-tolyl)phosphine oxide (3aj)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 j}$ ($129.9 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3aj ($50.4 \mathrm{mg}, 65 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (dd, $J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (dd, $J=11.6,8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65$ (dd, $J=12.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (td, $J=7.7,2.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.31 (m, 3H), 4.13 (s, 2H), 2.36 (s, 3H), 1.38 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 138.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 135.7(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=102.2 \mathrm{~Hz}\right), 133.1\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 132.24(1 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 132.22\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.7 \mathrm{~Hz}\right), 132.16\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 131.4$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 131.0\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=98.8 \mathrm{~Hz}\right), 129.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 128.7$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}\right), 128.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 128.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right)$, 79.4 (1C), 68.0 (1C), 28.5 (2C), 21.5 (1C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$390.1617; found 390.1626.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(3methoxyphenyl)(phenyl)phosphine oxide (3ak)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 k}$ ($139.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ak ($55.6 \mathrm{mg}, 69 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=11.7,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64(\mathrm{dd}, J=12.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (td, $J=7.4,3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37$ (ddd, $J=11.8,7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H})$, 4.13 (s, 2H), 3.79 (s, 3H), 1.39 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 159.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right), 135.4(1 \mathrm{C}, \mathrm{d}$,
$\left.J_{\mathrm{C}-\mathrm{P}}=102.7 \mathrm{~Hz}\right), 133.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.0 \mathrm{~Hz}\right), 132.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.1(4 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 132.0\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.8 \mathrm{~Hz}\right), 131.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 129.9$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=14.5 \mathrm{~Hz}\right), 128.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.3 \mathrm{~Hz}\right), 128.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.3 \mathrm{~Hz}\right)$, $124.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 118.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 116.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.9 \mathrm{~Hz}\right)$, 79.4 (1C), 68.0 (1C), 55.6 (1C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.1$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 406.1567$; found 406.1583.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)(p-tolyl)phosphine oxide (3al)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with 21 ($129.9 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3al ($49.6 \mathrm{mg}, 64 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64$ (dd, $J=12.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.49$ (m, 3H), 7.45 (td, $J=7.5,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (dd, $J=8.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.12 (s, 2H), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.38 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 142.9\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 135.8(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=102.3 \mathrm{~Hz}\right), 132.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=104.7 \mathrm{~Hz}\right), 132.20\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 132.18$ (1C), $132.14\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 129.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $12.8 \mathrm{~Hz}), 128.70\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=106.8 \mathrm{~Hz}\right), 128.67\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 128.2(2 \mathrm{C}, \mathrm{d}$, $J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}$), $79.4(1 \mathrm{C}), 68.0(1 \mathrm{C}), 28.5(2 \mathrm{C}), 21.8(1 \mathrm{C}) ;$
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.9$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$390.1617; found 390.1636.
(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(4methoxyphenyl)(phenyl)phosphine oxide (3am)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 m}$ ($139.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3am ($57.2 \mathrm{mg}, 71 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64$ (dd, $J=12.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52$ (m, 3H), 7.45 (td, $J=7.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (dd, $J=8.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.13 (s, 2H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 1.38 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 161.4(1 \mathrm{C}), 136.0(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=102.9 \mathrm{~Hz}\right), 134.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 132.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=103.9 \mathrm{~Hz}\right), 132.2$ $(1 \mathrm{C}), 132.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 131.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.3\right.$ $\mathrm{Hz}), 128.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 123.1\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=111.2 \mathrm{~Hz}\right), 114.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 13.5 Hz), 79.4 (1C), 68.0 (1C), 55.5 (1C), 28.5 (2C);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.7$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 428.1386$; found 428.1397.

(4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(4fluorophenyl)(phenyl)phosphine oxide (3an)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 n}$ $(129.7 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{AgNTf}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.7 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3an ($46.2 \mathrm{mg}, 59 \%$ yield). Colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=11.7,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.57$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (td, $J=7.6,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16 (ddd, $J=10.8,8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.13 (s, 2H), 1.39 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=254.0 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right.$), 161.3 (1C), $135.2\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=103.6 \mathrm{~Hz}\right), 134.7\left(2 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=11.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 132.5$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.1\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 131.9\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=105.6 \mathrm{~Hz}\right)$, $131.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 128.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.4 \mathrm{~Hz}\right), 128.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.2\right.$ $\mathrm{Hz}), 128.1\left(1 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=107.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 116.2\left(2 \mathrm{C}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=13.4 \mathrm{~Hz}$), $79.5(1 \mathrm{C}), 68.0(1 \mathrm{C}), 28.5(2 \mathrm{C})$;
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.1$;
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.2$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$394.1367; found 394.1377.
Ethyl (4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)(phenyl)phosphinate (3ao)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 0}$ (90 $\mu \mathrm{L}, 0.6 \mathrm{mmol}), \mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ao ($25.3 \mathrm{mg}, 37 \%$ yield). White solid;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=8.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=11.9,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.80(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.4,3.5 \mathrm{~Hz}, 2 \mathrm{H})$,
4.14-4.09 (m, 4H), 1.39-1.35 (m, 9H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(1 \mathrm{C}), 134.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=135.4 \mathrm{~Hz}\right), 132.4(1 \mathrm{C}$, $\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 131.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 131.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 131.6(1 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=138.1 \mathrm{~Hz}\right), 128.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 128.3$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 79.4(1 \mathrm{C}), 68.0(1 \mathrm{C}), 61.5\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right), 28.5(2 \mathrm{C})$, $16.6\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right)$;
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.5$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$344.1410; found 344.1418.
Dibenzyl(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3ap)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 p}$ ($137.5 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3ap ($57.7 \mathrm{mg}, 72 \%$ yield). White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=10.6,8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=13.9,2.4$ Hz, 4H), 1.39 (s, 6H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4$ (1C), $133.9\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=92.9 \mathrm{~Hz}\right), 131.26(2 \mathrm{C}$, $\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 131.25\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 131.1\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 130.0(4 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 128.8\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 128.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.3 \mathrm{~Hz}\right), 127.1(2 \mathrm{C}$, d, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 79.4(1 \mathrm{C}), 68.0(1 \mathrm{C}), 37.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=63.6 \mathrm{~Hz}\right), 28.5(2 \mathrm{C})$; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.2$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$404.1774; found 404.1789.

Dicyclohexyl(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)phosphine oxide (3aq)

By following the general procedure, the reaction of $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathbf{2 q}$ ($128.9 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}\left(8.0 \mathrm{mg}, 0.02 \mathrm{mmol}\right.$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(163.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH ($11.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) afforded 3aq ($33.9 \mathrm{mg}, 44 \%$ yield). White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=9.3,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}$, $6 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 10 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6$ (1C), $133.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=83.0 \mathrm{~Hz}\right), 131.6(2 \mathrm{C}, \mathrm{d}$,
$\left.J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 130.9\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 128.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 79.4(1 \mathrm{C})$, 67.9 (1C), $35.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=67.2 \mathrm{~Hz}\right), 28.5(2 \mathrm{C}), 26.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 26.4$ $\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 25.9(2 \mathrm{C}), 25.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 24.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.0\right.$ Hz);
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.2$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 388.2400$; found 388.2415.

5. Preliminary mechanistic studies

5.1 Trapping experiments with TEMPO

To a 25 mL Schlenk tube with a magnetic stir bar were added $\mathbf{1 a}(34.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$, $\mathbf{2 a}(138.0 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{AgNTf}_{2}(7.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.4 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\operatorname{PivOH}(11 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ and 2,2,6,6-tetramethylpiperidinooxy (TEMPO, $94.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$. The mixture was then evacuated and backfilled with argon three times. Subsequently, $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added via syringe. After stirring at $120^{\circ} \mathrm{C}$ for 24 h , the mixture was analyzed by thin layer chromatography (TLC), and it was found that no desired product 3aa could be identified. However, the TEMPO-2a adduct could be detected by high-resolution mass spectrometry (HRMS). HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 408.2063$; found 408.2048 (Figure S1).

Figure S1 HRMS of the TEMPO-2a adduct

5.2 H/D exchange experiment

A mixture of 1a-D5 ($36.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2a ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}$, $0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{PivOH}(11 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added via syringe. The resulting mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h . Then, the reaction was quenched with saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product 3aa-D4 ($49.7 \mathrm{mg}, 61 \%$ yield). According to the ${ }^{1} \mathrm{H}$ NMR analysis, no H/D exchange occurred (Figure S2).

Figure S2 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa-D $\mathbf{4}_{4}$

A mixture of 1a-D $\mathbf{5}$ ($36.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2a ($138.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}$, $0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.2 \mathrm{mg}, 0.6 \mathrm{mmol})$, PivOH ($11 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(3.6$ $\mu \mathrm{L}, 0.2 \mathrm{mmol}$) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added via syringe. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 h . Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product 3aa-D4 ($44.1 \mathrm{mg}, 54 \%$ yield). According to the ${ }^{1} \mathrm{H}$ NMR analysis, no H/D exchange occurred (Figure S3).

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa-D $\mathbf{4}_{4}$

5.3 Intermolecular kinetic isotope effect study

A mixture of 1a ($17.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), $\mathbf{1 a - D _ { 5 }}(18.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{2 a}(138.2 \mathrm{mg}, 0.6$ mmol), $\mathrm{AgNTf}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162.5 \mathrm{mg}, 0.6 \mathrm{mmol})$ and PivOH (11 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added via syringe. The resulting mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 4 h . Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give products 3aa and 3aa-D $\mathbf{4}$ ($12.9 \mathrm{mg}, 16 \%$ yield). Based on the integrations related to different proton resonances (Figure S4), the kinetic isotope effect (KIE) was determined to be $k_{\mathrm{H}} / k_{\mathrm{D}}=5.7$.

Figure S4 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compounds 3aa and 3aa-D4

A mixture of 1a ($17.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), 1a-D $\mathbf{5}(18.1 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{2 a}(23.1 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(27.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and PivOH ($11 \mu \mathrm{~L}$, 0.1 mmol) was added to a 25 mL Schlenk flask. The tube was evacuated and backfilled with argon three times. Subsequently, MeCN $(1.0 \mathrm{~mL})$ was added via syringe. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 4 h . Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give products 3aa and 3aa-D 4 ($4.7 \mathrm{mg}, 6 \%$ yield). Based on the integrations related to different proton resonances (Figure S5), the kinetic isotope effect (KIE) was determined to be $k_{\mathrm{H}} / k_{\mathrm{D}}=4.0$.

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compounds 3aa and 3aa-D4

6. Typical reaction at the $\mathbf{5 . 0}-\mathrm{mmol}$ scale

To a 100 mL Schlenk tube with a magnetic stir bar were added $\mathbf{1 a}(850 \mu \mathrm{~L}, 5.0 \mathrm{mmol})$, $\mathbf{2 b}(3.03 \mathrm{~g}, 15.0 \mathrm{mmol}), \mathrm{AgNTf}_{2}(194.1 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O} 8(4.05 \mathrm{~g}, 15.0 \mathrm{mmol})$ and PivOH ($275 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$). The mixture was then evacuated and backfilled with argon three times. Subsequently, MeCN (25 mL) was added via syringe. The resulting mixture
was stirred at $120^{\circ} \mathrm{C}$ for 36 h . Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 40 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product 3ab $(953.6 \mathrm{mg}$, 51% yield).

7. Synthesis and characterization of product 4

To a 25 mL tube with a magnetic stir bar were added 3ap ($80.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 6 N $\mathrm{HCl}(2.0 \mathrm{~mL})$. After stirring at $100^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled to room temperature. Then, the solution was concentrated under vacuum. Then, (trimethylsilyl)diazomethane (TMSCHN 2 , $295.5 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$) was added, followed by $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for another 6 h. Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic phase was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give product $\mathbf{4}(53.7 \mathrm{mg}, 74 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=10.4,8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.25-7.18 (m, 6H), 7.13-7.09 (m, 4H), 3.93 (s, 3H), 3.38 (dd, $J=13.9,3.6$ Hz, 4H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4(1 \mathrm{C}), 136.1\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=91.4 \mathrm{~Hz}\right), 133.1(1 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 131.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 130.0(4 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 129.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.8\left(4 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 127.2(2 \mathrm{C}, \mathrm{d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 52.6(1 \mathrm{C}), 37.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=63.6 \mathrm{~Hz}\right)$;
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.9$;
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 365.1301$; found 365.1299.

8. References

1) M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin, J. Org. Chem. 2015, 80, 99109914.
2) E. Jablonkai and G. Keglevich, Tetrahedron Lett. 2015, 56, 1638-1640.
9. NMR spectra of compounds 3 and 4

Figure $\mathbf{S 6}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa

Figure $\mathbf{S 7}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa

Figure $\mathbf{S 8}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa

Figure S9 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba

Figure S10 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba

Figure $\mathbf{S 1 1}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba

Figure S12 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S13 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S14 Expanded ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S15 ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S16 ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure $\mathbf{S 1 8}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure S19 ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure S20 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea

Figure $\mathbf{S 2 1}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea

Figure S22 ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea

Figure S23 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f a}$

Figure S24 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3fa

Figure S25 Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f a}$

Figure S26 ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f a}$

Figure S27 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f a}$

Figure S28 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure $\mathbf{S 2 9}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure S30 ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure S31 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ha

Figure $\mathbf{S 3 2}{ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 3ha

No	8先8む～ గ్గ్ల్ల్లN N్N	士心	$\begin{aligned} & \bar{\circ} \stackrel{\infty}{\circ} \\ & \hline+寸 \end{aligned}$	ণ্ণ	$\stackrel{-}{\mathrm{N}} \stackrel{\infty}{\bar{N}} \stackrel{n}{\infty}$	$\stackrel{N}{\infty}$	$\begin{aligned} & \text { mo우 } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$			
$\stackrel{\infty}{\sim}$			ボ		ำ ํ N	$\stackrel{\sim}{\sim}$	¢	ผู่	ก్ำ	ํㅜํ ํㅜ	$\stackrel{m}{\Gamma} \stackrel{m}{\sim}$
\％		π									

Figure S33 Expanded ${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{3 h a}$

Figure S34 ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ha

Parameter	Value
Title	cpel126A
Origin	Bruker BioSpin GmbH
Owner	nmrsu
Spectrometer	spect
Solvent	CDC13
Temperature	0.0
Pulse Sequence	zgpg30
Experiment	1 D
Number of Scans	16
Receiver Gain	212
Relaxation Delay	2. 0000
Pulse Width	8. 0000
Acquisition Time	0.5112
Acquisition Date	2023-08-09T09:31:00
Modification Date	2023-08-09T09:31:22
Spectrometer Frequency	161.98
Spectral Width	64102.6
Lowest Frequency	-40150. 1
Nucleus	319
Acquired Size	32768
Spectral Size	65536

Figure $\mathbf{S 3 5}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ha

Figure $\mathbf{S 3 6}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3ia

Figure $\mathbf{S 3 7}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ia

Figure S38 Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ia

Figure S39 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ia

Figure $\mathbf{S 4 0}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab

Figure $\mathbf{S 4 1}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a b}$

Figure S42 Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab
09LL 8 -

Parameter	Value
Title	cpal $1020-\mathrm{A}$
Origin	Bruker BioSpin GmbH
Owner	nmrsu
Spectrometer	AvancenEO
Solvent	CDC13
Temperature	0.0
Pulse Sequence	zgpg30
Experiment	1D
Nurber of Scans	16
Receiver Gain	101
Relaxation Delay	2.0000
Pulse Width	14.0000
Acquisition Time	0. 3998
Acquisition Date	2022-10-27T00:37:40
Modification Date	2022-10-27T00:37:10
Spectrometer Frequency 202. 47	
Spectral Width	81967.2
Lowest Frequency	-51107.0
Nucleus	31 P
Acquired Size	32768
Spectral Size	32768

Figure $\mathbf{S 4 3}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab

Figure $\mathbf{S 4 4}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac

Figure $\mathbf{S 4 5}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac

Figure S46 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac

Figure $\mathbf{S 4 7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a d}$

Figure $\mathbf{S 4 8}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad

\bigcirc	Parameter	Value
O	Title	cpc0811B
N	Origin Owner	Bruker BioSpin GmbH nnrsu
	Spectrometer	ancenio
	Solvent	CDCl_{3}
	Temperature	386.0
	Pulse Sequence	zgpg30
	Experiment	1D
	Number of Scans	16
	Receiver Gain	101
	Relaxation Delay	2. 0000
	Pulse Width	14.0000
	Acquisition Time	0.3998
	Acquisition Date	2023-08-14T10:40:21
	Modification Date	2023-08-14T10:38:50
	Spectrometer Frequenc	202.47
	Spectral Width	81967.2
	Lowest Frequency	-51107.0
	Nucleus	31 P
	Acquired Size	32768
	Spectral Size	32768

Figure $\mathbf{S 4 9}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad

Figure S50 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae

Figure $\mathbf{S 5 1}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae

Figure S52 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae

Figure S53 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure $\mathbf{S 5 4}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure S55 ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure S56 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure $\mathbf{S 5 7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a g}$

Figure $\mathbf{S 5 8}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag

O	Parameter	Value
ल.	Title	Cp $08813-\mathrm{D}$
N	Origin Owner	Bruker BioSpin GmbH nmrsu
	Spectrometer	anceneo
	Solvent	13
	Temperature	396.6
	Pulse Sequence	gpg30
	Experiment Number of Scans	$1 D$ 16
	Receiver Gain	
	Relaxation Delay	2. 0000
	Pulse Width	14.0000
	Acquisition Time	0.3998
	Acquisition Date	2023-08-15T10:24:21
	Modification Date	2023-08-15T10:22:44
	Spectrometer Frequency	202.47
	Spectral Width	81967.2
	Lowest Frequency	-51107.0
	Nucleus	31 P
	Acquired Size	32768
	Spectral Size	32768

Figure $\mathbf{S 5 9}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag

Figure S60 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah

Figure S61 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah

Figure S62 ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah

Figure $\mathbf{S 6 3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai

Figure S64 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai

$\stackrel{\infty}{\circ}$	Parameter	Value
N	Title	cpe0813-E
-0¢	Origin Owner	Bruker BioSpin GmbH nmrsu
	Spectrometer	AvanceNE0
	Solvent	CDC13
	Temperature	385.9
	Pulse Sequence	${ }_{\text {28pg }}^{10} 8$
	Number of Scans	16
	Receiver Gain	101
	Relaxation Delay	2. 0000
	Pulse Width	14.0000
	Acquisition Time	0.3998
	Acquisition Date	2023-08-16T01:41:14
	Modification Date	2023-08-16101:39:34
	Spectrometer Frequency	202.47
	Spectral Width	81967.2
	Lowest Frequency	-51107.0
	Nucleus	31 P
	Acquired Size	32768
	Spectral Size	32768

Figure $\mathbf{S 6 5}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai

Figure S66 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure $\mathbf{S 6 7}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure S68 Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure S69 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure $\mathbf{S 7 0}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure S71 Expanded ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure $\mathbf{S 7 2}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure S73 ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure $\mathbf{S 7 4}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al

Figure $\mathbf{S 7 5}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al

Figure $\mathbf{S 7 6}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al

Figure $\mathbf{S 7 7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am

Figure $\mathbf{S 7 8}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am

\oplus	Parameter	Value
-	Title	cpe0813-A
∞	Origin	Bruker BioSpin GmbH
N	Dwner	nmrsu
	Spectrome	anceNEO
	Solvent	C13
	Temperature	389.1
	Pulse Sequence	gp830
	Experiment	1 D
	Number of Scans	16
	Receiver Gain	101
	Relaxation Delay	2. 0000
	Pulse lidth	14.0000
	Acquisition Time	0.3998
	Acquisition Date	2023-08-15T09:20:46
	Modification Date	2023-08-15T09:19:08
	Spectrometer Frequency	202.47
	Spectral Width	${ }^{81967.2}$
	Lowest Frequency Nucleus	$\begin{aligned} & -51107.0 \\ & 31 \mathrm{P} \end{aligned}$
	Acquired Size	32768
	Spectral Size	32768

Figure $\mathbf{S 7 9}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am

Figure S80 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure S81 Expanded ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure S82 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure $\mathbf{S 8 3}$ Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Parameter	Value
Title	cpc0813-B
Origin	Bruker BioSpin GmbH
Owner	nmrsu
Spectrometer	AvancenEO
Solvent	CDC13
Temperature	386.5
Pulse Sequence	zgig
Experiment	1D
Number of Scans	16
Receiver Gain	101
Relaxation Delay	1.0000
Pulse Width	15.0000
Acquisition Time	0. 5767
Acquisition Date	2023-08-15T09:41:08
Modification Date	2023-08-15T09:39:30
Spectrometer Frequency	470. 62
Spectral Width	113636.4
Lowest Frequency	-103880. 2
Nucleus	19 F
Acquired Size	65536
Spectral Size	65536

Figure S84 ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Parameter	Value
Title	cpe0813-B
Origin	Bruker BioSpin Gmb
Owner	nmrsu
Spectrometer	Avanceveo
Solvent	CDC13
Temperature	383.6
Pulse Sequence	zgpg 30
Experiment	1 D
Number of Scans	16
Receiver Gain	101
Relaxation Delay	2. 0000
Pulse Width	14.0000
Acquisition Time	0.3998
Acquisition Date	2023-08-15T09:42:54
Modification Date	2023-08-15T09:41:16
Spectrometer Frequency	202. 47
Spectral Width	81967.2
Lowest Frequency	-51107.0
Nucleus	31 P
Acquired Size	32768
Spectral Size	32768

Figure $\mathbf{S 8 5}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure $\mathbf{S 8 6}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao

Figure $\mathbf{S 8 7}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao

Figure S88 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao

Figure S89 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Figure S90 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Г	Parameter	Value
5n	Title	cpe0811C
¢	Origin Owner	Bruker BioSpin GmbH nmrsu
	Spectrometer	Avanceveo
	Solvent	CDC13
	Temperature	385.0
	Pulse Sequence	z8p830
	Experiment	1 D
	Number of Scans	16
	Receiver Gain	101
	Relaxation Delay	2. 0000
	Pulse Width	14.0000
	Acquisition Time	0.3998
	Acquisition Date	2023-08-14T11:01:15
	Modification Date	2023-08-14110:59:44
	Spectrometer Frequency	202.47
	Spectral Width Lowest Frequency	$\begin{aligned} & 81967.2 \\ & -51107.0 \end{aligned}$
	Nucleus	31 P
	Acquired Size	32768
	Spectral Size	32768

Figure S91 ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Figure $\mathbf{S 9 2}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a q}$

Figure S93 ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a q}$

Figure S94 ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq

Figure $\mathbf{S 9 5}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4

Figure $\mathbf{S 9 6}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4

Figure $\mathbf{S 9 7}{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{4}$

