Electronic Supporting Information (ESI)

Fabrication of Cd(II) metal-organic framework as a dual functional material: Efficient iodine capture and selective adsorption of cationic dye

Farhat Vakil^a, M. Shahwaz Ahmad^a, Manjeet Kumar^b, Azaj Ansari^b, M. Shahid^{a*}, Musheer

Ahmad^c

 ^aFunctional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
 ^bDepartment of Chemistry Central University of Haryana, India.
 ^cDepartment of Applied Chemistry (ZHCET) Aligarh Muslim University, Aligarh-202002, India.

*Corresponding author: shahid81chem@gmail.com

Fig. S1. The different coordination mode of H_2 tpa and tz⁻ ligands are depicted.

Fig. S2. (a) FTIR spectrum and (b) TGA before iodine adsorption.

Fig. S3. PXRD pattern of FV-1 before and after adsorption of MB.

Fig. S4. N_2 adsorption/desorption isotherm for FV-1 showing no noticeable porosity.

Atom	Atom	Length/Å
Cd1	01	2.314(2)
Cd1	02	2.433(2)
Cd1	03	2.401(2)
Cd1	N1	2.244(2)
Cd1	N2 ¹	2.318(2)
Cd1	N3 ²	2.256(2)
01	C3	1.249(5)
02	C3	1.240(4)
03	C7	1.189(5)
N1	N2	1.365(3)
N1	C1	1.314(3)
N2	C2	1.314(4)
N3	C1	1.326(3)
N3	C2	1.334(4)
N4	C7	1.288(6)
N4	C8	1.400(8)
N4	С9	1.434(10)
C3	C4	1.517(4)
C4	C5	1.359(6)
C4	C6	1.363(5)
C5	C6 ³	1.392(5)

Atom	Atom	Atom	Angle/°
02	Cd1	01	54.91(9)
03	Cd1	01	86.59(10)
03	Cd1	02	88.94(9)
N1	Cd1	01	108.16(10)
N1	Cd1	02	162.05(9)
N1	Cd1	03	83.67(9)
N21	Cd1	01	95.34(9)
N2 ¹	Cd1	02	89.14(8)
N2 ¹	Cd1	03	175.82(10)
N2 ¹	Cd1	N1	99.22(8)
N3 ²	Cd1	01	146.17(9)
N3 ²	Cd1	02	92.14(9)
N3 ²	Cd1	03	85.19(10)
N3 ²	Cd1	N1	103.46(9)
N3 ²	Cd1	N2 ¹	91.17(9)
C3	Cd1	01	27.55(11)
C1	N1	Cd1	127.41(18)
C1	N1	N2	105.7(2)
N1	N2	Cd1 ¹	133.62(17)
C2	N2	Cd1 ¹	120.90(18)
C2	N2	N1	105.3(2)
C1	N3	Cd1 ³	128.79(19)
C2	N3	Cd1 ³	129.24(19)
C2	N3	C1	101.9(2)
C8	N4	C7	121.9(6)
C9	N4	C8	117.3(7)
N3	C1	N1	113.6(2)
N3	C2	N2	113.5(2)
01	C3	Cd1	58.98(16)
02	C3	Cd1	64.46(16)
02	C3	01	123.4(3)
C3	Cd1	02	27.37(10)
C3	Cd1	03	87.31(10)
C3	01	Cd1	93.5(2)
C3	02	Cd1	88.2(2)
C7	03	Cd1	126.5(3)
N2	N1	Cd1	126.74(17)
C4	C3	Cd1	177.0(3)
C4	C3	01	118.1(3)
C4	C3	02	118.5(3)
C5	C4	C3	120.8(3)
C6	C4	C3	120.4(3)
C6	C4	C5	118.8(3)
C6 ⁴	C5	C4	120.5(4)
C5 ⁴	C6	C4	120.7(4)

Table S2. Bond Angles for FV-1.

Explanation of Alert B in the Checkcif:

```
# start Validation Reply Form
vrf_PLAT230_ALERT_2_B
PROBLEM:Hirshfeld Test Diff for O3
                                         --C7
                                                      8.5 s.u.
RESPONSE: Due to unresolved disorders, some atoms were still not ideally shaped,
however, this does not indicate an incorrect atom-type assignment.
vrf_PLAT232_ALERT_2_B
PROBLEM: Hirshfeld Test Diff (M-X) Cd1
                                           --O2
                                                       13.9 s.u.
RESPONSE: Due to unresolved disorders, some atoms were still not ideally shaped,
however, this does not indicate an incorrect atom-type assignment.
_vrf_PLAT242_ALERT_2_B
PROBLEM:Low 'MainMol' Ueq as Compared to Neighbors of
                                                              N4 Check
RESPONSE: This may be also due to disorders in the atoms, but the atom-type
```

end Validation Reply Form

assignment is correct.

Table S3. Determination of zeta potential at varying pH for FV-1.

рН	Zeta Potential (mV)
2	-4.06
3	-4.10
4	-4.11
5	-4.19
6	-4.21
7	-5.61
8	0.00
9	+0.56
10	+0.55
11	+0.54
12	+0.60