Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

VN@C Hollow Structures Derived from ZIF-8 Templates for

Lithium-Ion Battery Anode

Keke Zhu^a, Yunpeng Zhang^a, Ranran Jiao^{b,c}, Yanjun Zhai^a, Denghu Wei^d, Suyuan Zeng^{*a} and Lei Wang^{*a}

^aSchool of Chemistry and Chemical Engineering, Liaocheng University
Liaocheng, 252059, PR China.
^bCAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics,
Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei, Anhui 230031, PR China
^cUniversity of Science and Technology of China, Hefei, Anhui 230026, PR China
^dSchool of Materials Science and Engineering, Liaocheng University
Liaocheng, 252059, PR China.
E-mail: drzengsy@163.com (S. Zeng), wanglei@lcu.edu.cn (L. Wang)
Tel: +86-635-8230614, Fax: +86-635-8230196

Fig. S1 SEM image of as-prepared ZIF-8.

Fig. S2 XRD pattern of as-prepared ZIF-8.

Fig. S3 Zeta potential of $V_2O_5 \cdot nH_2O$ colloidal particles and ZIF-8.

Fig. S4 (a, b) TEM images of V_2O_5 @ZIF-8.

Fig. S5 XRD pattern of $V_2O_5@ZIF-8$.

Fig. S6 High-resolution XPS spectra of the (a) V 2p; (b) C 1s of the V₂O₅@ZIF-8.

Fig. S7 FT-IR spectra of ZIF-8 and $V_2O_5@ZIF-8$.

Fig. S8 TGA of ZIF-8 and V₂O₅@ZIF-8 in vacuum.

Fig. S9 XRD pattern of the product of (a-b) ZIF-8 and (c) $V_2O_5@ZIF-8$ after TGA.

Fig. S10 XRD pattern of the product of VN@C hollow structures at 800 °C under air.