Supporting Information

Solution-grown ternary quasi-cube AgSbTe₂ and their optoelectronic

performance for broadband photodetection

Cunxin Li,‡^a Kaijia Xu,‡^a Lanjun Cheng,^b Zhichuan Wu,^{*a} and Yinyin Qian ^{*a}

^aAnhui Laboratory of Clean Energy Materials and Chemistry for Sustanable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China

^bSchool of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China [‡]These authors contributed equally to this work.

Figure S1. The size-distribution histograms of AgSbTe₂ nanocrystals.

Figure S2. (a) The real photo of photodetector and (b-d) SEM images of photodetector.

Figure S3. The wavelength dependent photoresponse using varied wavelengths from 405 to 980 nm.

Figure S4. (a) The size-distribution histograms of AgSbTe₂ nanocrystals reacted at 210 °C for 30 min. (b) I-V curves in the dark and under different wavelengths of light sources with a constant light illumination power. (c) I-V curves under 405 nm irradiation with varied light illumination power from 20 to 100 mW/cm². (d) Temporal photoresponse of the device at bias voltage of 1 V.

Figure S5. a) XRD patterns of AgSbTe₂ nanocrystals obtained in 1-octadecene. b) SEM of AgSbTe₂ nanocrystals obtained in 1-octadecene.

Figure S6. I - V plots photodetectors measured of $AgSbTe_2$ nanocrystals obtained in 1-octadecene in the dark and under 405 nm illumination.

Figure S7. a) XRD patterns of $AgSbTe_2$ nanocrystals obtained at 240 °C for 30 min. b) SEM of $AgSbTe_2$ nanocrystals obtained at 240 °C for 30 min.

Figure S8. I - V plots photodetectors measured of $AgSbTe_2$ nanocrystals obtained at 240 °C for 30 min in the dark and under 405 nm illumination.

Table S1. Comparison of the photoelectric performance parameters for the present AgSbTe ₂										
nanocrystals	with	other	recent	reported	colloidal	nanocrystals-based	solution-processed			
photodetecto	ors.									

structures	Wavelengths (nm)	Power density (mW/cm ²)	Responsivity (mA/W)	Rise/fall time (s)	Detectivity (Jones)	Refs.
AgSbTe ₂	405-980	5	2.44	0.49/0.58	$2.0 imes 10^9$	This work
SnSe ₂	405-1064	150	6.7	3.7/3.1		<i>CrystEngComm,</i> 2021 , 23,2034
NiTe ₂	650-1550	11.2	18.45	0.31/0.21	8.3 × 10 ⁸	ACS Appl. Nano Mater., 2022 , 5, 6094–6099
AgBiS ₂	350-1070		375		3.0 × 10 ¹¹	<i>Nanoscale,</i> 2022, 14, 4987
Cu ₃ NbSe ₄	400	20		0.3/0.1		<i>DaltonTrans.</i> , 2022 , 51,16937