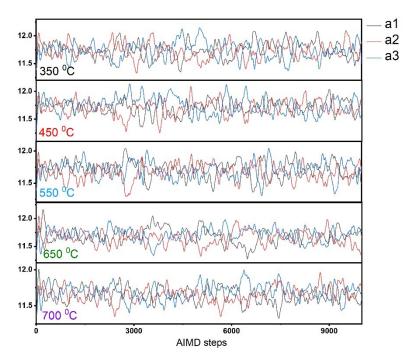
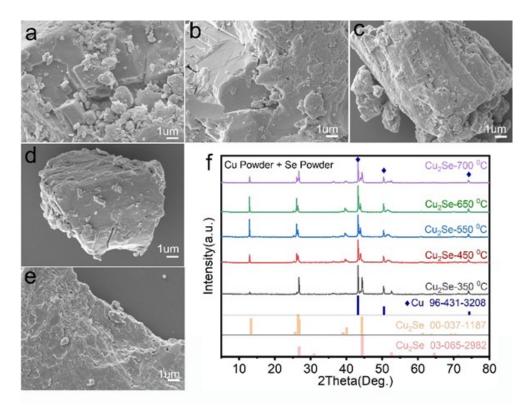
Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A simple large-scale preparation and crystal phase control method of Cu₂Se by exfoliating from copper foam under Se-rich airflow


Dan He a, Yuxuan Ma b, Yongping Ding b, Xiaoxue Yang a, Fenghua Bai a* and Ab*

^aInner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China, wang xiao jing@hotmail.com.


^bSchool of Ecology and Environment Department, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.

Text S1: Calculation detail

In this work, ab initio molecular dynamics (AIMD) was used to perform theoretical simulations and combined with molecular dynamics to calculate the material properties at high temperatures. Since high temperatures will cause thermal vibrations of the atoms, the calculations for the material are accompanied by thermal rise and fall. Therefore, we calculated 10000 steps for the Cu₂Se cell after expanding 2 times all three directions of a₁, a₂, and a₃, and obtained 10000 instantaneous structures and the corresponding lattice constants a₁, a₂, and a₃, then the average values were calculated to obtain the corresponding calculation results.

Fig. S1 Calculated lattice constants a_1 , a_2 , a_3 for Cu_2Se at 350 ^{0}C , 450 ^{0}C , 550 ^{0}C , 650 ^{0}C , 700 ^{0}C

Fig S2. (a-e) Cu₂Se-GX (X=350 °C, 450 °C, 550 °C, 650 °C and 700 °C) prepared by calcination of copper and selenium powders after complete mixing, (f) XRD pattern of Cu₂Se-GX.

Table S1. Cu, Se content of Cu₂Se-550 ⁰C

	ICP (%)	XPS (%)
Cu	62.6	22.4
Se	35.5	13.6