Supporting Information

Divergent Synthesis of Carbamates and *N*-Methyl Carbamates from Dimethyl Carbonate and Nitroarenes with Mo(CO)₆ as a Multiple

Promoter

Tongshun An, Chenwei Liu, Weiheng Yuan, Xiaowen Qin, Zhiping Yin*

^a School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China, E-mail: <u>zhiping_yin@ujs.edu.cn</u>

1.	General Comments	2
2.	Experimental Setup	2
2.1	Screening of DMC solvent amount	2
2.2	Failed examples	3
2.3	General process of nitrobenzene reaction with DMC	3
2.4	Investigation of ethyl methyl carbonate	4
2.5	Competing experiment	5
3.	Analytical Data	6
4.	References	15
5.	NMR Spectroscopic Data for Products	16

1. General Comments

Chemicals were purchased from Adamas, Bidepharm., TCI, Aladdin and used as such unless stated otherwise. All solvents like dimethyl carbonate were purchased from Adamas (Water \leq 30 ppm (by K.F.), 99.9%, SafeDry, with molecular sieves, Safeseal). NMR spectra were recorded on Bruker AV 400 or Bruker Fourier 300 spectrometer. Chemical shifts (ppm) are given relative to TMS (0.00 ppm) for ¹H and CDCl₃ (77.0 ppm) for ¹³C solvent. Multiplets were assigned as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), dd (doublet of doublet), m (multiplet) and br.s (broad singlet). High-resolution mass spectra HRMS spectra were recorded on a Thermo Scientific Exactive Orbitrap Mass Spectrometer under Electron Spray Ionization conditions preparing sample solution in methanol. The data are given as mass units per charge (m/z). GC yields were calculated using hexadecane as an internal standard. Gas chromatography analysis was performed on an Agilent 6820 instrument with an FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d. 0.25 µm film thickness) using nitrogen as carrier gas. The products were isolated from the reaction mixture by column chromatography on silica gel., 54-74 µm, 200-300 mesh (Yucheng Chemical CO., LTD, Shanghai).

NOTE: a) As carbon monoxide will be released from $Mo(CO)_6$, the reactions should only be handled in a well-ventilated fume hood and the laboratory should be well-equipped with a CO detector and alarm system; b) The reaction was conducted under reflux conditions (temperature is higher than the boiling point of DMC).

2. Experimental Setup

0 	MeMe	Mo(CO) ₆ , K ₃ PO ₄	NH O Me
1a	2a		3a
entry		Volume (mL)	yield (%)
1	0.625		82
2		0.7	88
3		0.75	94
4	0.8		90
5	0.875		79

2.1 Screening of DMC solvent amount ^a

6
0

0.75

(Reaction conditions: **1a** (0.30 mmol, 1 equiv.), **2a** (x ml), K_3PO_4 (0.75 mmol, 2.5 equiv.), $Mo(CO)_6$ (0.3 mmol, 1 equiv), 130 °C, 16 h, under Ar, GC yields were determined by using hexadecane as the internal standard; ^b 1.5 equiv. K_3PO_4)

N ⁺ O-	Me Mo(CO) ₆ , DBU 130 °C, 16 h, Ar	N H O Me +	N Me Me
1a		3a	4a
entry	Volume 2a (mL)	Yield 3a (%)	Yield 4a (%)
1	0.25	0	83
2	0.5	0	90
3	0.75	0	85
4	1	19	76

(Reaction conditions: **1a** (0.30 mmol, 1 equiv.), **2a** (x mL), DBU (0.75 mmol, 2.5 equiv.), Mo(CO)₆ (0.3 mmol, 1 equiv), 130 °C, 16 h, under Ar, GC yields; ^b 1.5 equiv. DBU)

2.2 Failed examples

2.3 General process of nitrobenzene reaction with DMC

A flame-dried resealable Schlenk tube (10 mL) was added with aromatic nitro compounds **1a-1t** (0.3 mmol), $Mo(CO)_6$ (79.2 mg, 1 equivalent, 0.3 mmol) and K_3PO_4 (0.75 mmol, 2.5 equiv.). The Schlenk tube was capped with a rubber septum, evacuated, and backfilled with argon three times. The liquid **2a** (0.75 mL) were added through the septum, then the septum was replaced with a Teflon screwcap quickly. The Schlenk tube was put into an aluminum heating block and stirred at 130 °C for 16 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (eluent: PE and EA) to give the target product **3a-3t**.

A flame-dried resealable Schlenk tube (10 mL) was added with aromatic nitro compounds **1a-1r** (0.3 mmol), $Mo(CO)_6$ (79.2 mg, 1 equivalent, 0.3 mmol) and DBU (0.75 mmol, 2.5 equiv.). The Schlenk tube was capped with a rubber septum, evacuated, and backfilled with argon three times. The liquid **2a** (0.5 mL) were added through the septum, then the septum was replaced with a Teflon screwcap quickly. The Schlenk tube was put into an aluminum heating block and stirred at 130 °C for 16 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (eluent: PE and EA) to give the target product **4a-4r**.

2.4 Investigation of ethyl methyl carbonate

A flame-dried resealable Schlenk tube (10 mL) was added with aromatic nitro compounds 1a (0.3 mmol), Mo(CO)₆ (79.2 mg, 1 equivalent, 0.3 mmol) and DBU (0.75 mmol, 2.5 equiv.). The Schlenk tube was capped with a rubber septum, evacuated, and backfilled with argon three times. The liquid ethyl methyl carbonate (0.5 mL) were added through the septum, then the septum was replaced with a Teflon screwcap

quickly. The Schlenk tube was put into an aluminum heating block and stirred at 130 °C for 16 hours. After the reaction was completed, the reaction mixture was analyzed by GC-MS.

A flame-dried resealable Schlenk tube (10 mL) was added with aromatic nitro compounds 1e (0.3 mmol)

and **1h** (0.3 mmol), Mo(CO)₆ (79.2 mg, 1 equivalent, 0.3 mmol) and K_3PO_4 (0.75 mmol, 2.5 equiv.). The Schlenk tube was capped with a rubber septum, evacuated, and backfilled with argon three times. The liquid **2a** (0.5 mL) were added through the septum, then the septum was replaced with a Teflon screwcap quickly. The Schlenk tube was put into an aluminum heating block and stirred at 130 °C for 16 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (eluent: PE and EA) to give the target product **3e** (26 mg, 40%) and **3h** (15 mg, 29% yield).

3. Analytical Data

Methyl p-tolyl carbamate (3a): (47 mg, white solid, melting point: 90-91, yield: 94%) ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 6.68 (s, 1H), 3.76 (s, 3H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 154.34, 135.35, 133.13, 129.62, 118.92, 52.37, 20.84.

The analytical data are consistent with those reported in the literature.¹

Methyl m-tolyl carbamate (3b): (45 mg, white solid, melting point: 61-62, yield: 91%) ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, *J* = 12.2, 10.9, 6.9 Hz, 3H), 6.94 – 6.78 (m, 1H), 6.57 (s, 1H), 3.77 (s, 3H), 2.33 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 154.21, 139.13, 137.88, 129.00, 124.45, 119.53, 115.98, 52.42, 21.60. The analytical data are consistent with those reported in the literature.²

Methyl o-tolyl carbamate (3c): (46 mg, white solid, melting point: 57-58, yield:93%) ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.29 – 7.19 (m, 1H), 7.22 – 7.13 (m, 1H), 7.08 – 7.00 (m, 1H), 6.45 (s, 1H), 3.78 (s, 1H), 2.25 (s, 1H).

 13 C NMR (101 MHz, CDCl₃) δ 154.52, 135.90, 130.51, 126.98, 124.35, 121.28, 52.52, 17.75. The analytical data are consistent with those reported in the literature.²

Methyl phenyl carbamate (3d): (39 mg, brown liquid, yield: 87%)

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.27 (m, 4H), 7.18 – 7.03 (m, 1H), 6.87 – 6.67 (m, 1H), 3.77 (d, J = 1.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.20, 137.98, 129.17, 123.60, 118.87, 52.45.

The analytical data are consistent with those reported in the literature.¹

Methyl (4-methoxyphenyl) carbamate (3e): (50 mg, white solid, melting point: 71-72, yield: 93%) (3t): (50 mg, white solid, yield: 93%)

¹H NMR (400 MHz, CDCl₃) δ 6.87 – 6.81 (m, 2H), 6.68 (s, 1H), 3.76 (d, *J* = 10.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.13, 154.61, 131.03, 120.86, 114.35, 55.60, 52.38.

The analytical data are consistent with those reported in the literature.¹

Methyl (2-methoxyphenyl) carbamate (3f): (51 mg, brown liquid, yield: 94%)

¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.01 (m, 1H), 7.07 – 6.92 (m, 2H), 6.85 (dd, *J* = 7.6, 1.9 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 154.10, 147.69, 127.72, 122.88, 121.24, 118.28, 110.09, 55.77, 52.38. The analytical data are consistent with those reported in the literature.¹

Methyl [1,1'-biphenyl]-2-ylcarbamate (3g): (61 mg, white solid, melting point: 180-182, yield: 90%) ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 21.7, 7.8 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.44 – 7.40 (m, 1H), 7.40 – 7.34 (m, 3H), 7.22 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.13 (td, *J* = 7.5, 1.2 Hz, 1H), 6.66 (s, 1H), 3.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.12, 138.22, 134.96, 131.62, 130.27, 129.40, 129.26, 128.63, 128.07, 123.49, 119.70, 52.40.

The analytical data are consistent with those reported in the literature.²

Methyl (4-fluorophenyl) carbamate (3h): (47 mg, brown solid, melting point: 78-79, yield: 93%) ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 9.1, 4.7 Hz, 2H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.70 (s, 1H), 3.76 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.15 (d, J_{C-F} = 243.41 Hz), 154.38, 133.94, 120.63, 115.79 (d, J_{C-F} = 23.23 Hz), 52.54.

The analytical data are consistent with those reported in the literature.¹

Methyl (2-fluorophenyl) carbamate (3i): (45 mg, colorless liquid, yield: 89%) ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.20 – 6.93 (m, 3H), 6.87 (s, 1H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.87, 152.30 (d, *J*_{C-F} = 243.41 Hz), 126.53 (d, *J*_{C-F} = 9.09 Hz), 124.75, 123.55 (d, *J*_{C-F} = 8.08 Hz), 120.36, 114.96 (d, *J*_{C-F} = 19.19 Hz), 52.69. The analytical data are consistent with those reported in the literature.²

Methyl (4-chlorophenyl) carbamate (3j): (72 mg, white solid, melting point: 107-108, yield: 97%) ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.21 (m, 4H), 6.76 (s, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.09, 136.59, 129.15, 128.58, 120.06, 52.60. The analytical data are consistent with those reported in the literature.¹

Methyl (4-(trifluoromethyl) phenyl) carbamate (3k): (52.5 mg, white solid, melting point: 118-120, yield: 80%)

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 6.77 (s, 1H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.83, 141.12, 126.50, 125.58 (d, J_{C-F} =8.08 Hz), 124.08 (q, J_{C-F} = 231.29 Hz), 118.20, 52.76.

The analytical data are consistent with those reported in the literature.²

Methyl (3-bromophenyl) carbamate (3l): (65 mg, white solid, melting point: 82-83, yield: 95%) ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.28 (dt, *J* = 7.6, 1.8 Hz, 1H), 7.19 – 7.08 (m, 2H), 6.80 (s, 1H), 3.77 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 153.95, 139.32, 130.42, 126.54, 122.84, 121.72, 117.27, 52.65. The analytical data are consistent with those reported in the literature.⁵

Methyl (4-acetylphenyl) carbamate (3m): (33 mg, yellow solid, melting point: 155-156, yield: 57%) ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.89 (s, 1H), 3.80 (s, 3H), 2.57 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 197.01, 153.66, 142.46, 132.42, 130.04, 117.75, 52.78, 26.53. The analytical data are consistent with those reported in the literature.⁵

Methyl (3-acetylphenyl) carbamate (3n): (19 mg, yellow solid, melting point: 93-94, yield: 32%) ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.67 (dd, *J* = 17.3, 7.9 Hz, 2H), 7.41 (dt, *J* = 7.7, 4.0 Hz, 1H), 6.98 – 6.64 (m, 1H), 3.80 (s, 3H), 2.60 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 197.95, 154.10, 138.52, 138.06, 129.53, 123.51, 118.32, 52.66, 26.82. The analytical data are consistent with those reported in the literature.⁴

Methyl (4-vinylphenyl) carbamate (30): (34 mg, white solid, melting point: 96-97, yield: 64%) ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 4H), 6.78 (s, 1H), 6.66 (dd, J = 17.6, 10.9 Hz, 1H), 5.67 (dd, J = 17.6, 0.9 Hz, 1H), 5.18 (dd, J = 10.9, 0.9 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.11, 137.54, 136.23, 133.10, 127.02, 118.79, 112.81, 52.48. The analytical data are consistent with those reported in the literature.⁶

Methyl naphthalen-1-yl carbamate (3p): (52 mg, white solid, melting point: 115-116, yield: 87%) ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.77 (m, 3H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.43 (m, 3H), 6.96 (s, 1H), 3.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.08, 134.18, 132.56, 128.85, 126.88, 126.39, 126.14, 125.92, 125.27, 120.59, 119.40, 52.74.

The analytical data are consistent with those reported in the literature.¹¹

Methyl benzo[d]thiazol-6-yl carbamate (3q): (51 mg, yellow solid, melting point: 77-78, yield: 81%) ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.30 (s, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.28 (dd, J = 8.8, 2.3 Hz, 1H), 6.92 (s, 1H), 3.81 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 154.18, 153.11, 149.66, 135.91, 135.13, 123.78, 118.40, 111.18, 52.69. HRMS (ESI-TOF) Calc. for C₉H₉N₂O₂S⁺ [M+H] +:209.0379; found: 209.0379.

Methyl (1-methyl-1H-indol-5-yl) carbamate (3r): (28 mg, yellow solid, melting point: 148-149, yield: 46%)

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), 7.73 (s, 1H), 7.57 (d, J = 3.7 Hz, 1H), 7.18 (dd, J = 8.9, 2.2 Hz, 1H), 6.79 (s, 1H), 6.53 (d, J = 3.7 Hz, 1H), 4.02 (s, 3H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.52, 151.49, 133.43, 131.06, 126.36, 116.59, 115.37, 111.11, 108.27, 53.92, 52.43.

HRMS (ESI-TOF) Calc. for $C_{11}H_{12}NaN_2O_2^+[M+Na]^+: 227.0791$; found: 227.0795.

Methyl methyl(thiophen-2-yl) carbamate (3s): (21 mg, brown liquid, yield: 84%) (4n): (19 mg, brown solid, yield: 27%)

¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.82 (m, 2H), 6.59 (s, 1H), 3.82 (s, 3H), 3.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.44, 127.10, 124.31, 121.35, 112.03, 53.57, 14.22. HRMS (ESI-TOF) Calc. for C₇H₁₀NO₂S⁺[M+H]⁺: 172.0427; found: 172.0427.

Ethyl p-tolyl carbamate (5a): (K₃PO₄, 29 mg, yellow solid, melting point: 48-49, yield: 54%); (DBU, 15 mg, yellow solid, yield: 27%)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 6.55 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.30 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 153.89, 135.50, 133.08, 129.66, 118.98, 61.26, 20.86, 14.71.

The analytical data are consistent with those reported in the literature.³

́≻ó −N

Methyl methyl(p-tolyl) carbamate (4a): (48 mg, yellow liquid, yield: 90%) ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.02 (m, 4H), 3.69 (s, 3H), 3.27 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.42, 140.82, 136.15, 129.66, 125.82, 53.00, 38.06, 21.09. GC-MS (EI, 70ev): m/z (%) = 179 ([M]⁺, 100), 143 (10), 134 (28), 120(66), 91 (55), 72 (40), 39 (5). HRMS (ESI-TOF) Calc. for $C_{10}H_{14}NO_2^+$ [M+H] ⁺: 180.1019; found: 180.1026.

Methyl methyl(m-tolyl) carbamate (4b): (52 mg, white liquid, yield: 99%)

¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.04 (d, *J* = 6.6 Hz, 3H), 3.70 (s, 3H), 3.28 (s, 3H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.35, 143.29, 138.93, 128.81, 127.16, 126.63, 122.99, 53.00, 37.99, 21.45.

HRMS (ESI-TOF) Calc. for $C_{10}H_{14}NO_2^+$ [M+H] ⁺: 180.1019; found: 180.1026.

Methyl methyl(o-tolyl) carbamate (4c): (47 mg, white liquid, yield: 88%)

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.17 (m, 3H), 7.10 (dd, *J* = 5.4, 3.6 Hz, 1H), 3.63 (s, 3H), 3.20 (s, 3H), 2.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.47, 141.76, 135.65, 130.98, 127.67, 127.42, 126.98, 53.02, 37.51, 17.45.

HRMS (ESI-TOF) Calc. for $C_{10}H_{14}NO_2^+$ [M+H] +: 180.1019; found: 180.1026.

Methyl methyl(phenyl) carbamate (4d): (42 mg, yellow liquid, yield: 85%) ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.25 (m, 2H), 7.24 – 7.13 (m, 3H), 3.63 (s, 3H), 3.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.27, 143.36, 128.99, 126.25, 125.88, 53.01, 37.90. The analytical data are consistent with those reported in the literature.⁸

Methyl (4-(N-methyl acetamido) phenyl) carbonate (4e): (23 mg, white liquid, yield: 53%)

(**40**): (31 mg, white liquid, yield: 72%)

¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.3 Hz, 2H), 6.95 – 6.79 (m, 2H), 3.79 (s, 3H), 3.68 (s, 3H), 3.25 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 157.94, 156.56, 136.30, 127.30, 114.26, 55.52, 52.99, 38.28. The analytical data are consistent with those reported in the literature.⁹

Methyl [1,1'-biphenyl]-2-yl(methyl) carbamate (4f): (46 mg, white liquid, yield: 64%) ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.40 – 7.38 (m, 2H), 7.36 (d, *J* = 3.1 Hz, 2H), 7.31 - 7.27 (m, 2H), 7.25 (dd, *J* = 3.9, 2.6 Hz, 1H), 3.50 (s, 3H), 2.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.32, 140.70, 139.82, 139.45, 130.96, 128.59, 128.42, 128.37, 128.19, 127.69, 127.51, 52.84, 37.91.

The analytical data are consistent with those reported in the literature.⁸

Methyl (2-fluorophenyl) (methyl) carbamate (4g): (29 mg, yellow liquid, yield: 52%) ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.14 (m, 2H), 7.13 – 6.98 (m, 2H), 3.62 (s, 3H), 3.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.29, 156.52 (d, J = 56.56 Hz), 130.78, 129.11, 128.72 (d, J = 8.08 Hz), 124.54, 116.61(d, J = 20.20 Hz), 53.24, 37.68.

¹⁹F NMR (376 MHz, CDCl₃) δ -121.57.

HRMS (ESI-TOF) Calc. for C₉H₁₁FNO₂⁺ [M+H] ⁺: 184.0768; found: 184.0776

Methyl (4-fluorophenyl) (methyl) carbamate (4h): (34 mg, white liquid, yield: 62%)

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, *J* = 8.8, 4.8 Hz, 2H), 7.03 (dd, *J* = 9.1, 8.1 Hz, 2H), 3.69 (s, 3H), 3.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.82 (d, J = 245.43 Hz), 156.30, 139.35, 127.71,115.85 (d, J = 23.23 Hz), 53.13, 38.11.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.55.

HRMS (ESI-TOF) Calc. for C₉H₁₁FNO₂⁺ [M+H] ⁺: 184.0768; found: 184.0776

Methyl (4-chlorophenyl) (methyl) carbamate (4i): (47 mg, white liquid, yield: 78%) ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.30 (d, *J* = 2.1 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 2H), 3.71 (s, 3H), 3.28 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 156.08, 141.93, 131.69, 129.11, 127.11, 53.16, 37.81. The analytical data are consistent with those reported in the literature.¹⁰

Methyl (3-bromophenyl) (methyl) carbamate (4j): (53 mg, white liquid, yield: 73%) ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, *J* = 2.0 Hz, 1H), 7.34 (dt, *J* = 7.3, 1.9 Hz, 1H), 7.24 – 7.16 (m, 2H), 3.72 (s, 3H), 3.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.94, 144.64, 130.18, 129.22, 128.94, 124.41, 122.26, 53.22, 37.74. HRMS (ESI-TOF) Calc. for C₉H₁₀Br⁷⁹NaNO₂⁺ [M+Na] ⁺: 265.9787; found: 265.9800 HRMS (ESI-TOF) Calc. for C₉H₁₀Br⁸¹NaNO₂⁺ [M+Na] ⁺: 267.9787; found: 267.9781

Methyl methyl(4-vinylphenyl) carbamate (4k): (28 mg, white liquid, yield: 49%) ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.20 (d, J = 8.2 Hz, 2H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.72 (dd, J = 17.6, 0.9 Hz, 1H), 5.25 (dd, J = 10.9, 0.9 Hz, 1H), 3.71 (s, 3H), 3.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.21, 142.74, 136.09, 135.54, 126.74, 125.80, 114.19, 53.10, 37.83. HRMS (ESI-TOF) Calc. for C₁₁H₁₄NO₂⁺ [M+H] ⁺: 192.1019; found: 192.1019

Methyl methyl(naphthalen-1-yl) carbamate (4l): (63 mg, yellow liquid, yield: 98%)

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 1H), 7.81 (t, *J* = 7.6 Hz, 2H), 7.58 – 7.44 (m, 3H), 7.35 (d, *J* = 7.4 Hz, 1H), 3.58 (s, 3H), 3.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.13, 139.62, 134.68, 130.32, 128.61, 128.11, 126.95, 126.41, 125.85, 124.97, 122.67, 53.14, 38.56.

HRMS (ESI-TOF) Calc. for $C_{13}H_{15}NO_2^+$ [M+H] +: 216.1019 ; found: 216.1022

Methyl benzo[d]thiazol-6-yl(methyl) carbamate (4m): (21 mg, brown liquid, yield: 31%) ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, *J* = 1.6 Hz, 1H), 8.10 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.84 (s, 1H), 7.40 (d, *J* = 8.7 Hz, 1H), 3.72 (s, 3H), 3.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.29, 154.56, 151.47, 141.07, 134.24, 124.86, 123.79, 119.24, 53.26, 38.32.

HRMS (ESI-TOF) Calc. for C₁₀H₁₀NaN₂O₂S⁺ [M+Na] ⁺: 245.0355; found: 245.0357

Methyl 2-((methoxycarbonyl)(methyl)amino) benzoate (4p): (30 mg, white liquid, yield: 45%) ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.90 (m, 1H), 7.65 – 7.50 (m, 1H), 7.35 (q, *J* = 7.2, 6.6 Hz, 1H), 7.26 (q, *J* = 7.9, 6.7 Hz, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 3.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.51, 156.13, 143.07, 133.26, 131.42, 128.75, 128.27, 127.28, 52.93, 52.46, 38.29.

HRMS (ESI-TOF) Calc. for $C_{11}H_{14}NO_4^+$ [M+H] ⁺: 246.0737; found: 246.0748

Methyl methyl(1-methyl-1H-indol-6-yl) carbamate (4q): (38 mg, yellow liquid, yield: 59%) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.3 Hz, 1H), 7.22 – 7.12 (m, 1H), 7.07 (d, *J* = 3.1 Hz, 1H), 6.96 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.48 (dd, *J* = 3.0, 0.9 Hz, 1H), 3.77 (s, 3H), 3.73 – 3.61 (m, 3H), 3.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.89, 137.76, 136.71, 129.89, 127.21, 121.18, 118.29, 107.35, 101.18, 52.99, 38.95, 32.99.

HRMS (ESI-TOF) Calc. for $C_{12}H_{14}NaN_2O_2^+$ [M+Na]⁺: 241.0947; found: 241.0954.

Methyl methyl(1-methyl-1H-indol-5-yl) carbamate (4r): (25 mg, brown liquid, yield: 38%) ¹H NMR (400 MHz, CDCl₃) & 7.50 – 7.42 (m, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.08 (d, *J* = 3.2 Hz, 2H), 6.52 – 6.44 (m, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 3.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.01, 135.61, 135.31, 129.98, 128.67, 120.54, 118.55, 109.57, 101.28, 52.95, 39.00, 33.06.

HRMS (ESI-TOF) Calc. for $C_{12}H_{14}NaN_2O_2^+$ [M+Na] +: 241.0947; found: 241.0954.

Methyl 5-((methoxycarbonyl)(methyl)amino)-1-methyl-1H-indole-3-carboxylate (4r'):

(33 mg, brown liquid, yield: 42%)

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 2.1 Hz, 1H), 7.79 (s, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.68 (s, 3H), 3.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.35, 156.82, 138.10, 136.15, 135.71, 127.01, 122.14, 119.22, 110.34, 107.22, 53.09, 51.21, 38.92, 33.76.

HRMS (ESI-TOF) Calc. for C₁₄H₁₇N₂O₄⁺ [M+H] ⁺: 277.1183; found: 277.1187

CI

(4-Chlorophenyl) (methyl) sulfane : (40 mg, white liquid, yield: 84%)
¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.24 (m, 2H), 7.23 - 7.16 (m, 2H), 2.48 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 137.14, 131.06, 129.05, 128.08, 77.48, 77.16, 76.85, 16.26.
The analytical data are consistent with those reported in the literature.⁷

4. References

- K. Takeuchi, M.-Y. Chen, H.-Y. Yuan, H. Koizumi, K. Matsumoto, N. Fukaya, Y.-K. Choe, S. Shigeyasu, S. Matsumoto, S. Hamura and J.-C. Choi, *Chem. Eur. J.*, 2021, 27, 18066–18073.
- 2 L. Li, M. Xue, X. Yan, W. Liu, K. Xu and S. Zhang, Org. Biomol. Chem., 2018, 16, 4615-4618.
- 3 B. Zhang, W. Deng and Z.-Y. Xu, Organometallics, 2023, 42, 588-596.
- 4 X. Yang, Y. Zhang and D. Ma, Adv. Syn. & Cata., 2012, 354, 2443-2446.
- 5 S.-N. Wang, G.-Y. Zhang, A. Shoberu and J.-P. Zou, J. Org. Chem., 2021, 86, 9067–9075.
- 6 Q. Zhang, H.-Y. Yuan, N. Fukaya, H. Yasuda and J.-C. Choi, Green Chem., 2017, 19, 5614–5624.
- 7 T. Nakajima, K. Takano, H. Maeda, Y. Ogiwara and N. Sakai, Chem. Asian J., 2021, 16, 4103-4107.
- 8 N. Uhlig and C.-J. Li, Chem. Eur. J., 2014, 20, 12066-12070.
- 9 M. Noshita, Y. Shimizu, H. Morimoto and T. Ohshima, Org. Lett., 2016, 18, 6062-6065.
- 10 H. Seo, A.-C. Bédard, W. P. Chen, R. W. Hicklin, A. Alabugin and T. F. Jamison, *Tetrahedron*, 2018, 74, 3124–3128.
- 11 E. Chung, S. Kim, A. Rakshit, P. Singh, J. Park, T. Jeong and I. S. Kim, J. Org. Chem., 2023, 88, 11227-11239.

5. NMR Spectroscopic Data for Products

Figure S1 ¹H NMR spectrum for compound 3a

Figure S2 ¹³C NMR spectrum for compound 3a

f1 (ppm)

Figure S4 ¹³C NMR spectrum for compound 3b

Figure S6¹³C NMR spectrum for compound 3c

Figure S9 ¹H NMR spectrum for compound 3e and 3t

Figure S12 ¹³C NMR spectrum for compound 3f

Figure S13 ¹H NMR spectrum for compound 3g

Figure S14 ¹³C NMR spectrum for compound 3g

Figure S15 ¹H NMR spectrum for compound 3h

Figure S16 ¹³C NMR spectrum for compound 3h

Figure S17 ¹H NMR spectrum for compound 3i

Figure S19 ¹H NMR spectrum for compound 3j

Figure S21 ¹H NMR spectrum for compound 3k

Figure S23 ¹H NMR spectrum for compound 31

Figure S25 ¹H NMR spectrum for compound 3m

Figure S26 ¹³C NMR spectrum for compound 3m

Figure S28 ¹³C NMR spectrum for compound 3n

16-C.10.fid

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 70 60 -10

Figure S30 ¹³C NMR spectrum for compound 30

Figure S32 ¹³C NMR spectrum for compound 3p

Figure S33 ¹H NMR spectrum for compound 3q

Figure S35 HRMS spectrum for compound 3q

Figure S36 ¹H NMR spectrum for compound 3r

Figure S38 HRMS spectrum for compound 3r

Figure S40 ¹³C NMR spectrum for compound 3s and 4n

Figure S41 HRMS spectrum for compound 3s and 4n

Figure S43 ¹³C NMR spectrum for compound 5a

Figure S44 ¹H NMR spectrum for compound 4a

Figure S45 ¹³C NMR spectrum for compound 4a

Figure S46 HRMS spectrum for compound 4a

Figure S47 ¹H NMR spectrum for compound 4b

Figure S48 ¹³C NMR spectrum for compound 4b

27-C.10.fid

Figure S51 ¹H NMR spectrum for compound 4d

Figure S52 ¹³C NMR spectrum for compound 4d

Figure S55 ¹H NMR spectrum for compound 4f

Figure S57 ¹H NMR spectrum for compound 4g

Figure S59 ¹⁹F NMR spectrum for compound 4g

Figure S60 HRMS spectrum for compound 4g and 4h

Figure S62 ¹³C NMR spectrum for compound 4h

Figure S64 ¹H NMR spectrum for compound 4i

Figure S65 ¹³C NMR spectrum for compound 4i

Figure S67 ¹³C NMR spectrum for compound 4j

26-C.10.fid

f1 (ppm)

Figure S68 HRMS spectrum for compound 4j

Figure S69 ¹H NMR spectrum for compound 4k

Figure S70 ¹³C NMR spectrum for compound 4k

Figure S71 HRMS spectrum for compound 4k

Figure S72 ¹H NMR spectrum for compound 41

21.10.fid

Figure S74 HRMS spectrum for compound 41

Figure S75 ¹H NMR spectrum for compound 4m

Figure S76 ¹³C NMR spectrum for compound 4m

Figure S77 HRMS spectrum for compound 4m

Figure S79 ¹³C NMR spectrum for compound 4p

Figure S80 HRMS spectrum for compound 4p

Figure S81 ¹H NMR spectrum for compound 4q

Figure S82 ¹³C NMR spectrum for compound 4q

Figure S83 HRMS spectrum for compound 4q and 4r

Figure S86 ¹H NMR spectrum for compound 4 r'

Figure S87 ¹³C NMR spectrum for compound 4 r'

Figure S88 HRMS spectrum for compound 4 r'

Figure S89 ¹H NMR spectrum for compound 6a

f1 (ppm)