Supplementary Information

On structural factors determining the nature of the fluorescent properties of OIHMs based on 8-hydroxyquinoline

Marta Bogdan, Tomasz Sierański, Marcin Świątkowski and Agata Trzęsowska-Kruszyńska

Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90924, Lodz, Poland

Table of content

1.	Synthesis details	3
2.	Supplemental tables	7
	Table S1. Crystal data and structure refinement details for the studied compounds.	7
	Table S2. Structural data of the coordination polyhedra in the studied compounds	10
	Table S3. Stacking interactions in the studied compounds	12
	Table S4. Hydrogen bond in the studied compounds.	13
	Table S5. Vibrational frequencies (cm ⁻¹) and their assignment for the studied compounds	16
	Table S6. The most important electronic transitions for the compounds containing the open-shell coordinati centers	on 19
	Table S7. The most important electronic transitions for the chloride compounds containing the closed-shell coordination centers	21
	Table S8. The most important electronic transitions for the bromide compounds containing the close-shell coordination centers	24
3.	Supplemental figures	27
	XRPD pattern (Figure S1)	27
	Molecular structures and intermolecular interactions (Figure S2-S18)	27
	UV-Vis spectra (Figure S19-S38)	39
	Calculated molecular orbitals of the studied compounds, corresponding to Tables S6-S8 (Figure S39-S56)	49
	Calculated molecular orbitals involved in the excitation process, corresponding to Table 2 of the main manuscript (Figure S57-S75)	78
	3D-EEM fluorescence spectra (Figure S76-S95)	82
4.	The data concerning the structures of $(8hqBr_2H)_2[CuBr_4]\cdot 2H_2O$ and $(8hqBr_2H)_4[Bi_2Br_{10}]\cdot 2H_2O$	92

1. Synthesis details

bis(8-hydroxyquinolinium) tetrachloridomercurate(II) synthesis (HgCl(1))

The compound was obtained from the filtrate solution which was left after removing crystals of 8hydroxyquinolinium μ -chlorido-dichloridomercurate(II) dihydrate. After two months new yellow crystals grew from this filtrate. Yield: 42%.

8-hydroxyquinolinium μ -chlorido-dichloridomercurate(II) dihydrate synthesis (HgCl(2))

The 8-hydroxyquinoline powder (1 mmol; 0.1452 g) was dissolved in a 5 ml of methanol. Solid mercury(II) chloride (0.5 mmol; 0.1358 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. Immediately yellow crystals grew. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 36%.

bis(8-hydroxyquinolinium) tetrabromidomercurate(II) synthesis (HgBr)

The 8-hydroxyquinoline powder (1.05 mmol; 0.1525 g) was dissolved in a 5 ml of methanol. Solid mercury(II) bromide (0,525 mmol; 0.1892 g) was dissolved in 5 ml of 40% HBr. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After three months yellow crystals grew. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 64%.

8-hydroxyquinolinium μ-chlorido-dichloridoleadate(II) synthesis (PbCl)

The 8-hydroxyquinoline powder (1.02 mmol; 0.1481 g) was dissolved in a 5 ml of methanol. Solid lead(II) chloride (0.51 mmol; 0.1418 g) was dissolved in 10 ml of 37% HCl. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After two days yellow crystals grew. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 74%.

8-hydroxyquinolinium μ-bromido-dibromidoleadate(II) synthesis (PbBr)

The 8-hydroxyquinoline powder (1.06 mmol; 0.1539 g) was dissolved in a 5 ml of methanol. Solid lead(II) bromide (0,53 mmol; 0.1945 g) was dissolved in 10 ml of 40% HBr. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. Immediately yellow precipitate appeared. The precipitate was filtered off, and the yellow solution was left to crystallize. After two months yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 69%.

bis(8-hydroxyquinolinium) tetrachloridocobaltate(II) synthesis (CoCl)

The 8-hydroxyquinoline powder (1 mmol; 0.1452 g) was dissolved in a 5 ml of methanol. Solid cobalt(II) chloride hexahydrate (0.5 mmol; 0.1190 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 9.5

ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The green solution was left to crystallize. After three months green crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 45%.

bis(8-hydroxyquinolinium) tetrachloridozincate(II)synthesis (ZnCl)

The 8-hydroxyquinoline powder (1.05 mmol; 0.1524 g) was dissolved in a 5 ml of methanol. Solid zinc(II) chloride (0.525 mmol; 0.0716 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After one-month yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 62%.

bis(8-hydroxyquinolinium) tetrabromidocobaltate(II) synthesis (CoBr)

The 8-hydroxyquinoline powder (1.01 mmol; 0.1466 g) was dissolved in a 5 ml of methanol. Solid cobalt(II) bromide (0.505 mmol; 0.1104 g) was dissolved in 5 ml of 40% HBr. The acidic halide solution ws added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The orange solution was left to crystallize. After five months orange crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 43%.

bis(8-hydroxyquinolinium) tetrabromidozincate(II) synthesis (ZnBr)

The 8-hydroxyquinoline powder (1.012 mmol; 0.1469 g) was dissolved in a 5 ml of methanol. Solid zinc(II) bromide (0.506 mmol; 0.1140 g) was dissolved in 5 ml of 40% HBr. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After three months yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 54%.

bis(8-hydroxyquinolinium) tetrabromidocadmate(II) synthesis (CdBr)

The 8-hydroxyquinoline powder (1 mmol; 0.1452 g) was dissolved in a 5 ml of methanol. Solid cadmium(II) bromide (0.5 mmol; 0.1361 g) was dissolved in 5 ml of 40% HBr. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After three months yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 56%

bis(8-hydroxyquinolinium) tetrachloridocadmate(II) synthesis (CdCl)

The 8-hydroxyquinoline powder (1.04 mmol; 0.1510 g) was dissolved in a 5 ml of methanol. Solid cadmium(II) chloride (0.520 mmol; 0.095 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After one-month yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 57%

bis(8-hydroxyquinolinium) tetrachloridoferrate(III) chloride (FeCl)

The 8-hydroxyquinoline powder (1.07 mmol; 0.1553 g) was dissolved in a 5 ml of methanol. Solid iron(III) chloride hexahydrate (0.535 mmol; 0.1446 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After two weeks yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 66%.

bis(8-hydroxyquinolinium) tetrabromidoferrate(III) bromide (FeBr)

The 8-hydroxyquinoline powder (1.05 mmol; 0.1525 g) was dissolved in a 5 ml of methanol. Solid iron(III) bromide (0,525 mmol; 0.1552 g) was dissolved in 5 ml of 40% HBr. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. Immediately red-brown precipitate appeared. The precipitate was filtered off, and the red solution was left to crystallize. After six weeks red crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 51%.

bis(8-hydroxyquinolinium) tetrachloridocopperate(II) (CuCl)

The 8-hydroxyquinoline powder (1.06 mmol; 0.1539 g) was dissolved in a 5 ml of methanol. Solid copper(II) chloride dihydrate (0.530 mmol; 0.0903 g) was dissolved in 5 ml of 37% HCl. The acidic halide solution was added to 10 ml of water and the solution was stirred for about 10 minutes. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The green-yellow solution was left to crystallize. After two months green-yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 60%.

tetrakis(8-hydroxyquinolinium)heksachloridobismuthate(III) chloride dihydrate (BiCl)

The 8-hydroxyquinoline powder (1.03 mmol; 0.1488 g) was dissolved in a 5 ml of methanol. Solid bismuth(III) chloride (0.513 mmol; 0.1618 g) was dissolved in 5 ml of 37% HCl. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize.

After one-month yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 53%.

8-hydroxyquinolinium chloride (8hqHCl)

The 8-hydroxyquinoline powder (1.2 mmol; 0.1742 g) was dissolved in a 5 ml of methanol. To this solution, 5 ml of 37% hydrochloric acid was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After one-month transparent, yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 72%.

8-hydroxyquinolinium bromide (8hqHBr)

The 8-hydroxyquinoline powder (1.1 mmol; 0.1597 g) was dissolved in a 5 ml of methanol. To this solution, 5 ml of 40% hydrobromic acid was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After three months yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 66%.

bis(8-hydroxyquinolinium)heksachloridotinnate(IV) dihydrate (SnCl(1))

The compound was obtained from the filtrate solution which was left after removing crystals of 8hydroxyquinolinium tetrachlorido-(quinolin-8-olato- κ 2-N, O) tinnate(IV) hydrate. After one month new yellow crystals grew from this filtrate. Yield: 32%.

8-hydroxyquinolinium tetrachlorido-(quinolin-8-olato-κ2-N, O) tinnate(IV) hydrate (SnCl(2))

The 8-hydroxyquinoline powder (1.02 mmol; 0.1481 g) was dissolved in a 5 ml of methanol. Liquid, anhydrous tin(IV) chloride (0.510 mmol; 0.1329 g) was dissolved in 5 ml of 37% HCl. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. Immediately after mixing, yellow crystals grew. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 46%.

bis(8-hydroxyquinolinium)heksabromidotinnate(IV) dihydrate (SnBr)

The 8-hydroxyquinoline powder (1.12 mmol; 0.1626 g) was dissolved in a 5 ml of methanol. Solid tin(IV) bromide (0.560 mmol; 0.2455 g) was dissolved in 8 ml of 40% HBr. To this solution, a methanolic ligand solution was added dropwise. The reaction mixture was stirred for 30 minutes. The yellow solution was left to crystallize. After one month yellow crystals were obtained. A batch of crystals was filtered off and dried in an air atmosphere. Yield: 67%.

2. Supplemental tables

Compound	FeCl	FerBr	CoCl	CoBr	CuCl	ZnCl	CdCl
Empirical formula	C18H16Cl5N2O2Fe	C18H16Br5N2O2Fe	C18H16Cl4N2O2Co	$C_{18}H_{16}Br_4N_2O_2Co$	C18H16Cl4N2O2Cu	$C_{18}H_{16}Cl_4N_2O_2Zn$	C18H16Cl4N2O2Cd
Formula weight	525.43	747.73	493.06	670.90	497.67	499.50	546.53
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	C2/c	P2/n	<i>P</i> -1	C2/c	C2/c
Radiation	Mo Kα (0.71073 Å)	Cu Kα (1.54184 Å)	Cu Kα (1.54184 Å)	Mo Kα (0.71073 Å)			
Unit cell dimensions							
a (Å)	7.4707(2)	7.68190(10)	15.2078(7)	17.0128(6)	9.54840(10)	15.1939(2)	15.2834(6)
$b(\mathbf{A})$	10.1801(2)	10.4227(2)	8.0042(4)	7.1435(2)	10.74010(10)	7.99590(10)	8.2421(4)
$c(\mathbf{A})$	14.1377(4)	14.4180(3)	16.6991(8)	17.1911(7)	10.78680(10)	16.6547(2)	16.5244(7)
α (°)	86.275(2)	86.456(2)	90.00	90.00	98.6680(10)	90.00	90
β (°)	86.472(2)	85.113(2)	91.133(4)	90.158(3)	113.4250(10)	91.0690(10)	91.322(4)
γ (°)	84.890(2)	85.066(2)	90.00	90.00	99.3670(10)	90.00	90
Volume (A ³)	1066.99(5)	1144.21(4)	2032.32(17)	2089.24(13)	972.727(18)	2023.01(4)	2080.98(16)
Z	2	2	4	4	2	4	4
(Mg/m ³)	1.635	2.170	1.611	2.133	1.699	1.640	1.744
Absorption coefficient (mm ⁻¹)	1.350	9.406	1.386	8.488	6.788	6.690	1.579
F(000)	530	710	996	1284	502	1008	1080
Min. and max. transmission	0.364 and 1.000	0.237 and 0.789	0.943 and 1.000	0.310 and 0.777	0.676 and 0.993	0.653 and 0.887	0.868 and 1.000
θ Range for data collection (°)	3.622 to 25.020	2.360 to 25.023	3.589 to 25.023	2.851 to 32.202	4.296 to 66.590	5.313 to 66.569	2.666 to 25.024
Index ranges	$-8 \le h \le 8$	$-9 \le h \le 9$	$-17 \le h \le 17$	$-25 \le h \le 25$	$-11 \le h \le 10$	$-18 \le h \le 17$	$-18 \le h \le 18$
U U	$-11 \le k \le 12$	$-12 \le k \le 12$	$-9 \le k \le 9$	$-10 \le k \le 10$	$-12 \le k \le 12$	$-9 \le k \le 7$	-9≤ k ≤9
	$-16 \le l \le 16$	$-17 \le l \le 17$	$-19 \le l \le 19$	$-25 \le l \le 25$	-12 ≤ l≤12	$-19 \le l \le 19$	-19≤1≤19
Reflections collected /	22440 / 3754	28566 / 4033	8765 / 1784	57774 / 7751	25526 / 3448	9647 / 1790	7746 / 1840
Rint	0.0233	0.0238	0.0354	0.0948	0.0349	0.0261	0.0322
Completeness (%)	99.7	99.9	99.3	99.9	100.0	100.0	99.9
Data / restraints / parameters	3754 / 0/ 255	4033 / 0 / 255	1784 / 0/ 124	7751 / 0 / 248	3448 / 0 / 246	1790 / 0 / 124	1840 / 0 /124
Goodness-of-fit on F^2	1.069	1.041	1.040	1.097	1.044	1.085	1.031
Final R indices	R1 = 0.0247	R1 = 0.0159	R1 = 0.0241	R1 = 0.0805	R1 = 0.0258	R1 = 0.0197	R1 = 0.0184,
$[I \ge 2\sigma(I)]$	wR2 = 0.0627	wR2 = 0.0381	wR2 = 0.0557	wR2 = 0.2159	wR2 = 0.0681	wR2 = 0.0536	wR2 = 0.0397
R indices (all data)	R1 = 0.0253	R1 = 0.0175	R1 = 0.0309	R1 = 0.1064	R1 = 0.0297	R1 = 0.0208	R1 = 0.0231.
	wR2 = 0.0630	wR2 = 0.0386	wR2 = 0.0580	wR2 = 0.2344	wR2 = 0.0701	wR2 = 00.0542	wR2 = 0.0410
Largest diff. peak and hole (e·Å ⁻³)	1.329 and -0.566	1.660 and -0.240	0.425 and -0.209	2.652 and -2.208	0.938 and -0.404	0.261 and -0.325	0.300 and -0.322

Table S1. Crystal data and structure refinement details for the studied compounds.

Compound	CdBr	HgCl(1)	HgCl(2)	HgBr	SnCl(1)	SnCl(2)	SnBr
Empirical formula	C18H16Br4N2O2Cd	C18H16Cl4N2O2Hg	C9H12Cl3N1O3Hg	C18H16Br4N2O2Hg	$C_{18}H_{20}Cl_6N_2O_4Sn$	$C_{18}H_{16}Cl_4N_2O_3Sn$	C18H16Br6N2O4Sn
Formula weight	724.37	634.72	489.14	812.56	659.75	568.82	926.51
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Orthorhombic	Triclinic
Space group	C2/c	C2/c	$P2_{1}/n$	P2/n	<i>P</i> -1	Pbca	<i>P</i> -1
Radiation	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)				
Unit cell dimensions							
a (Å)	15.7785(6)	15.2852(2)	13.7376(4)	17.0829(8)	7.2163(3)	7.8652(4)	7.4143(3)
b (Å)	8.5996(3)	8.25560(10)	4.3663(2)	7.2297(3)	9.5228(4)	16.7617(7)	9.8360(4)
<i>c</i> (Å)	16.6373(7)	16.5412(2)	22.5270(8)	17.2934(8)	9.5411(4)	31.4221(15)	9.5667(3)
α (°)	90.00	90.00	90.00	90.00	83.177(3)	90.00	83.836(3)
β (°)	92.280(4)	91.3170(10)	95.846(3)	90.388(4)	71.049(4)	90.00	72.170(3)
γ (°)	90.00	90.00	90.00	90.00	79.945(3)	90.00	79.668(4)
Volume (Å ³)	2255.71(15)	2086.76(4)	1344.20(9)	2135.76(17)	609.24(5)	4142.5(3)	652.37(4)
Ζ	4	4	4	4	1	8	1
Calculated density (Mg/m ³)	2.133	2.020	2.417	2.527	1.798	1.824	2.358
Absorption coefficient (mm ⁻¹)	8.069	7.904	12.009	14.706	1.734	1.772	10.193
F(000)	1368	1208	912	1496	326	2240	434
Min. and max. transmission	0.710 to 1.000	0.316 and 0.948	0.041 and 0.798	0.462 and 0.706	0.817 and 0.966	0.684 and 1.000	0.164 and 1.000
θ Range for data collection (°)	3.611 to 25.021	3.589 to 25.019	3.637 to 25.011	3.674 to 25.027	3.455 to 25.008	3.555 to 25.025	2.921 to 25.028
Index ranges	$-18 \le h \le 18$	$-18 \le h \le 18$	-16≤h≤16	$-20 \le h \le 20$	$-8 \le h \le 8$	$-8 \le h \le 9$	$-8 \le h \le 8$
C	$-10 \le k \le 10$	$-9 \le k \le 9$	-5≤ k ≤5	$-8 \le k \le 8$	$-11 \le k \le 11$	$-19 \le k \le 18$	$-11 \le k \le 11$
	$-19 \le l \le 19$	$-19 \le l \le 19$	$-26 \le 1 \le 26$	$-20 \le 1 \le 20$	$-11 \le l \le 11$	$-37 \le 1 \le 37$	-11≤1≤11
Reflections collected / unique	8130 / 1988	31143 / 1842	14421 / 2373	12595 / 3745	31869 / 4468	23321 / 3651	16086 / 2299
Rint	0.0296	0.0288	0.0330	0.0531	0.0517	0.0296	0.0401
Completeness (%)	99.7	99.7	99.7	99.0	99.7	99.7	99.9
Data / restraints / parameters	1988 / 0 / 124	1842 / 0/ 124	2373 / 0 / 155	3745 / 0 / 247	4468 / 0 / 144	3651 / 0 / 254	2299 / 0 / 143
Goodness-of-fit on F^2	1.029	1.120	1.046	1.037	1.108	1.043	1.067
Final R indices	R1 = 0.0173	R1 = 0.0082	R1 = 0.0144	R1 = 0.0359.	R1 = 0.0393	R1 = 0.0197	R1 = 0.0161.
$[I > 2\sigma(I)]$	wR2 = 0.0381	wR2 = 0.0215	wR2 = 0.0338	wR2 = 0.0858	wR2 = 0.1162	wR2 = 0.0403	wR2 = 0.0408
R indices (all data)	R1 = 0.0225.	R1 = 0.0082	R1 = 0.0159	R1 = 0.0456.	R1 = 0.0433.	R1 = 0.0226.	R1 = 0.0176.
	wR2 = 0.0394	wR2 = 0.0215	wR2 = 0.0342	wR2 = 0.0898	wR2 = 0.1179	wR2 = 0.0411	wR2 = 0.0414
Largest diff. peak and hole (e·Å ⁻³)	0.619 and -0.418	0.319 and -0.169	0.637 and -0.724	2.752 and -2.026	1.217 and -0.694	0.308 and -0.306	0.537 and -0.442

Table S1. continued

Compound	PbCl	PbBr	BiCl	8hqHCl	8hqHBr
Empirical formula	C9H8Cl3N1O1Pb	C9H8Br3N1O1Pb	C36H36Cl7N4O6Bi	$C_9H_{10}Cl_1N_1O_2$	$C_9H_{10}Br_1N_1O_2$
Formula weight	459.70	593.08	1077.82	199.63	244.09
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	$P2_{1}/n$	<i>P</i> -1	$P2_1/c$	$P2_1/c$
Radiation	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)	Cu Kα (1.54184 Å)
Unit cell dimensions					
a (Å)	3.9550(2)	4.06310(10)	8.35930(10)	7.7734(4)	7.72230(10)
b (Å)	20.7707(7)	21.2351(7)	13.0386(2)	8.0302(4)	8.3116(2)
<i>c</i> (Å)	14.0139(5)	14.5111(5)	18.9457(3)	15.1465(8)	15.3112(3)
α (°)	90.00	90.00	76.3850(10)	90	90
β (°)	95.449(3)	97.763(4)	83.6190(10)	99.036(5)	101.017(2)
γ (°)	90.00	90.00	84.6520(10)	90	90
Volume (Å ³)	1146.01(8)	1240.55(7)	1989.69(5)	933.74(8)	964.63(3)
Ζ	4	4	2	4	4
Calculated density (Mg/m ³)	2.664	3.175	1.799	1.420	1.681
Absorption coefficient (mm ⁻¹)	15.391	23.235	4.951	0.374	5.555
F(000)	840	1056	1060	416	488
Min. and max. transmission	0.094 and 1.000	0.149 and 0.947	0.379 and 1.000	0.756 and 1.000	0.632 and 0.823
θ Range for data collection (°)	3.285 to 25.027	3.422 to 32.025	3.463 to 25.026	3.672 to 25.027	5.837 to 66.587
Index ranges	$-4 \le h \le 4$	$-4 \le h \le 4$	$-9 \le h \le 9$	$-9 \le h \le 9$	$-9 \le h \le 9$
U	-24≤ k ≤24	-24≤ k ≤25	$-15 \le k \le 15$	-9≤ k ≤9	-9≤ k ≤7
	-16≤1≤16	-17≤1≤17	$-21 \le l \le 22$	-18≤1≤17	$-14 \le 1 \le 18$
Reflections collected / unique	12411 / 2025	18634 / 2184	41842 / 7009	9932 / 1649	12671 / 3521
Rint	0.0428	0.0324	0.0287	0.0500	0.0535
Completeness (%)	99.8	99.7	99.7	99.8	99.8
Data / restraints / parameters	2025 /0/ 137	2184 / 0 / 137	7009 / 0 / 491	1649 / 0 / 119	3521 / 0 / 120
Goodness-of-fit on F^2	1.043	1.038	1.064	1.073	1.114
Final R indices	R1 = 0.0167	R1 = 0.0118,	R1 = 0.0132	R1 = 0.0557,	R1 = 0.0275,
$[I \ge 2\sigma(I)]$	wR2 = 0.0388	wR2 = 0.0273	wR2 = 0.0327	wR2 = 0.1378	wR2 = 0.0904
R indices (all data)	R1 = 0.0200	R1 = 0.0135,	R1 = 0.0140,	R1 = 0.0600,	R1 = 0.0292,
	wR2 = 0.0396	wR2 = 0.0277	wR2 = 0.0328	wR2 = 0.1403	wR2 = 0.0922
Largest diff. peak and hole (e·Å ⁻³)	1.128 and -0.635	0.572 and -0.397	0.580 and -0.302	1.298 and -0.549	0.333 and -0.410

Table S1. continued

	-				
i—j	dij [Å]	i—j—k	a _{ijk} [°]	i—j—k	aijk [°]
FeCl		•		-	
Fel Cll	2 10//(5)	Cl1 Fe1 Cl2	108 30(2)	Cl2 Ee1 Cl4	111.00(2)
	2.1744(3)		100.50(2)		111.07(2)
Fel—Cl2	2.2083(6)	CII—FeI—CI3	108.54(2)	CI3—FeI—CI4	111.61(2)
Fe1—Cl3	2.1990(6)	Cl1—Fe1—Cl4	108.21(2)		
Fe1—Cl4	2.1998(6)	Cl2—Fe1—Cl3	108.99(2)		
FerBr					
Es1 Dr1	2 2252(4)	Del Est Del	100 242(14)	D_{r} D_{r} D_{r}	110.045(15)
Fel—Brl	2.5552(4)	BII—FeI—BI2	108.542(14)	DI2—FeI—DI4	110.945(15)
Fel—Br2	2.3484(4)	Br1—Fe1—Br3	108.276(15)	Br3—Fe1—Br4	112.125(15)
Fe1—Br3	2.3367(4)	Br1—Fe1—Br4	107.842(14)		
Fe1—Br4	2.3411(4)	Br2—Fe1—Br3	109.197(15)		
CoCl					
	2 2762(5)	Cl1 Co1 Cl1vi	104 65(2)	C_{12} C_{21} C_{11i}	112 (97(10)
	2.2762(5)		104.65(5)		112.087(19)
Co1—Cl2	2.2868(5)	CII—Co1—Cl2	107.564(18)	$Cl2$ — $Co1$ — $Cl2^i$	111.56(3)
		Cl1—Co1—Cl2 ^{vi}	112.689(19)	Cl1 ⁱ —Co1—Cl2 ⁱ	107.562(18)
CoBr					
Col Brl	2 4002(16)	Br1 Co1 Br1 ⁱⁱ	100 45(10)	Br11 Co11 Br11 ⁱⁱⁱ	106 10(11)
C_{-1} Dr	2.402(10)	$D_{11} = C_{01} = D_{11}$	107.45(10) 100.20(4)	$D_{111} = C_{011} = D_{111}$	100.17(11)
Col—Br2	2.4125(17)	Br1—Co1—Br2	109.30(4)	Bril—Coll—Bri2	110.69(4)
Coll—Brll	2.4206(18)	Br1—Co1—Br2 ⁿ	109.16(5)	Br11—Co11—Br12 ^m	111.66(4)
Col1—Brl2	2.4224(18)	Br2—Co1—Br1 ⁱⁱ	109.16(5)	Br12—Co11—Br11 ⁱⁱⁱ	111.66(4)
		Br2—Co1—Br2 ⁱⁱ	110.45(10)	Br12—Co11—Br12ii ⁱ	106.04(11)
		$Br1^{ii}$ Col $Br2^{ii}$	100 30(4)	$Br11^{iii}$ Coll $Br12^{iii}$	110.69(4)
<u> </u>		DIT COT DI2	107.50(4)	DITI COTI DITZ	110.07(4)
Cu1—Cl1	2.2574(6)	Cl1—Cu1—Cl2	93.53(2)	Cl2—Cu1—Cl4	146.01(2)
Cu1—Cl2	2.2967(6)	Cl1—Cu1—Cl3	144.77(2)	Cl3—Cu1—Cl4	96.74(2)
Cu1—Cl3	2.2282(6)	Cl1-Cu1-Cl4	96.19(2)		
Cu1 Cl3	2.2202(0) 2.2542(6)	C_{12} C_{11} C_{12}	02.77(2)		
	2.2342(0)	C12-Cu1-C13	95.77(2)		
ZnCl					
Zn1—Cl1	2.2720(4)	Cl1—Zn1—Cl1 ^{vi}	104.77(2)	Cl1—Zn1—Cl2 ⁱ	112.426(14)
Zn1—Cl2	2.2792(4)	Cl1—Zn1—Cl2	107.893(13)	Cl2—Zn1—Cl2 ⁱ	111.31(2)
		$C_{11} - 7n_{1} - C_{12}^{v_{1}}$	112 425(14)	$C11^{i} - 7n1 - C12^{i}$	107 891(13)
CACI			112.425(14)		107.071(13)
Cd1—Cl1	2.4605(5)	Cl1—Cd1—Cl1 ^{v1}	102.14(3)	$Cl2-Cd1-Cl1^1$	114.684(17)
Cd1—Cl2	2.4634(5)	Cl1—Cd1—Cl2	105.716(17)	Cl2—Cd1—Cl2 ⁱ	113.56(3)
		Cl1—Cd1—Cl2 ^{vi}	114.685(17)	$Cl1^i$ — $Cd1$ — $Cl2^i$	105.716(17)
CdBr					
	0.5000(0)		101.045(16)	DA CII DI	115 400(0)
Cal—Brl	2.5938(3)	Br1—Co1—Br1 ¹	101.945(16)	Br2—Cd1—Br1 ⁴	115.488(9)
Cd1—Br2	2.5937(3)	Br1—Cd1—Br2	105.806(8)	Br2—Cd1—Br2 ¹	112.171(15)
		Br1—Cd1—Br2 ^{vi}	115.487(9)	Br1 ⁱ —Co1—Br2 ⁱ	105.805(8)
HoCl(1)					
	2 4068(4)	Cl1 Hel Cl1vi	100 911(17)	C_{12} Hg1 C_{111}	115 691(12)
ngi—Cli	2.4908(4)		100.811(17)	Cl2—Hg1—Cl1	115.001(12)
Hg1—Cl2	2.4844(4)	CII—HgI—CI2	105.020(12)	Cl2—Hg1—Cl2 ¹	114.187(17)
		Cl1—Hg1—Cl2 ^{v1}	115.680(12)	Cl2 ¹ —Hg1—Cl1 ¹	105.019(12)
HgCl(2)					
Hø1—Cl1	2.3336(7)	C11—Ho1—C12	170 10(2)	Cl2—Hg1—Cl3 ^{vi}	92,27(2)
$H_{\alpha 1}$ C12	2.3330(7)	C_{11} Hg1 C_{12}	06.73(2)	Cl2 Hg1 Cl2iv	86.00(2)
11g1 - C12	2.3000(7)	CII—III II CIO	90.23(2)	CI_{2} C	00.99(3)
Hg1—Cl3	2.8881(7)	CII—HgI—CI2 ^{IV}	90.61(2)	Cl3—Hg1—Cl2 ^v	1/1.12(3)
Hg1—Cl2 ^{1V}	3.2501(7)	Cl1—Hg1—Cl2 ^v	88.91(2)	Cl3—Hg1—Cl3 ^{vi}	98.24(3)
Hg1—Cl2 ^v	3.1702(7)	Cl1—Hg1—Cl3 ^{vi}	94.34(2)	Cl2 ^{iv} —Hg1—Cl2 ^v	85.71(5)
Ho1-Cl3 ^{vi}	2.8874(7)	Cl2—Hø1—Cl3	90.10(2)	Cl2 ^{iv} —Hg1—Cl3 ^{vi}	172 35(5)
iigi eis	2.007 1(7)	Ch2 High Ch3	<i>y</i> 0.10(2)	eiz iigi eis	172.35(3)
		CIA II-1 CIAiv	92 10(2)	C_{12} U_{-1} C_{12}	00 FC(A)
		Cl2—Hg1—Cl2 ^{IV}	82.10(2)	Cl2 [*] —Hg1—Cl3 ^{**}	88.56(4)
		Cl2—Hg1—Cl2 ^v	83.89(3)		
HgBr					
Ho1_Br1	2.6128(7)	Br1—Ho1—Br1 ⁱⁱ	109 42(3)	Br11—Hg11—Br11 ⁱⁱⁱ	104 54(4)
	2.0120(7)		100.72(3)	D_{r11} U_{r11} D_{r12}	107.57(7) 111.61(0)
ng1—Br2	2.0021(/)	DTI-HgI-Br2	109.24(2)	BTII—HgII—BrI2	111.01(2)
Hg11—Br11	2.6203(7)	Br1—Hg1— Br2 ⁿ	109.18(2)	Br11—Hg11—Br12 ^m	112.00(2)
Hg11—Br12	2.6247(8)	Br2—Hg1—Br1 ⁱⁱ	109.18(2)	Br12—Hg11— Br11 ⁱⁱⁱ	112.00(2)
-		Br2—Hg1—Br2 ⁱⁱ	110.57(4)	Br12—Hg11—Br12 ⁱⁱⁱ	105.26(4)
		Br1 ⁱⁱ —Ho1—Br ²ⁱⁱ	109.24(2)	$Br11^{iii}$ $Hg11$ $Br12^{iii}$	111 60(2)
SpCl(1)		DIT TIGI-DIZ	107.24(2)	DITI TIGTI DITZ	111.00(2)
SIL(1)					
Sn1—Cl1	2.4404(14)	Cl1—Sn1—Cl2	90.66(5)	Cl2—Sn1—Cl3 ^{xii}	90.10(5)
Sn1—Cl2	2.4249(14)	Cl1—Sn1—Cl3	89.75(5)	Cl3—Sn1—Cl1 xii	90.25(5)
Sn1—Cl3	2.4343(14)	Cl1—Sn1—Cl1 ^{vii}	180.00	Cl3—Sn1—Cl2vii	90.10(5)

Table S2. Structural data of the coordination polyhedra in the studied compounds.

ii	d::[Å]	i_i_k	a::r [0]	i_i_k	a::r [0]
<u> </u>	այլույ	$\frac{1}{Cl1} \frac{1}{Sn1} \frac{Cl2}{Cl2} \frac{Vii}{Vii}$	80 3/(5)	$\frac{1}{Cl_{3}}$ $\frac{1}{Sn_{1}}$ $\frac{1}{Cl_{3}}$	
		$C_{11} = C_{12} = C$	00.34(5)	C15 - S11 - C15	100.00
			90.25(5)		90.00(5)
		Cl2—Sn1—Cl3	89.91(5)	$CI1^{vn}$ —Sn1—CI3 ^{vn}	89.75(5)
		Cl2—Sn1—Cl1 ^{vn}	89.35(5)	$Cl2^{vn}$ — $Sn1$ — $Cl3^{vn}$	89.90(5)
		Cl2—Sn1—Cl2 vii	180.00		
SnCl(2)					
Sn1—N1	2.2058(18)	N1—Sn1—O1	78,18(6)	O1—Sn1—Cl4	93.22(4)
Sn1-O1	2.0942(14)	N1—Sn1—C11	89.70(5)	Cl1— $Sn1$ — $Cl2$	91,98(2)
Sn1 Cl1	2.0912(11) 2.4233(6)	N1 Sn1 $C12$	92.17(5)	Cl1 Sn1 $Cl2$	176.035(18)
Sn1 Cl2	2.4235(0)	N1 Sn1 $C12$	92.17(5) 97.04(5)	C_{11} S_{n1} C_{13}	02.01(2)
SIII - CI2	2.3893(3)	NI—SIII—CIS	$\frac{07.04(3)}{171.12(5)}$		92.01(2)
Sn1—Cl3	2.4311(6)	NI—SnI—Cl4	1/1.13(5)	Cl2—Sn1—Cl3	90.394(19)
Sn1—Cl4	2.3916(5)	Ol—Snl—Cll	87.06(4)	Cl2—Sn1—Cl4	96.463(19)
		O1—Sn1—Cl2	170.30(4)	Cl3—Sn1—Cl4	90.87(2)
		O1—Sn1—Cl3	90.07(4)		
SnBr					
Sn1—Br1	2.6148(3)	Br1—Sn1—Br2	90.195(8)	Br2—Sn1—Br3 ^{vii}	89.422(9)
Sn1—Br2	2,5886(2)	Br1—Sn1—Br3	89.468(9)	Br3—Sn1—Br1 ^{vii}	90.532(9)
Sn1 Br2	2.5000(2) 2.5073(3)	$\mathbf{Br1}$ $\mathbf{Sn1}$ $\mathbf{Br1}^{\text{vii}}$	180.0	Br3 Sn1 Br2 ^{vii}	80 122(9)
SIII DIS	2.3773(3)	$\mathbf{Dr1}$ $\mathbf{Sn1}$ $\mathbf{Dr2}$	20 205(2)	$\mathbf{D}\mathbf{r}^2 \mathbf{S}\mathbf{r}1 \mathbf{D}\mathbf{r}^2 \mathbf{V}\mathbf{i}\mathbf{i}$	190.0
		BI1 - SIII - BI2	89.803(8) 00.522(0)		180.0
		Br1—Sn1—Br3 ^{***}	90.533(9)	Br1 ^x —Sn1—Br2 ^{vii}	90.194(8)
		Br2—Sn1—Br3	90.578(9)	Br1 ^x —Sn1—Br3 ^{vn}	89.468(9)
		Br2—Sn1—Br1 ^{vn}	89.806(8)	Br2 ^x —Sn1—Br3 ^v	90.578(9)
		Br2—Sn1—Br2 ^{vii}	180.0		
PbCl					
Pb1—Cl1	2.9227(9)	Cl1—Pb1—Cl2	90.15(3)	Cl3—Pb1—Cl1 ^{viii}	127.17(2)
Ph1 - C12	2 9133(9)	C11—Pb1—C13	75 11(2)	$Cl3$ —Pb1— $Cl1^{ix}$	139 15(3)
Pb1 C13	3.03/3(0)	C_{11} Pb1 C_{11} ^{viii}	84.60(2)	$C13$ Pb1 $C12^{viii}$	12654(2)
Dh1 Cl1viii	2.0545(7)	C_{11} D_{11} C_{11} D_{11} C_{11} D_{11}	74.09(2)	C13 = 101 = C12 C12 = Db1 = C12 viii	120.34(2)
	2.9330(9)	CII—FDI—CII	155.02(2)	CI3—FUI—CI3	$\frac{30.07(2)}{75.45(2)}$
PDI—CII ^{IX}	2.9289(9)	CII—PbI—CI2 ^{,111}	155.02(2)		/5.45(3)
Pb1—Cl2 ^{vin}	2.9267(9)	CII—PbI—Cl3 ^{vm}	127.33(2)	CI1 ^{vm} —Pb1—Cl2 ^{vm}	89.29(2)
Pb1—Cl3 ^{vm}	3.0759(10)	Cl2—Pb1—Cl3	74.21(2)	$Cl1^{vm}$ —Pb1—Cl3 ^{vm}	74.05(2)
		Cl2—Pb1—Cl1 ^{viii}	155.11(2)	Cl1 ^{ix} —Pb1—Cl2 ^{viii}	80.94(2)
		Cl2—Pb1—Cl1 ^{ix}	79.71(3)	Cl1 ^{ix} —Pb1—Cl3 ^{viii}	139.96(2)
		Cl2—Pb1—Cl2 ^{viii}	85.25(2)	Cl2viii—Pb1—Cl3viii	73.40(3)
		Cl2—Pb1—Cl3viii	126.86(3)		
PbBr					
Ph1 Br1	3 0761(3)	Br1 Pb1 Br2	90 /87(8)	Br3 Pb1 Br1 ^{viii}	126 168(8)
$D_{\rm b1} = D_{\rm c}$	2.0774(2)	$D_{11} = 101 = D_{12}$ $D_{r1} = D_{r1} = D_{r2}$	70.407(0)	D_{13} D_{101} D_{111} D_{111} D_{111}	120.100(0) 127.921(0)
PUI - DI2	3.0774(3)		/3./01(/)		137.031(0)
PDI-BIJ	3.2315(3)	Bri-Poi-Bri	85.288(7)	Br3—PD1—Br2 ^{vm}	126.856(8)
Pbl—Brl ^{vm}	3.0382(3)	Brl—Pbl—Brl ^{1x}	/5.254(8)	Br3—Pb1—Br3 ^{vm}	/9.341(/)
Pb1—Br1 ^{1x}	3.0856(3)	$Br1 - Pb1 - Br2^{viii}$	155.013(7)	$Br1^{vm}$ —Pb1—Br1 ^{ix}	76.941(8)
Pb1—Br2 ^{viii}	3.0308(3)	Br1—Pb1—Br3 ^{viii}	125.491(8)	Br1 ^{viii} —Pb1—Br2 ^{viii}	92.106(8)
Pb1—Br3 ^{viii}	3.1321(3)	Br2—Pb1—Br3	74.270(8)	Br1 ^{viii} —Pb1—Br3 ^{viii}	75.738(8)
		Br2—Pb1—Br1 ^{viii}	155.045(7)	Br1 ^{ix} —Pb1—Br2 ^{viii}	79.777(8)
		Br2—Pb1—Br1 ^{ix}	78.104(8)	Br1 ^{ix} —Pb1—Br3 ^{viii}	142.701(8)
		$Br2 - Ph1 - Br2^{viii}$	83 389(7)	Br2 ^{viii} —Ph1—Br3 ^{viii}	76 367(8)
		Br^2 —Ph1— Br^{3viii}	126 257(8)	IOI DIS	
BiCl		512 IUI DIJ	120.237(0)		
	2 5070(5)	C11 D:1 C12	02 559(17)		07 015(15)
	2.39/9(3)	CII - BII - CI2	92.338(17)		87.843(13)
B11—CI2	2.6900(5)	CII—BII—CI3	1/3./9/(14)	CI3—B11—Cl4	87.778(14)
Bil—Cl3	2.9822(5)	Cll—Bil—Cl4	89.450(16)	CI3—Bi1—Cl5	83.700(13)
Bi1—Cl4	2.7331(5)	Cl1—Bi1—Cl5	90.805(15)	Cl3—Bi1—Cl6	93.309(13)
Bi1—Cl5	2.6863(4)	Cl1—Bi1—Cl6	92.307(15)	Cl4—Bi1—Cl5	91.036(15)
Bil—Cl6	2.7150(5)	Cl2—Bi1—Cl3	90.284(15)	Cl4—Bi1—Cl6	91.454(15)
		Cl2—Bi1—Cl4	177.899(16)	Cl5—Bi1—Cl6	176.031(14)
		Cl2—Bi1—Cl5	89.558(15)		- \ /

Symmetry transformations used to generate equivalent atoms: (i) –x+1, y, -z+0.5; (ii) –x+0.5; (iii) –x+1.5, y, -z+0.5; (iv) -x+1.5, y+0.5, -z+1.5; (v) -x+1.5, y-0.5, -z+1.5; (vi) x, y-1, z; (vii) –x+1, -y, -z+1; (viii) x+1, y, z; (ix) –x+1, -y+1, -z

Table S3. Stacking interactions in the studied compounds.

Each ring is indicated by one atom, which belongs solely to this ring. The α is a dihedral angle between planes I and J, β is an angle between Cg(I)-Cg(J) vector and normal to plane I, d_p is a perpendicular distance of Cg(I) on ring J plane.

$R(I) \bullet \bullet \bullet R(J)$	d(Cg•••Cg) [Å]	α [°]	β [°]	d _p [Å]
FeCl				
N1•••N11	4 1582(12)	3 69(10)	36.0	3 3852(8)
N1•••C18	3.7117(12)	1.70(10)	23.5	3.3002(0) 3.3702(8)
C8N11	3.7355(12)	3 33(10)	25.5	3.3702(0)
	3.7333(12) 3.5802(13)	1.65(10)	27.1	3.3797(9)
N1	3.3672(13)	1.05(10)	15.0	3.3703(9)
C ² C ² C ²	4.1083(12)	1.70(10) 1.65(10)	55.2	3.4382(8) 2.4280(0)
E D	4.3109(13)	1.05(10)	41.7	5.4580(9)
FerBr	4 19 49 (12)	2 70/11)	26.0	2 405 4(0)
	4.1848(12)	2.70(11)	36.0	3.4054(9)
	3.7285(13)	1.54(11)	23.5	3.3838(9)
C8•••N11	3.7538(13)	2.91(11)	26.8	3.3931(9)
	3.5958(13)	1.82(11)	18.8	3.3782(9)
	4.3850(13)	1.54(11)	38.7	3.4421(9)
C8•••C18 ¹	4.8082(13)	1.82(11)	45.5	3.4478(9)
CoCl				
N1•••N1 ⁱⁱ	3.8002(12)	0.02(10)	28.4	3.3443(9)
N1•••C8 ⁱⁱ	3.6353(12)	0.54(10)	22.7	3.3424(9)
CoBr				
N1•••C8 ⁱⁱⁱ	3.706(6)	2.1(5)	26.2	3.267(4)
C8•••C8 ⁱⁱⁱ	3.565(6)	0.0(5)	22.0	3.306(5)
C8•••C8 ^{iv}	4.129(6)	0.0(5)	34.6	3.398(5)
N11•••C18 ^v	3.553(6)	2.3(5)	25.1	3.195(5)
C18•••C18 ^v	3.590(6)	0.0(5)	25.7	3.235(4)
C18•••C18 ^{vi}	4.052(6)	0.0(5)	35.7	3.290(4)
CuCl				. /
N1•••C8 ^{vii}	3 5916(11)	1 37(10)	23.3	3 3279(8)
C8•••C8 ^{vii}	3 9500(14)	0.00(10)	33.4	3 2985(9)
C8•••N11 ^{iv}	3 8499(13)	7.72(10)	23.0	3.2903(9) 3.3604(8)
C8•••C18 ^{iv}	3 5768(12)	6.91(10)	18.7	3 3747(8)
N11•••C18 ^{viii}	3 6889(12)	1 15(10)	27.3	3 2990(9)
C18•••C18 ^{viii}	3.6609(12) 3.4623(13)	0.00(10)	17.9	3.2990(9) 3.2941(8)
	5.4025(15)	0.00(10)	17.5	5.2941(0)
N1•••N1 ⁱⁱ	3 7964(9)	0.00(7)	28.4	3 3380(6)
N1•••C8 ⁱⁱ	3 6296(9)	0.50(7)	22.8	3 3357(6)
CdCl	3.0270(7)	0.01(7)	22.0	5.5557(6)
N1 ee N1 ⁱⁱ	3 7606(12)	0.00(11)	27.4	3 3458(0)
N1 ee C ^{gii}	3.7090(12)	1.02(11)	27.4	3.3430(9)
CdBr	5.7005(15)	1.02(11)	24.0	5.5445(9)
N1 eee N1 ⁱⁱ	3 7084(15)	0.02(12)	25.5	3 3476(10)
N1•••C ⁸ ⁱⁱ	3 7089(15)	0.02(12) 0.08(12)	25.5	3.3470(10) 3.3445(10)
	5.7767(15)	0.90(12)	21.0	5.5445(10)
N1•••N1 ⁱⁱ	3 7694(9)	0.02(7)	27.6	3 3/16(6)
N1•••C ⁸ ⁱⁱ	3.7094(9)	0.02(7) 0.88(7)	27.0	3.3410(0)
HaCl(2)	5.0777(7)	0.00(7)	24.0	3.3403(0)
NI see NI ix	1 2661(15)	0.00(12)	10.6	2 2122(11)
N1 and CPix	4.3004(13)	0.00(12)	40.0	2.3133(11)
NI•••C8 ^m	3.4293(10)	0.23(13)	15.4	3.30/1(11) 2.2065(11)
UgBn	4.3004(10)	0.00(15)	40.8	5.5005(11)
	2 604(4)	1.0(2)	26.2	2 292(2)
	3.094(4)	1.0(3)	20.3	3.283(3)
	3.300(4)	0.0(3)	22.4	3.298(3) 2.416(2)
U0***U0**	4.2/0(4)	0.0(3)	57.0	3.410(3)
	3.5/0(4)	2.1(3)	25.4	3.214(3)
	5.0U3(4)	0.0(3)	25.8	5.244(5)
	4.196(4)	0.0(3)	38.1	5.302(3)
SnCI(1)		0.010		
$NI \cdots NI^{x}$	3.484(4)	0.0(3)	15.1	3.364(3)
N1•••C8 ^x	3.681(4)	0.7(3)	24.5	3.368(3)
N1•••C8 ^{x1}	3.634(4)	0.7(3)	22.7	3.368(3)
C8•••C8 ^{x1}	3.781(4)	0.0(3)	27.5	3.353(3)

SnCl(2)				
N1•••N1 ⁱⁱⁱ	4.0942(13)	0.00(10)	32.4	3.4585(9)
N1•••C8 ⁱⁱⁱ	3.8416(12)	2.02(10)	25.6	3.4131(9)
N11•••C18 ^{xii}	4.1920(13)	16.45(11)	32.7	2.7611(9)
C18•••C18 ^{xii}	4.0300(14)	13.72(11)	30.7	3.2558(9)
C18•••N11 ^{xiii}	4.1921(13)	16.45(11)	48.8	3.5285(9)
C18•••C18 ^{xiii}	4.0300(14)	13.72(11)	36.1	3.4660(9)
SnBr				
N1•••N1 ^x	3.4769(17)	0.00(14)	12.1	3.4000(12)
N1•••C8 ^x	3.7906(17)	0.52(14)	26.7	3.3999(12)
N1•••C8 ^{xi}	3.7592(17)	0.52(14)	25.1	3.4166(12)
C8•••C8 ^{xi}	3.8463(17)	0.00(14)	27.5	3.4103(12)
PbCl				
N1•••N1 ⁱ	3.955(2)	0.02(19)	31.2	3.3825(16)
N1•••C8 ⁱ	3.811(2)	0.59(19)	27.6	3.3752(16)
C8•••C8 ⁱ	3.955(2)	0.03(19)	31.8	3.3612(17)
PbBr				
N1•••N1 ⁱ	4.0630(17)	0.02(14)	31.9	3.4507(12)
N1•••C8 ⁱ	3.9487(17)	0.26(14)	28.8	3.4536(12)
C8•••C8 ⁱ	4.0632(17)	0.03(14)	31.7	3.4561(12)
BiCl				
N1•••N11 ⁱⁱⁱ	4.4349(11)	9.05(9)	39.8	3.1272(8)
N1•••C18 ⁱⁱⁱ	3.6716(11)	6.91(9)	23.8	3.1646(8)
C8•••N11 ⁱⁱⁱ	3.9322(12)	7.42(10)	32.1	3.4552(9)
C8•••C18 ⁱⁱⁱ	3.4756(12)	4.79(10)	14.8	3.4129(9)
C8•••N31 ^{iv}	4.5325(12)	5.43(10)	45.7	3.2381(9)
N11•••N11 ^{xiv}	4.1467(11)	0.03(9)	36.1	3.3514(8)
N11•••C18 ^{xiv}	4.0164(12)	3.04(9)	32.3	3.2766(8)
N21•••N21 ^{xv}	4.8966(12)	0.00(9)	47.9	3.2833(8)
N21•••C28 ^{xv}	4.6304(12)	1.86(10)	44.4	3.2155(8)
N21•••N31 ^v	4.3330(11)	7.72(10)	42.8	3.4418(8)
N21•••C38 ^v	3.7459(11)	5.60(9)	23.3	3.3635(8)
C28•••N31 ^v	3.8351(12)	6.38(10)	33.1	3.4126(9)
C28•••C38 ^v	3.5472(12)	3.91(9)	15.0	3.4079(9)
8hqHCl				
N1•••C8 ⁱⁱⁱ	3.8001(18)	0.79(15)	27.6	3.3550(12)
C8•••C8 ⁱⁱⁱ	3.5671(18)	0.00(15)	19.2	3.3680(13)
8hqHBr				
N1•••C8 ⁱⁱⁱ	3.8293(13)	0.78(11)	28.0	3.3594(9)
C0 C0)	25600(14)	0.00(11)	18.6	337/3(10)

Symmetry transformations used to generate equivalent atoms: (i) x+1, y, z; (ii) -x+0.5, -y+0.5, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z; (vi) -x+1, -y+1, -z; (vii) -x+2, -y+1, -z; (viii) -x, -y, -z+1; (ix) x, y-1, z; (x) -x+2, -y+1, -z+2; (xi) -x+1, -y+1, -z+2; (xii) x-0.5, y, -z+1.5; (xiii) x+0.5, y, -z+1.5; (xiv) -x, -y+1, -z+1; (xv) -x, -y+2, -z; (xvi) -x+1, -y, -z+1

	Tat	ole	S4.	Hyc	drogen	bond	in	the	studied	comp	ound	s.
--	-----	-----	-----	-----	--------	------	----	-----	---------	------	------	----

D-H•••A	d(D-H) [Å]	d(H•••A) [Å]	d(D•••A) [Å]	<(DHA) [°]	G _d ^a (n)
FeCl					
N1—H1N•••Cl99 ⁱ	0.79	2.46	3.1333(17)	143.8	D(2)
O1—H1O•••Cl99	0.84	2.30	3.1169(16)	164.4	D(2)
N11—H11N•••Cl99 ⁱⁱ	0.81	2.41	3.1577(18)	152.8	D(2)
O11—H11O•••Cl99	0.84	2.24	3.0693(15)	167.2	D(2)
FerBr					
N1—H1N•••Br99 ⁱ	0.82	2.53	3.2652(19)	149.7	D(2)
O1—H1O•••Br99	0.84	2.44	3.2530(16)	163.1	D(2)
N11—H11N•••Br99 ⁱⁱ	0.85	2.53	3.2621(19)	145.1	D(2)
O11—H11O•••Br99	0.84	2.40	3.2235(16)	168.2	D(2)
CoCl					
N1—H1N•••Cl1	0.95	2.26	3.0985(17)	147.0	$D(2) [D_2^2(5)]$
O1—H1O•••Cl2 ⁱⁱⁱ	0.84	2.25	3.0922(16)	179.4	$D(2) [D_2^2(5)]$
CoBr					
N1—H1N•••Br12 ^{iv}	0.90	2.74	3.407(10)	132.4	$D(2) [D_2^2(5)]$
O1—H1O•••Br2	0.84	2.42	3.259(9)	178.7	$D(2) [D_2^2(5)]$

D-H•••A	d(D—H) [Å]	d(H•••A) [Å]	d(D•••A) [Å]	<(DHA) [°]	$G_d^a(n)$
N11—H11N•••Br11	0.87	2.48	3.254(10)	147.6	$D(2) [D_2^2(5)]$
011—H110•••Br1	0.84	2.44	3.265(7)	166.7	$D(2) [D_2^2(5)]$
CuCl					
N1—H1N•••Cl2 ^v	0.96	2.38	3.1737(18)	139.4	D(2)
01—H1O•••Cl2	0.84	2.26	3.092(2)	173.5	D(2)
N11—H11N•••Cl4 ^{vi}	0.95	2.40	3.268(2)	152.2	D(2)
011—H110•••Cl1	0.84	2.23	3.0742(18)	178.9	D(2)
ZnCl					
N1—H1N•••Cl1	0.94	2.23	3.0868(13)	150.2	$D(2) [D_2^2(5)]$
01—H1O•••Cl2 ⁱⁱⁱ	0.84	2.26	3.0973(12)	178.0	$D(2) [D_2^2(5)]$
CdCl					
N1—H1N•••Cl1	0.91	2.25	3.0812(17)	152.7	$D(2) [D_2^2(5)]$
01—H1O•••Cl2 ⁱⁱⁱ	0.84	2.26	3.0960(16)	177.1	$D(2) [D_2^2(5)]$
CdBr					
N1—H1N•••Br1	0.87	2.40	3.237(2)	161.6	$D(2) [D_2^2(5)]$
O1—H1O•••Br2 ⁱⁱⁱ	0.84	2.43	3.2708(18)	178.1	$D(2) [D_2^2(5)]$
HgCl(1)					
N1—H1N•••Cl1	0.84	2.33	3.0854(13)	150.0	$D(2) [D_2^2(5)]$
O1—H1O•••Cl2 ⁱⁱⁱ	0.84	2.26	3.1032(12)	177.2	$D(2) [D_2^2(5)]$
HgCl(2)					
N1—H1N•••O99	0.90	1.89	2.747(3)	159.1	D(2)
O1—H1O•••O98	0.84	1.79	2.633(3)	176.1	D(2)
O98—H98O•••Cl3 ^{vii}	0.90	2.45	3.210(2)	141.5	D(2)
O98—H98P•••Cl2 ^{vii}	0.93	2.78	3.474(2)	132.3	D(2)
O98—H98P•••Cl3 ^{viii}	0.93	2.67	3.367(2)	132.9	D(2)
O99—H99O•••O99 ^{viii}	0.95	1.85	2.763(3)	161.9	C(2)
O99—H99P•••Cl3	0.90	2.27	3.119(2)	157.7	D(2)
HgBr					
N1—H1N•••Br12 ^{iv}	0.84	2.70	3.420(5)	145.2	$D(2) [D_2^2(5)]$
O1—H1O•••Br2	0.84	2.48	3.256(5)	153.1	$D(2) [D_2^2(5)]$
N11—H11N•••Br11	0.85	2.52	3.295(5)	151.5	$D(2) [D_2^2(5)]$
011—H11O•••Br1	0.84	2.43	3.269(5)	175.9	$D(2) [D_2^2(5)]$
SnCl(1)					
N1—H1N•••O99 ^v	0.88	2.00	2.857(7)	165.0	D(2)
O1—H1O•••O99	0.84	1.86	2.693(7)	174.3	D(2)
O99—H99O•••Cl2 ^{ix}	0.91	2.62	3.357(5)	138.9	$D(2) [D_2^2(5)]$
O99—H99O•••Cl3 ^{ix}	0.91	2.74	3.489(5)	141.4	$D(2) [D_2^2(5)]$
O99—H99B•••Cl1	0.89	2.56	3.275(6)	137.9	$D(2) [D_2^2(5)]$
O99—H99B•••Cl3 ^{v1}	0.89	2.61	3.323(5)	138.2	$D(2) [D_2^2(5)]$
SnCl(2)					
N11—H11N•••O99	0.83	1.92	2.737(2)	169.9	D(2)
011—H110•••01	0.84	1.93	2.724(2)	157.3	D(2)
099—H990•••Cl3	0.79	2.47	3.2376(18)	165.1	D(2)
099—H99P•••Cl4*	0.90	2.48	3.1927(19)	136.8	D(2)
SnBr	0.05	1.0.1	2.0.12(2)	150 5	D (0)
$NI - HIN \cdots O99^{\circ}$	0.95	1.94	2.842(3)	159.7	D(2)
01—H10•••099	0.84	1.89	2.725(3)	1/5.3	D(2)
099—H990•••Bf2 ¹	0.85	2.95	3.602(3)	134./	$D(2) [D_2^2(5)]$
$O99 - H99O \bullet Br3^{11}$	0.85	2.80	3.529(2)	144.8	$D(2) [D2^{2}(5)]$ D(2) [D 2(5)]
$O99 - H99 B \cdot \cdot \cdot B \Gamma I$	0.89	2.37	3.420(2) 3.415(2)	139.8	$D(2) [D_2^{-}(3)]$ $D(2) [D_2^{-}(5)]$
<u>BbCl</u>	0.89	2.90	5.415(2)	115.0	$D(2)[D_2(3)]$
	0.80	2.49	2 172(2)	145.8	$D(2) [D_2(5)]$
$M = H M \cdots C I Z$	0.80	2.40	3.173(3) 3.008(3)	145.8	$D(2) [D_2(5)]$ $D(2) [D_2^2(5)]$
PhBr	0.04	2.21	5.098(5)	1/1.0	$D(2)[D_2(3)]$
N1 H1NeeeB+2 ^{xi}	0.80	2.52	3 202(2)	145.6	$D(2) [D_2(5)]$
M = H M = B I Z	0.89	2.32	3.292(2)	143.0	$D(2) [D_2(3)]$ $D(2) [D_2^2(5)]$
	0.04	2.42	5.200(2)	1/4.4	$D(2)[D2^{-}(3)]$
	0.00	2 42	2 17/0/10)	140	D(2)
01 H10	0.00	2.43	3.1742(10) 2.652(2)	142	D(2)
N11_H11N•••C13xiii	0.04	1.02	2.052(2) 3 1825(17)	1/4	D(2)
011_H110•••Cl0	0.00	2.41	3,1025(17) 3,1118(17)	178	D(2)
N21—H21N•••Cl3 ^{xiii}	0.88	2.27	3.1674(17)	142	D(2)
021—H210•••098	0.84	1.85	2.688(2)	176	D(2)
	0.0.	1.00		1.0	- (-)

D-H•••A	d(D—H) [Å]	d(H•••A) [Å]	d(D•••A) [Å]	<(DHA) [°]	$G_d^a(n)$
N31—H31N•••Cl99 ^{xii}	0.88	2.36	3.1518(17)	150	D(2)
O31—H31O•••Cl3 ^{xiv}	0.84	2.30	3.1419(17)	175	D(2)
O98—H98O•••Cl3 ^{xv}	0.77	2.45	3.1937(16)	164	D(2)
O98—H98P•••Cl4 ^{xvi}	0.90	2.34	3.1893(16)	158	D(2)
O99—H99O•••Cl99 ^{xvii}	0.97	2.17	3.1119(17)	165	D(2)
O99—H99P•••Cl2 ^{xviii}	0.97	2.65	3.3619(17)	131	D(2)
8hqHCl					
N1—H1N•••Cl1	0.91	2.27	3.107(3)	153.3	D(2)
O1—H1O•••O99	0.84	1.76	2.596(3)	173.9	D(2)
O99—H99O•••Cl1 ^{xiii}	0.85	2.27	3.114(3)	171.5	D(2)
O99—H99P●●●Cl1 ^{xix}	0.91	2.27	3.159(2)	165.6	D(2)
8hqHBr					
N1—H1N•••Br1	0.90	2.44	3.2360(18)	148.1	D(2)
O1—H1O•••O99	0.84	1.76	2.600(2)	177.0	D(2)
O99—H99O•••Br1 ^{xiv}	0.79	2.46	3.2435(16)	167.5	D(2)
O99—H99P•••Br1 ^{xv}	0.89	2.42	3.2873(16)	166.0	D(2)

Symmetry transformations used to generate equivalent atoms: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x, -y+1, z+0.5; (iv) x-0.5, -y+1, z+0.5; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y, -z+1; (vii) -x+0.5, y+1.5, -z+1.5; (viii) -x+0.5, y+0.5, -z+1.5; (ix) x+1, y, z; (x) x-0.5, y, -z+1.5; (xi) x+0.5, -y+0.5, z+0.5; (xii) x+1, y+1, z; (xiii) x-1, y, z; (xiv) x, y+1, z; (xv) -x+1, -y+1, -z; (xvi) -x, -y+1, -z; (xvi) -x+1, -y+1, -z+1; (xviii) -x+2, -y+2, -z+1; (xix) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xviii) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, y-0.5, -z+1.5; (x) -x+1, -y+1, -z+1; (xvi) -x+2, -y+2, -z+1; (xvi) -x+1, -y-1, -z+1; (xvi) -x+1, -y+1, -z+1; (xvi) -x+1, -z+1; (xvi) -x+1, -z+1; (xvi) -x+1; (xvi) -x+1, -z+1; (xvi) -x+1; (xvi) -x+1;

Table S5. Vibrational frequencies (cm⁻¹) and their assignment for the studied compounds.

 $\begin{array}{l} \mbox{Vibrations symbols: } w-\mbox{weak, } m-\mbox{medium, } s-\mbox{strong, } b-\mbox{broadened } \nu-\mbox{stretching, } \delta-\mbox{bending, } \sigma-\mbox{scissoring, } \rho-\mbox{rocking, } \tau-\mbox{twisting, } \omega-\mbox{wagging, } T-\mbox{torsional } \alpha-\mbox{in plane, } \gamma-\mbox{out of plane, } as-\mbox{asymmetric, } s-\mbox{symmetric, } ar-\mbox{aromatic ring.} \end{array}$

PbCl	PbBr	HgCl(1)	HgCl(2)	HgBr	8haHCl	8haHBr	8ha	Assignment
3451sb	3464sb	3477s	3464s	3460sb	3387sb	3391sb		v OH
						3318s		
1631s	1629s	16328	1633s	1633s	1631s	1632s	1638s	ν CO, ν_s CC, ν_{as} ring,
10513	10273	10525	10555	10555	10515	10525	10505	δСОН
1603s	1602s	1605s	1605s	1603s	1604s	1606s		v_s CC, v_s CN, δ NH
1587m	1588m	1592w	1592w	1592w	1591s	1592s	1593w	ν CN, ν_s CC, ν CH
1552	1551	1550	1554	1550	1551	1550	1580s	v CC, v CN, v CH
15538	15518	15538	15548	1552s	15518	15528	1510	VCC, TCH
1400	1400	1400	1401	1401	1500	1400	1510s 1400-	o OH, o CH, v CC
1490m 1470m	1488m 1470m	1490m 1471w	1491m 1471m	1491m 1471m	1500m 1472m	1499m 1471m	14998	$v_{\rm s}$ CC, $v_{\rm s}$ CN, σ CH
1470w	1470w	14/1w	14/1W	14/1w	14/2111	14/1111	14/38 1/3/m	й о ОП S ОН
1421w	1420w	1418s	1418s	1417s			145411	
1414m	1413m	14105	14105	14175			1410s	v CC, δ OH, v CH
1397s	1396s	1401s	1400s	1400s	1400s	1400s	1399m	$v CO, \delta OH$
13775	15705	11015	11005	11005	11005	11005	10000	γ OH. δ CH. ν CC.
1371m	1369m	1377w	1376w	1375w	1381s	1380s	1380s	v _{as} ring
	1321s				1316s	1317s		v CN
1295s	1296s	1300s	1300s	1299s	1300s	1297s		v CN
1273m	1280m	1285m	1287m	1284m			1286s	v CO, v CN, vas ring
					1269s	1271s	1274s	v CO, v CN, vas ring
							1244m	v CO, v CN, vas ring
1226w	1223w	1224w	1225w	1223w	1220m	1218m	1223s	v CO, v CH
1201m	1200m	1200m	1201m	1200m	1205m	1202m	1205s	v CC, vCH
1169w	1167w	1168w	1168w	1167w			1165m	δ CH
1142w	1141w	1141w	1141w	1140w	1134w	1134w	1139m	δ CH, δ OH
1094s	1093s	1093s	1093s	1093s	10995	1097s	1094m	δ CH, v _s CN, v _s ring, δ
10945	10,55	10955	10755	10,55	10775	10775	1074111	OH
1057m	1057m	1057w	1058w	1058w	1059m	1058m	1059m	γ CH, ν CC
998w	996m	997/w	997w		999w	998m	o - (δ CH
00 <i>5</i>	985w	983w	983w	983w		0.07	974m	ω CH
905w	905w	905w	905m	905w	001	90/w	007	ωCΗ
88/S	8868	8898	8888	888s	881m	886m	89/m	$\gamma OH, \gamma CH$
821s	821s	818s	817s	818s	821s	822s	817s	$V_{\rm s}$ CIN, γ CII, ω CII,
		800a	<u>808</u> 2	<u>808</u> 2			807m	vsting, vasting,
8025	801s	8098 801s	800s	801s	802m	8023	807III	vcc
780s	7775	773	772s	773m	784m	782w	782m	v CH
7568	7558	7588	7728 758s	759s	756s	754s	782111	γ CH
7503	1558	7505	7503	1578	7503	7545	741s	γ cm γ cm T_0 ring T OH
712m	712m	711m	710m	710m	7128	711m	711s	v CH
712111	/1211	/1111	/1011	/1011	/125	/11111	/115	v CN
620w	618s	614w	612mb	615mb	623m	622m	6378	γCH
02011	0100	598mb	609mb	600mb	020111	022111	0070	γCH
575wb	573w	573m	574m	574m	578m	574m	574m	δ ring. T ring
536w	537m	538m	538m	537m	541m	542w	544m	δ ring, α CO. T ring
489w	488m	487w	488w	487w	488m	488m	490m	ν CC, ω CO
480w	479w	477w			474w	473w		ν CC, ω CO
471w	468w	468w	470w	468w			471m	γ CO
							464m	γ CO, T ring
	457w			457w		458w		γCO
408m	407s	406m	406s	406m	413s	410m	423m	δring

Table S5. continued

CoCl	FeCl	CuCl	ZnCl	CdCl	SnCl(1)	SnCl(2)	BiCl	Assignment
3378sb	3461sb	3378s	3444s	3451sb	3434sb	3515sb	3435sb	νOH
3314s						3461sb		νOH
1633s	1631s	1633s	1632s	1631s	1638sb	1634s	1631s	ν CO, ν_s CC, ν_{as} ring, δ COH
1605s	1602m	1602s	1604s	16028	1607m	1606s	15998	vs CC. vs CN. δ NH
15928	1592m	15928	1591s	15928	1007111	15928	10,770	$v_{s} CC v_{s} CN v CH$
10/20	1072111	15725	10/10	10/20	1579w	10720		v CC v CN v CH
1552s	1550s	15528	1554s	15528	15770	15588	15518	ν CC. τ CH
10020	10000	1514w	1513w	10020		1519w	10010	$\delta OH, \delta CH, \nu CC$
1499m	1498m	1493m	1491m	1492m	1499s	1499m	1496m	v_{s} CC, v_{s} CN, δ CH
1472m	1470w	1472m	1472w	1472m	1465s	1465m	1470m	αδΟΗ
					1430w			δОН
1424w	1418w	1418s	1419s	1420s		1423s	1416s	ν CC, δ ΟΗ, ν CH
1400s	1397s	1399s	1401s	1399s	1394m	1401s	1397s	ν CO, δ ΟΗ
1201m	1276m	1280m	1277	1277m	1275	1275m	1277m	γ OH, δ CH, ν CC, ν_{as}
138111	137011	138011	13//W	1577111	15758	1575111	1577111	ring
1316s					1323s			v CN
1300s	1297s	1300s	1299s	1301s		1309s	1301s	v CN
			1284m			1294m	1281m	v CO, v CN, vas ring
1270s	1269w	1271s	1270m	1268m	1268m	1274m	1264m	ν CO, ν CN, ν_{as} ring
					1232m			v CO, v CN, vas ring
1220m	1219w	1220m	1226w	1221m			1217m	ν CO, ν CH
1204m	1198w	1204m	1202m	1202m		1205m		v CC, v CH
		1172w				1172w	1192m	δCH
1136w	1141w	1138w	1143w	1147w		1144m	1144m	δ CH, δ OH
1099s	1094s	1093s	1093s	1094s	1107s	1098s	1093s	δ CH, vs CN, vs ring, δ OH
1058m	1058w	1058w	1058w	1058m		1062w	1059m	γ CH, ν CC
998w		998w	998w	996w		998w		δ CH
	990w		984w			985w	987w	ωCH
		977w					968w	ωCH
904w	907w		905w	907w				ωCH
885m	886m	888s	886m	886m	881w	887w	887m	ү ОН, үСН
8228	822s	823s	819s	819s	827s	8255	816s	vs CN, γ CH, ω CH,
0225	0225	0255	0195	0195	0275	0200	0105	vsring, vasring,
		804s	809s					v CC
802w	801w	801s	801m	802m	805m	802m	801m	v CC
783w	780w	766s	776w	7/5m	786m	785m	7/3m	ү СН
755s	759s	756s	758s	757s	752s	761m	761s	γCH
					745s	747w		v _{as} ring, T _s ring, T
711	711	711	711	710		711	711	OH
/IIm	/11w	/11m	/11w	/12m	C 1 F	/11w	/11m	γCH
(22	(17	(1(1	633W	(15	645W	(10	615	v CN
623W	61/W	616mb	611mb	615W		618W	615m	γCH s· · ·
5/6W	576W	5/4m	5/4m	576m	5 20	57/m 520	57/m 520	o ring, 1 ring
540m	55/W	558m	558m	338m	538m	539W	539W	σ ring, α CO, 1 ring
488m	485m	488m	489m	488m		490W	490m	νει, ωευ
	470w		470w	470w	475w		466w	γ CO
	464w			455w	444w		460w	γ CO, T ring
	441w			438w	432w			γ CO
413m	419m			413m	418w	411m		δring
	409m	405m	408m		406w		404m	δring

Table S5. continued

CoBr	FeBr	ZnBr	CdBr	SnBr	Assignment
3411sb	3461sb	3455s	3461s	3508sb	vOH
3314sb				3451sb	vOH
1633	1628	1635	16345	1634s	v CO, v_s CC, v_{as} ring,
10555	10205	10555	10545	10545	δСОН
1605s	1599s	1605s	1606s	1604s	$v_s CC$, $v_s CN$, δNH
1592s	1591s	1593s	1591m	1591s	ν CN, ν_s CC, ν CH
1552s	1548s	1554s	1552s	1556s	ν CC, τ CH
1497w	1494m	1490m	1492w		v_s CC, v_s CN, δ CH
1471m	1471w	1471w	1471w	1472w	αδΟΗ
	1417s	1418s	1418m	1421s	ν CC, δ OH, ν CH
1401s	1394s	1401s	1401s	1401s	ν CO, δ ΟΗ
1382s	1371m	1374w	1376w	1374w	γ OH, δ CH, ν CC,
15025	157111	1574W	15700	1574W	vas ring
1317s					v CN
1298s	1296s	1299s	1300s	1308s	v CN
	1282s	1282m	1284w	1289m	v CO, v CN,vas ring
1270s	1269m			1273w	v CO, v CN,vas ring
1239w					v CO, v CN,vas ring
1218s	1218w	1225w	1223w		v CO, v CH
1202m	1195w	1201m	1200w	1204w	v CC, vCH
	1174w	1167w		1170w	δ CH
1136w	1141w	1142w	1140w	1142m	δ CH, δ OH
1098s	1092s	1093s	1093s	1097s	δ CH, v _s CN, v _s ring,
10905	10725	10755	10755	10775	δΟΗ
1058m	1056w	1057w	1059w	1062w	γ CH, ν CC
997m				997w	δ CH
	986w	984w	984w		ωCH
				933	ωCH
906w	903w	903w	904w		ωCH
007	005	800	000	007	
88/m	885m	890m	889m	88/W	$\gamma OH, \gamma CH$
823s	821s	818s	819m	824s	v _s CN, γ CH, ω CH,
		800-	800		$v_s ring, v_{as} ring,$
802	800	8098	809m	901	NCC
802W	800m	8015	802m	801m 782	
783W	777	776	772	783W	ωCH
7540	///m 750a	770m	7750a	762m	" CH
7548	7598	7598	7598	703m 712m	γCH
/11m	/10w	/11m	/10w	/12m	γCH
621m	01/W	(OC h	(0 2	01/m 504h	γCH
571	575	574	002WD	575	γCH Sering Tering
5/4m 5/2m	5/5m 525	5/4m 527	5/4m	5/5m	o ring, 1 ring
542W	555m	53/m 497	238W	539W	o ring, αCO , 1 ring
488W	485m	48/m	48/W	489W	ν, ω
4/2W	459	461	4/4W	164	γ CO
439W	458W	461W	462W	404W	γ CO, 1 ring
420w	423W	415	417	410	γιο
410m	102	415m	41/m	419w	o ring
	403w	409m	408m	40/w	o ring

					λmax	(nm)				The most important orbitals involved in electronic transitions	Character of transition
Exper	rimental				Calculated	1					
FeCl	CoCl	CuCl	FeBr	CoBr	FeCl	CoCl	CuCl	FeBr	CoBr		
					225.13	224.54		232.28	231.05	(FeCl) α H-16 $\rightarrow \alpha$ L+5 (CoCl) β H-14 $\rightarrow \beta$ L+2 (FeBr) β H-17 $\rightarrow \beta$ L+3 (CoBr) α H-26 $\rightarrow \alpha$ L+6	(FeCl) n(Cl) $\pi(8hq) \rightarrow \pi^*(8hq)$ (CoCl) $\pi(8hq)d(Co) \rightarrow \pi^*(8hq)$ (FeBr) $\sigma(Fe-Br) \rightarrow n(Br)\pi^*(8hq)d(Fe)$ (CoBr) n(8hq-OH) $\pi(8hq) \rightarrow \pi^*(8hq)$
					228.16	225.81		233.74		(FeCl) βH-18→βL+1 (CoCl) βH-19→βL+1 (FeBr) β H-11→ β L+7	(FeCl) n(Cl)d(Fe) $\rightarrow \pi^*(8hq)$ (CoCl) σ (Co-Cl) $\pi(8hq) \rightarrow \pi^*(8hq)$ (FeBr) n(8hq-OH) $\pi(8hq) \rightarrow \pi^*(8hq)$
					232.36	228.18	210.72	241.97		(FeCl) β H-12 $\rightarrow\beta$ L+5 (CoCl) β H-14 $\rightarrow\beta$ L+2 (CuCl) β H-21 $\rightarrow\beta$ L+1 (FeBr) α H-16 $\rightarrow\alpha$ L+7	(FeCl, CuCl, FeBr) $\pi(8hq) \rightarrow \pi^*(8hq)$ (CoCl) $\pi(8hq)d(Co) \rightarrow \pi^*(8hq)$
					234.21	231.23	226.55	244.56		(FeCl) α H-12 $\rightarrow \alpha$ L+5 (CoCl) α H-16 $\rightarrow \alpha$ L+3 (CuCl) α H-1 $\rightarrow \alpha$ L+9 (FeBr) α H-18 $\rightarrow \alpha$ L+1	(FeCl) n(8hq-OH)n(Cl) $\pi(8hq)d(Fe) \rightarrow \pi^*(8hq)$ (CoCl) $\sigma(Co-Cl) \rightarrow n(Cl)d(Co)$ (CuCl) n(Cl)d(Cu) $\rightarrow \pi^*(8hq)$ (FeBr) $\pi(8hq) \rightarrow \pi^*(8hq)$
236	235	240	233	235	237.01	232.86	226.78	248.08		(FeCl) α H-19 $\rightarrow \alpha$ L (CoCl) β H-18 $\rightarrow \beta$ L+5 (CuCl) α H-1 $\rightarrow \alpha$ L+9 (FeBr) β H-19 $\rightarrow \beta$ L+6	(FeCl) $\pi(8hq) \rightarrow \pi^*(8hq)$ (CoCl, FeBr) n(Cl, Br)d(Co, Fe) \rightarrow n(Cl, Br)d(Co,Fe) (CuCl) n(Cl)d(Cu) $\rightarrow \pi^*(8hq)$
					242.95	240.56	233.41	251.64		(FeCl) $\beta H \rightarrow \beta L+14$ (CoCl) $\alpha H-12 \rightarrow \alpha L+4$ (CuCl) $\beta H-9 \rightarrow \beta L+5$ (FeBr) $\alpha H-17 \rightarrow \alpha L+4$	(FeCl) n(Cl-) $\pi(8hq) \rightarrow \pi^*(8hq)$ (CoCl) $\pi(8hq) \rightarrow \pi^*(8hq)d(Co)$ (CuCl) n(Cl) $\pi(8hq)d(Cu) \rightarrow \pi^*(8hq)$ (FeBr) $\sigma(Fe-Br) \rightarrow n(Br)d(Fe)$
					285.29	260.26	235.17	259.27	258.64	(FeCl) β H-12 $\rightarrow\beta$ L+3 (CoCl) β H-11 $\rightarrow\beta$ L+2 (CuCl) α H-21 $\rightarrow\alpha$ L (FeBr) β H-7 $\rightarrow\beta$ L+8 (CoBr) β H-24 $\rightarrow\beta$ L+6	(FeCl) n(Cl)d(Fe) \rightarrow n(Cl)d(Fe) (CoCl, FeBr) n(Cl, Br)d(Co, Fe) $\rightarrow \pi^*(8hq)$ (CuCl) $\sigma(Cu-Cl)\pi(8hq)\rightarrow$ n(Cl) $\pi^*(8hq)d(Cu)$ (CoBr) $\sigma(Co-Br)$ n(Br)d(Co) $\rightarrow \pi^*(8hq)$
						275.32	257.42		276.73	(CoCl) $\alpha H \rightarrow \alpha L + 10$ (CuCl) $\alpha H - 10 \rightarrow \alpha L + 3$ (CoBr) $\alpha H - 36 \rightarrow \alpha L + 2$	$(CoCl, CuCl) n(Cl)\pi(8hq)d(Co, Cu) \rightarrow \pi^{*}(8hq)$ $(CoBr) \sigma(Co-Br) \rightarrow n(Br)d(Co)$ $(CoCl) \pi(Co-Br) \rightarrow \pi^{*}(Cl)d(Co)$
318	323	336	313	322	316.36	324.18	296.93	294.18	323.13	$(FeC1) \alpha H-10 \rightarrow \alpha L+3$ $(FeC1) \alpha H-10 \rightarrow \alpha L+1$ $(CoC1) \alpha H-16 \rightarrow \alpha L$ $(CuC1) \beta H-4 \rightarrow \beta L+5$	$(CoCl) \sigma(Co-Cl) \rightarrow n(Cl)\alpha(Co)$ $(FeCl, CuCl) n(Cl)d(Fe, Cu) \rightarrow \pi^{*}(8hq)$ $(CoCl) \sigma(Co-Cl) \rightarrow n(Cl)\pi^{*}(8hq)d(Co)$ $(FeBr, CoBr) n(Br)d(Fe,Co) \rightarrow n(Br)d(Fe,Co)$

Table S6. The most important electronic transitions for the compounds containing the open-shell coordination centers. H letter indicates HOMO, L - LUMO, $\alpha - \alpha$ orbitals, $\beta - \beta$ orbitals, and +/-(number) represents subsequent orbitals below HOMO and above LUMO, respectively.

					λmax	: (nm)				The most important orbitals involved in electronic transitions	Character of transition
Expe	rimental				Calculated	d					
FeCl	CoCl	CuCl	FeBr	CoBr	FeCl	CoCl	CuCl	FeBr	CoBr		
										(FeBr) α H-21 $\rightarrow \alpha$ L+3 (CoBr) β H-42 $\rightarrow \beta$ L+1	
					333.73	339.08	301.16	311.22		(FeCl) β H-3 $\rightarrow\beta$ L+5 (CoCl) β H-12 $\rightarrow\beta$ L (CuCl) β H-8 $\rightarrow\beta$ L+4 (FeBr) α H-10 $\rightarrow\alpha$ L+2	(FeCl, FeBr) n(Cl, Br)d(Fe) $\rightarrow \pi^*(8hq)$ (CoCl) $\pi(8hq) \rightarrow \pi^*(8hq)$ (CuCl) $\sigma(Cu-Cl)n(Cl)d(Cu) \rightarrow n(Cl)d(Cu)\pi^*(8hq)$
					377.36		346.24	312.72	363.8	(FeCl) β H-7 $\rightarrow\beta$ L+3 (CuCl) β H-13 $\rightarrow\beta$ L+1 (FeBr) β H-14 $\rightarrow\beta$ L+3 (CoBr) β H-29 $\rightarrow\beta$ L+2	(FeCl, CoBr) n(Cl,Br)d(Fe,Co) \rightarrow n(Cl,Br)d(Fe, Co) (CuCl) σ (Cu-Cl) π (8hq $\rightarrow \pi^*$ (8hq) (FeBr) n(Br)d(Fe) \rightarrow n(Br) π^* (8hq)d(Fe)
					396.92			315.35		(FeCl) β H-5 $\rightarrow\beta$ L+4 (FeBr) β H-12 $\rightarrow\beta$ L+5	(FeCl) n(Cl)d(Fe) \rightarrow n(Cl)d(Fe) (FeBr) n(Br)d(Fe) \rightarrow n(Br) π *(8hq)d(Fe)
					418.1	411.92	412.27	359.81		(FeCl, CoCl) β H-6 $\rightarrow\beta$ L+1 (CuCl) α H-5 $\rightarrow\alpha$ L+2 (FeBr) α H-14 $\rightarrow\alpha$ L+4	(FeCl, CuCl) n(Cl)d(Fe, Cu) $\rightarrow \pi^*(8hq)$ (CoCl) n(Cl) $\pi(8hq) \rightarrow \pi^*(8hq)$ (FeBr) $\sigma(Fe-Br) \rightarrow n(Br)d(Fe)$
								370.96		(FeBr) $\alpha H - 14 \rightarrow \alpha L + 3$	$(FeBr) \sigma(Fe-Br) \rightarrow n(Br)d(Fe)$
420	412	411	375	406				375.03	392.8	(FeBr) β H-7 \rightarrow β L+6 (CoBr) β H-42 \rightarrow β L+1	(FeBr, CoBr) n(Br)d(Fe, Co) \rightarrow n(Br)d(Fe, Co)
								376.34		(FeBr) α H-2 $\rightarrow \alpha$ L+5	(FeBr) n(Br)d(Fe) $\rightarrow \pi^*(8hq)d(Fe)$
								402.01		(FeBr) α H-10 $\rightarrow \alpha$ L+1	(FeBr) n(Br)d(Fe) $\rightarrow \pi^*(8hq)$
						496.13	500.53	452.33		(FeCl) β H-3 \rightarrow β L+1 (CoCl) α H \rightarrow α L+5 (CuCl) α H \rightarrow α L+4 (FeBr) β H-4 \rightarrow β L+2	$\begin{array}{l} (FeCl) n(Cl)d(Fe) \rightarrow \pi^{*}(8hq) \\ (CoCl) \pi(8hq) \rightarrow \pi^{*}(8hq) \\ (CuCl) n(Cl)\pi(8hq)d(Cu) \rightarrow \pi^{*}(8hq) \\ (FeBr) n(Br)n(8hq-OH)d(Fe) \rightarrow \pi^{*}(8hq) \end{array}$
537	520	502	460	549	510.04	505.34	506.53	464.17		(CoCl) α H-10 $\rightarrow \alpha$ L (CuCl) α H-9 $\rightarrow \alpha$ L (FeBr) α H-15 $\rightarrow \alpha$ L	$\begin{array}{l} (\text{CoCl}) \ \sigma(\text{Co-Cl}) \rightarrow n(\text{Cl})\pi^*(8hq)d(\text{Co}) \\ (\text{CuCl}) \ \sigma(\text{Cu-Cl})n(\text{Cl})d(\text{Cu}) \rightarrow n(\text{Cl})\pi^*(8hq)d(\text{Cu}) \\ (\text{FeBr}) \ \pi \ (8hq) \rightarrow \pi^*(8hq) \end{array}$
						516.94		466.02		(CoCl) β H-4 $\rightarrow\beta$ L (FeBr) β H-3 $\rightarrow\beta$ L+3	$(CoCl) n(Cl)d(Co) \rightarrow \pi^{*}(8hq)$ (FeBr) n(Br)d(Fe) $\rightarrow n(Br)\pi^{*}(8hq)d(Fe)$
619	624	576	542	661	618.63	625.77	579.45	540.05	673.1	(FeCl) β H-3 \rightarrow β L+6 (CoCl) α H-4 \rightarrow α L+1 (CuCl) α H-9 \rightarrow α L (FeBr) α H-8 \rightarrow α L+3 (CoBr) β H-6 \rightarrow β L+4	(FeCl, FeBr) n(Cl, Br)d(Fe) \rightarrow n(Cl,Br)d(Fe) (CoCl) n(Cl)d(Co) $\rightarrow \pi^*(8hq)d(Co)$ (CuCl) σ (Cu-Cl)n(Cl)d(Cu) \rightarrow n(Cl) $\pi^*(8hq)d(Cu)$ (CoBr) d(Co)n(Br) $\rightarrow \pi^*(8hq)$
						647.73		541.7		(CoCl) αH-7→αL	(CoCl) σ (Co-Cl)n(Cl)d(Co) \rightarrow n(Cl) π *(8hq)d(Co)
								565.62		(FeBr) αH-8→αL+1	(FeBr) $\pi(8hq) \rightarrow \pi^*(8hq)$

					λmax	: (nm)				The most important orbitals involved in electronic transitions	Character of transition
Exper	imental				Calculated	đ					
FeCl	CoCl	CuCl	FeBr	CoBr	FeCl	CoCl	CuCl	FeBr	CoBr		
										(FeCl) $\beta H \rightarrow \beta L+3$	(FeCl) n(Cl-) $\pi(8hq) \rightarrow n(Cl)d(Fe)$
602	604	720	622	724	600.05	671.0	720.60	620 41		(CoCl) α H-3 $\rightarrow \alpha$ L+1	(CoCl, CuCl) n(Cl)d(Co, Cu) $\rightarrow \pi^*(8hq)d(Co,$
093	094	720	052	/34	090.93	0/1.8	/39.09	030.41		(CuCl) α H-6 $\rightarrow \alpha$ L+1	Cu)
										(FeBr) α H-3 $\rightarrow \alpha$ L+1	(FeBr) n(Br)d(Fe) $\rightarrow \pi^*(8hq)$
								636.82		(FeBr) β H-3 \rightarrow β L+1	(FeBr) n(Br)d(Fe) $\rightarrow \pi^*(8hq)$
			716					728.98		(FeBr) $\beta H \rightarrow \beta L + 6$	(FeBr) $n(Br)d(Fe) \rightarrow n(Br)d(Fe)$
										(FeCl) αH-3→αL	
					720.16	769 17	706 52	705 19		(CoCl) $\alpha H \rightarrow \alpha L + 4$	(FeCl, CuCl) n(Cl)d(Fe, Cu) $\rightarrow \pi^*(8hq)$
753 788	705	705		729.10	/08.1/	190.52	/95.18		(CuCl) $\beta H \rightarrow \beta L+1$	(CoCl) $\pi^*(8hq) \rightarrow \pi^*(8hq)d(Co)$	
	/88	795	/95							(FeBr) $\alpha H \rightarrow \alpha L + 1$	(FeBr) n(Br)d(Fe) $\rightarrow \pi^*(8hq)$
					761 29	910 62				(FeCl) α H-1 \rightarrow α L+1	(FeCl) n(Cl-) $\rightarrow \pi^*(8hq)$
					/01.28	810.03				(CoCl) αH-5→αL	$(CoCl)n(Cl)d(Co) \rightarrow \pi^*(8hq)n(Cl)d(Co)$

Used abbreviations: d - d orbital, n - non-bonding orbital, $\sigma - \sigma$ orbital, $\pi - \pi$ orbital, * - an antibonding orbital.

Table S7.	The most important electronic transitions for the chlo	oride compounds containing the closed-shell of	coordination centers. H le	etter indicates HOMO, L -	LUMO, $\alpha - \alpha$
orbitals, [- β orbitals, and +/-(number) represents subsequent of	rbitals below HOMO and above LUMO, resp	pectively.		

									λmax (nn	n)						The most important orbitals involved in electronic transitions	Character of transition
Exp	erimen	tal						Calculat	ed								
ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCI	BiCl	ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCl	BiCl		
248	250	250	238	250	239	270	238	219.26	225.31	228.05		209.73		229.08		$\begin{array}{l} (\text{ZnCl}) \text{ H-22} \rightarrow \text{L} \\ (\text{CdCl}) \text{ H-10} \rightarrow \text{L+6} \\ (\text{SnCl}(2)) \text{ H-22} \rightarrow \text{L+4} \\ (\text{HgCl}(1)) \text{ H-6} \rightarrow \text{L+9} \\ (\text{PbCl}) \text{H-41} \rightarrow \text{L} \end{array}$	$\begin{array}{l} (ZnCl, PbCl) \ \pi(8hq) \rightarrow \\ n(Cl)\pi^{*}(8hq) \\ (CdCl) \ \sigma(8hq- \\ NH)n(Cl)d(Cd) \rightarrow \sigma^{*}(8hq) \\ (SnCl(2)) \ n(Cl)n(8hq-OH)n(H_{2}O) \rightarrow \\ \pi/\pi^{*}(8hq) \\ (HgCl(1)) \ n(Cl) \rightarrow \ complex(8hq) \end{array}$
								225.57	225.98	246.02		221.23		246.49		$\begin{array}{l} (ZnCl) H-16 \rightarrow L+1 \\ (CdCl) H-11 \rightarrow L+4 \\ (SnCl(2))H-14 \rightarrow L+5 \\ (HgCl(1)) H-16 \rightarrow L \\ (PbCl) H-30 \rightarrow L+5 \end{array}$	(ZnCl) $d(Zn) \rightarrow \pi$ (8hq-OH- ring) π^* (8hq-N-ring) (CdCl) σ (Cd-Cl) π (8hq1) \rightarrow π^* (8hq2)

									λmax (nr	n)						The most important orbitals involved in electronic transitions	Character of transition
Expe	erimen	tal						Calculat	ted								
ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCl	BiCl	ZnCl	CdCl	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCI	BiCl		
																	(SnCl(2), PbCl) n(Cl) $\rightarrow \pi/\pi^*(8hq)$ (HgCl(1)) $\pi(8hq) \rightarrow n(Cl)\pi^*(8hq)$
								226.76	228.15	281.07		227.94	222.9 *223.34 230.67	273.19	241.83	$(ZnCl) H-11\rightarrow L+4$ (CdCl, HgCl(1)) $H-14\rightarrow L+2$ (SnCl(2)), BiCl) $H-28\rightarrow L+1$ $(PbCl) H-19\rightarrow L+11$ $(HgCl(2)) H-34\rightarrow L+3$ * $(HgCl(2))$ $H-6\rightarrow L+13$ $(HgCl(2)) H-24\rightarrow L+7$	$\begin{array}{l} (\text{ZnCl, CdCl, HgCl(1), HgCl(2)}) \\ \pi(8hq) \rightarrow \pi^*(8hq) \\ (\text{SnCl(2)}) \pi(8hq) \rightarrow \pi/\pi^*(8hq) \\ (\text{PbCl)} n(\text{Cl)d}(\text{Pb}) \rightarrow \sigma^*(\text{Pb-Cl}) \\ (\text{BiCl)} n(8hq\text{-OH})\pi(8hq) \rightarrow \\ \pi/\pi^*(8hq) \\ ^*(\text{HgCl(2)}) n(\text{Cl}) \rightarrow \sigma^*(\text{Hg-Cl}) \end{array}$
								229.88	242.62		213.21	231.19 242.55			284.83	(ZnCl, HgCl(1)) H-14 \rightarrow L+2 (CdCl, HgCl(1)) H-13 \rightarrow L+3 (BiCl) H-30 \rightarrow L (SnCl(1)) H-20 \rightarrow L+3	(ZnCl, CdCl, SnCl(1), HgCl(1)) $\pi(8hq) \rightarrow \pi^*(8hq)$ (BiCl) $\pi(8hq) \rightarrow \sigma^*(Bi-Cl)\pi /\pi^*(8hq)$
								243.92	273.05				231.21			$(ZnCl)$ H-12 \rightarrow L+3 (HgCl(2)) H-19 \rightarrow L+7	$(\text{ZnCl}) \sigma(\text{Zn-Cl}) \rightarrow \pi^*(8hq)$ $(\text{HgCl}(2)) n(\text{Cl}) \rightarrow \pi^*(8hq)$
_								274.21			227.13	274.08	274.84			$\begin{array}{l} (\text{ZnCl}) \text{ H-15} \rightarrow \text{L} \\ (\text{SnCl}(1)) \text{ H-24} \rightarrow \text{L} \\ (\text{HgCl}(2)) \text{ H} \rightarrow \text{L+10} \end{array}$	$(\text{ZnCl}) \pi(8\text{hq}) \rightarrow n(\text{Cl})\pi^*(8\text{hq})$ $(\text{SnCl}(1)) \pi(8\text{hq}) \rightarrow n(\text{Cl})n(8\text{hq}-$ $OH)\pi/\pi^*(8\text{hq})$ $(\text{HgCl}(2)) n(\text{Cl}) \rightarrow n(\text{Hg})$
313	335	333	339	319	308	353	329	294.67	303.91	339.42	339.8	301.77	344.51	356.92	313.96	(ZnCl, HgCl) H-14→L+1 (CdCl) H-7→L+5 (HgCl(2)) H-30→L (SnCl(2)) H-1→L+5 (SnCl(1)) H-19→L+1 (PbCl) H-11→L+10 (BiCl) H-10→L+9	$(ZnCl, SnCl(2), SnCl(1)) $ $\pi(8hq) \rightarrow \pi/\pi^{*}(8hq) $ $(CdCl) n(Cl)d(Cd) \rightarrow \pi^{*}(8hq) $ $(HgCl(1) \pi(8hq) \rightarrow \pi^{*}(8hq) $ $(HgCl(2)) n(Cl)d(Hg) \rightarrow n(Cl) $ $(PbCl) n(Cl) \rightarrow \sigma^{*}(Pb-Cl) $ $(BiCl) n(Cl) \rightarrow \pi^{*}(8hq) $
								344.92	344.64	340.93		311.37			353.25	$(ZnCl) H-12 \rightarrow L+1$ $(CdCl) H-13 \rightarrow L+1$	$(\text{ZnCl}) \sigma(\text{Zn-Cl}) \rightarrow \pi \text{ (8hq-OH-ring)} /\pi^*(\text{8hq-N-ring})$

	λmax (nm)															The most important orbitals involved in electronic transitions	Character of transition
Expe	rimen	tal						Calculat	ed								
ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCl	BiCl	ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCl	BiCl		
																$(SnCl(2))$ H-24 \rightarrow L+1 (BiCl) H-23 \rightarrow L (HgCl) H-7 \rightarrow L+5	$\begin{array}{l} (CdCl, SnCl(2)) \ \pi(8hq) \rightarrow \\ \pi/\pi^*(8hq) \\ (HgCl) \ n(Cl) \rightarrow \pi^*(8hq) \\ (BiCl) \ \sigma(Bi-Cl)n(Cl) \rightarrow \pi \\ /\pi^*(8hq)\sigma^*(Bi-Cl) \end{array}$
372	421	418	423	365	360	407	417	402.95	423.12	379.27	390.47	356.83	353.45	395.76	414.93	$\begin{array}{l} (\operatorname{ZnCl}) \ H-11 \rightarrow L+1 \\ (\operatorname{CdCl}) \ H-8 \rightarrow L+2 \\ (\operatorname{SnCl}(2)) \ H-1 \rightarrow L+4 \\ (\operatorname{SnCl}(1)) \ H-19 \rightarrow L \\ (\operatorname{BiCl}) \ H-10 \rightarrow L+5 \\ (\operatorname{PbCl}) \ H-11 \rightarrow L+7 \\ (\operatorname{HgCl}(1)) \ H-13 \rightarrow L+1 \\ (\operatorname{HgCl}(2)) \\ \operatorname{H-31} \rightarrow L+1 \end{array}$	$(ZnCl) \pi(8hq) \rightarrow \pi (8hq-OH-ring) /\pi^*(8hq-N-ring) (CdCl) n(Cl)d(Cd) \rightarrow \pi^*(8hq) (SnCl(2)) \pi(8hq) \rightarrow \pi/\pi^*(8hq) (SnCl(1)) \pi(8hq) \rightarrow n(Cl)n(8hq-OH)\pi/\pi^*(8hq) (PbCl) n(Cl) \rightarrow \sigma^*(Pb-Cl) (HgCl(1)) \pi(8hq) \rightarrow \pi^*(8hq) (HgCl(2)) \sigma(Hg-Cl) \rightarrow n(Cl) (BiCl) n(Cl) \rightarrow \pi^*(8hq) $
									428.61	383.75				425.71		(CdCl) H-11 \rightarrow L (SnCl(2)) H \rightarrow L+5 (PbCl) H \rightarrow L+12	(CdCl) σ (Cd- Cl) π (8hq) \rightarrow n(Cl) π/π^* (8hq) (SnCl(2)) n(Cl) π (8hq) $\rightarrow \pi/\pi^*$ (8hq) (PbCl) n(Cl) π (8hq) $\rightarrow \pi^*$ (8hq)
										427.87						$(SnCl(2))$ H-16 \rightarrow L	$(\text{SnCl}(2))$ n(Cl) $\pi(8hq) \rightarrow \pi/\pi^*(8hq)$
427	510	512	520	428	407	504	513	430.1	502.94	491.71	478.84	426.85	444.14	523.31	533.38	$\begin{array}{l} (\text{ZnCl}) \text{ H-11} \rightarrow \text{L} \\ (\text{CdCl}) \text{ H-7} \rightarrow \text{L+2} \\ (\text{SnCl}(2)) \text{ H} \rightarrow \text{L+3} \\ (\text{SnCl}(1)) \text{ H-14} \rightarrow \text{L} \\ (\text{HgCl}(1)) \text{ H-11} \rightarrow \text{L+1} \\ (\text{HgCl}(2)) \text{ H-32} \rightarrow \text{L} \end{array}$	$(ZnCl) \pi(8hq) \rightarrow n(Cl)\pi^{*}(8hq)$ $(CdCl) n(Cl)d(Cd) \rightarrow \pi^{*}(8hq)$ $(SnCl(2)) n(Cl)\pi(8Hq) \rightarrow \pi^{*}(8hq)$ $(SnCl(1)) \pi(8hq) \rightarrow n(Cl)n(8hq-OH)\pi/\pi^{*}(8hq)$ $(HgCl(1)) \sigma(Hg-Cl)\pi(8hq) \rightarrow \pi^{*}(8hq)$ $(HgCl(2)) \sigma(Hg-Cl) \rightarrow n(Cl)$
										511.72		435.31				(SnCl(2)) H-6→L (HgCl(1)) H-11→L	$(SnCl(2)) n(Cl) \rightarrow \pi/\pi^*(8hq)$ (HgCl(1)) $\sigma(Hg-Cl)\pi(8hq) \rightarrow n(Cl)\pi^*(8hq)$
490	596	576	600	507	502	600	579	503.77	600.75			470.5	526.49	634.8		$\begin{array}{l} (ZnCl) H-5 \rightarrow L+3 \\ (CdCl) H-4 \rightarrow L+2 \\ (HgCl(1)) H-7 \rightarrow L+3 \end{array}$	$(\text{ZnCl}, \text{CdCl}) n(\text{Cl})d(\text{Zn}, \text{Cd}) \rightarrow \pi^*(8hq)$ (HgCl(1)) n(Cl) $\rightarrow \pi^*(8hq)$

									λmax (nm))						The most important orbitals involved in electronic transitions	Character of transition
Expe	erimen	tal						Calculat	ed								
ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCI	BiCl	ZnCl	CdCI	SnCl(2)	SnCl(1)	HgCl(1)	HgCl(2)	PbCI	BiCl		
																(PbCl) H-15 \rightarrow L (HgCl(2)) H-22 \rightarrow L	(HgCl(2)) σ (Hg-Cl)n(Cl) \rightarrow n(Cl) (PbCl) n(Cl) \rightarrow n(Cl) π *(8hq)
													539.7			(HgCl(2)) H-22 \rightarrow L+1	$(HgCl(2)) \sigma(Hg-Cl)n(Cl) \rightarrow n(Cl)$
542	681	644			623	691	643	579.77	700.77				631.94	672.58		$(ZnCl)$ H-5 \rightarrow L+2 $(CdCl)$ H-9 \rightarrow L+1 $(PbCl)$ H-1 \rightarrow L+7 $(HgCl(2))$ H-22 \rightarrow L+1	$(ZnCl) n(Cl)d(Zn) \rightarrow \pi^{*}(8hq)$ $(CdCl) n(Cl)d(Cd) \rightarrow \pi/\pi^{*}(8hq)$ $(PbCl) n(Cl) \rightarrow \sigma^{*}(Pb-Cl)$ $(HgCl(2))\sigma(Hg-Cl)n(Cl) \rightarrow n(Cl)$
680		756	737		683	771	719	695.06					676.89	759.78	691.6	$(ZnCl)$ H-9 \rightarrow L (PbCl) H \rightarrow L+6 (BiCl) H-14 \rightarrow L (HgCl(2)) H-21+L	$\begin{array}{l} (ZnCl) n(Cl)d(Zn) \rightarrow n(Cl)\pi^{*}(8hq) \\ (PbCl) n(Cl)\pi(8hq) \rightarrow \pi^{*}(8hq) \\ (BiCl) n(Cl) \rightarrow \sigma^{*}(Bi\text{-}Cl)\pi / \pi^{*}(8hq) \\ (HgCl(2)) n(Cl) \rightarrow n(Cl) \end{array}$
767								728.03								(ZnCl) H-8→L	$(ZnCl) n(Cl)d(Zn) \rightarrow n(Cl)\pi^*(8hq)$

Used abbreviations: d - d orbital, n - non-bonding orbital, $\sigma - \sigma$ orbital, $\pi - \pi$ orbital, poly – orbital belonging to inorganic polymer chain, stack – orbital associated with the 8Hq stacked system,* - an antibonding orbital.

Table S8.	The most important electronic tra	ansitions for the bromide co	mpounds containing the close	-shell coordination	n centers. H letter indicates HO	MO, L - LUMO, $\alpha - \alpha$
orbitals, β	- β orbitals, and +/-(number) repr	resents subsequent orbitals !	below HOMO and above LUI	MO, respectively.		

					λmax (nn	n)				The most important orbitals involved in electronic transitions	Character of transition
Experi	mental				Calculate	ed					
CdBr	ZnBr	SnBr	HgBr	PbBr	CdBr	ZnBr	SnBr	HgBr	PbBr		
					222.22	200.47	228 52	226.22	227.24	(CdBr) H-14 \rightarrow L+2 (ZnBr) H-17 \rightarrow L	$(CdBr) \pi(8hq) \rightarrow \pi^{*}(8hq)$ $(ZnBr) \pi(8hq) \rightarrow \pi / \pi^{*}(8hq)$ $(f_{a}B_{a}) \pi / (f_{b}h_{a} - QH) \pi / (f_{b}h$
241	244	229	238	225	223.22	209.47	228.52	220.32	227.24	(SnBr) H-25 \rightarrow L (HgBr) H-17 \rightarrow L (PbBr) H-14 \rightarrow L+15	(SnBr) $n(\text{8nq-OH})n((\text{8nq-N})\pi((\text{8nq}) \rightarrow n(\text{Br})n((\text{8nq-OH})\pi^*((\text{8nq})))$ $(\text{HgBr}) \pi((\text{8hq}) \rightarrow n(\text{Br})\pi^*((\text{8hq}))$ $(\text{PbBr}) n(\text{Br}) \rightarrow \text{complex}((\text{8hq}))$
					228.74	215.18	229.2	229.07		(CdBr) H-8 \rightarrow L+7	$(CdBr) n(Br) \rightarrow \sigma^*(8hq-OH)$

λmax (nm)										The most important orbitals involved in electronic transitions	Character of transition
Experimental Calculated											
CdBr	ZnBr	SnBr	HgBr	PbBr	CdBr	ZnBr	SnBr	HgBr	PbBr		
										$(ZnBr)$ H-3 \rightarrow L+12 (SnBr) H-14 \rightarrow L+4 (HgBr) H-11 \rightarrow L+4	$\begin{array}{l} (ZnBr) n(Br)d(Zn) \rightarrow \pi^{*}(8hq) \\ (SnBr) n(8hq-OH)\pi(8hq) \rightarrow n(8hq-OH)\pi^{*}(8hq) \\ (HgBr) \pi(8hq) \rightarrow \pi^{*}(8hq) \end{array}$
					229.52	223.30	231.7	230.81		$\begin{array}{l} (CdBr) H-15 \rightarrow L+1 \\ (ZnBr) H-14 \rightarrow L+1 \\ (SnBr) H-18 \rightarrow L+3 \\ (HgBr) H-6 \rightarrow L+10 \end{array}$	(CdBr) $\pi(8hq) \rightarrow \pi^*(8hq)$ (ZnBr) $n(8hq-OH)\pi(8hq) \rightarrow \pi^*(8hq)n(Br)$ (SnBr) $n(8hq-OH)n(8hq-N)\pi(8hq) \rightarrow \pi^*(8hq)$ (HgBr) $n(Br)d(Hg) \rightarrow \sigma^*(8hq)$
					245.3	229.61	238	236.67		$(CdBr) H-13 \rightarrow L+3$ $(ZnBr) H-3 \rightarrow L+10$ $(SnBr) H-22 \rightarrow L$ $(HgBr) H-2 \rightarrow L+11$	$(CdBr) \pi(8hq) \rightarrow \pi^{*}(8hq)$ $(ZnBr) n(Br)d(Zn) \rightarrow \pi^{*}(8hq)$ $(SnBr) n(8hq-OH)\pi(8hq) \rightarrow n(8hq-OH)\pi^{*}(8hq)$ $(HaBr) n(Br)d(Ha) \rightarrow \sigma^{*}(8hq)$
					272.04	245.19	260.1	253.64		$(\text{CdBr}) \text{ H-2} \rightarrow \text{L+11}$ $(\text{CdBr}) \text{ H-15} \rightarrow \text{L+11}$ $(\text{ZnBr}) \text{ H-12} \rightarrow \text{L+3}$ $(\text{SnBr}) \text{ H} \rightarrow \text{L+11}$ $(\text{HgBr}) \text{ H-12} \rightarrow \text{L+3}$	(CdBr, HgBr) $\pi(8hq) \rightarrow \pi^*(8hq)$ (ZnBr) $\pi(8hq)n(8hq-N) \rightarrow \pi^*(8hq)$ (SnBr) $n(Br) \rightarrow n(H_2O-OH)\pi^*(8hq)$
					296.79	252.97		254.44	254.2	$(CdBr) H-14 \rightarrow L$ $(ZnBr) H-5 \rightarrow L+7$ $(HgBr) H-12\rightarrow L+3$ $(PbBr) H-14 \rightarrow L+10$	$(CdBr) \pi(8hq) \rightarrow n(Br)\pi/\pi^{*}(8hq)$ $(ZnBr) n(Br)d(Zn)n(8hq-N) \rightarrow \pi^{*}(8hq)$ $(HgBr) \pi(8hq) \rightarrow \pi^{*}(8hq)$ $(PbBr) n(Br)\pi(8hq) \rightarrow \sigma^{*}(Pb-Br)$
					301.6	253.70		275.07		$(CdBr) H-1 \rightarrow L+7$ $(ZnBr) H-3 \rightarrow L+8$ $(HgBr) H-14 \rightarrow L+1$	$(CdBr) n(Br) \rightarrow \sigma^{*}(8hq-OH)$ $(ZnBr) n(Br)d(Zn) \rightarrow \pi^{*}(8hq)$ $(HgBr) \pi(8hq) \rightarrow \pi/\pi^{*}(8hq)$
					348.75	308.01	314.41	355.44	267.92	(CdBr, HgBr) H-13 \rightarrow L+1 (ZnBr) H-15 \rightarrow L (SnBr) H-7 \rightarrow L+7 (PbBr) H-36 \rightarrow L+1	(CdBr, PbBr) $\pi(8hq) \rightarrow \pi^*(8hq)$ (ZnBr) $\pi(8hq)n(8hq-OH) \rightarrow \pi/\pi^*(8hq)$ (SnBr) $n(Br) \rightarrow \sigma^*(Sn-Br)$ (HgBr) $\sigma(Hg-Br) \rightarrow \pi/\pi^*(8hq)$
338	324	315	324	298	353.91	317.37	320.95		303.29	$\begin{array}{l} (CdBr) H-4 \rightarrow L+5 \\ (ZnBr) H-11 \rightarrow L+1 \\ (SnBr) H-6 \rightarrow L+7 \\ (PbBr) H-23 \rightarrow L+3 \end{array}$	(CdBr) n(Br) $\rightarrow \pi^{*}(8hq)$ (ZnBr) $\pi(8hq) \rightarrow \pi^{*}(8hq)n(Br)$ (SnBr, PbBr) n(Br) $\rightarrow \sigma^{*}(Sn,Pb-Br)$
					367.81	327.09	351.64			(CdBr) H-13→L	(CdBr) $\pi(8hq) \rightarrow n(Br)\pi/\pi^*(8hq)$

					λmax (nn	n)			The most important orbitals involved in electronic transitions	Character of transition	
Experin	mental				Calculate	d					
CdBr	ZnBr	SnBr	HgBr	PbBr	CdBr	ZnBr	SnBr	HgBr	PbBr		
										(ZnBr) H-4→L+5	$(\operatorname{ZnBr}) \operatorname{n}(\operatorname{Br})\operatorname{d}(\operatorname{Zn}) \rightarrow \pi^*(\operatorname{8hq})$
										(SnBr) H-18→L+1	(SnBr) n(8hq-OH)n(8hq-N) π (8hq) \rightarrow n(8hq-OH) π/π^* (8hq)
					400.02	221.00				(CdBr) H-11 \rightarrow L+1	$(CdBr) \sigma(Cd-Br)\pi(8hq) \rightarrow \pi^*(8hq)$
					409.92	331.90				(ZnBr) H-10→L+3	$(ZnBr) \sigma(Zn-Br)n(Br) \rightarrow \pi^*(8hq)$
		416		411	424.05	412.79	395.98		429 11	(CdBr) H-11→L	$(CdBr) \sigma(Cd-Br)\pi(8hq) \rightarrow n(Br)\pi/\pi^*(8hq)$
										(ZnBr) H-6→L+3	$(ZnBr) n(Br)d(Zn)n(8hq-N) \rightarrow \pi^*(8hq)$
					454.05				438.11	(SnBr) H-15→L	$(SnBr) \sigma(Sn-Br)n(Br)n(H_2O-OH) \rightarrow n(8hq-OH)\pi^*(8hq)$
421	426		411							(PbBr) H-10→L+5	$(PbBr) n(Br) \rightarrow \sigma^*(Pb\text{-}Br)\pi^*(8hq)$
421					491.91	454.95	410.7	413.57		(CdBr) H-6→L+3	
										(ZnBr) H-4→L+3	(CdBr, HgBr) n(Br) $\rightarrow \pi^*(8hq)$
										(SnBr) H-14→L+1	$(ZnBr) n(Br)d(Zn) \rightarrow \pi^*(8hq)$
										(HgBr) H-9→L+3	(SnBr) n(8hq-OH) π (8hq) $\rightarrow \pi/\pi^*$ (8hq)n(8hq-OH)
	513	521		503	533.42	563.86	480.15	464.98	488.43	(CdBr) H-6 \rightarrow L+2	$(CdBr) n(Br) \rightarrow \pi^*(8hq)$
										$(ZnBr)$ H-5 \rightarrow L+2	$(ZnBr) n(Br)d(Zn)n(8hq-N) \rightarrow \pi^*(8hq)$
										(SnBr) H-14→L	(SnBr) n(8hq-OH) π (8hq) \rightarrow n(8hq-OH) π *(8hq)
			535							(HgBr) H-11→L	$(\text{HgBr}) \ \pi(8\text{hq}) \rightarrow n(\text{Br})\pi^*(8\text{hq})$
539										(PbBr) H-10 \rightarrow L+4	(PbBr) $n(Br) \rightarrow \sigma^*(Pb-Br)\pi^*(8hq)$
										$(SnBr)$ H-5 \rightarrow L+3	$(\operatorname{SnBr}) \operatorname{n}(\operatorname{Br}) \to \pi^*(\operatorname{8hq})$
							518.73	522.05	520.38	(HgBr) H-6→L+3	(HgBr) n(Br)d(Hg) $\rightarrow \pi^*(8hq)$
										(PbBr) $H \rightarrow L+12$	$(PbBr) n(Br)\pi(8hq) \rightarrow \pi^*(8hq)$
							525.96			(SnBr) H-4 \rightarrow L+3	$(\text{SnBr}) \text{ n}(\text{Br}) \rightarrow \pi^*(8\text{hq})$
	623	632		622	623.93	592.49	628.54	674.59	590.66		$(CdBr) n(Br) \rightarrow \pi^*(8hq)$
										(CdBr, HgBr) H-4 \rightarrow L+2	$(ZnBr) n(Br)d(Zn) \rightarrow \pi^*(8hq)$
631			641							$(ZnBr)$ H-4 \rightarrow L+2	$(\text{SnBr}) \text{ n(Br)} \rightarrow \text{n(8hq-OH)} \pi / \pi^*(8hq)$
										(SnBr) H-11 \rightarrow L+1	(HgBr) n(Br)d(Hg) $\rightarrow \pi^*(8hq)$
										(PbBr) H-4 \rightarrow L+8	(PbBr) $n(Br) \rightarrow \sigma^*(Pb-Br)\pi^*(8hq)$
	727	700	701	716	732.73	751.04	708.17	680.03	727.40	$(CdBr) H-10 \rightarrow L$	$(CdBr) n(Br) \rightarrow n(Br)\pi/\pi^*(8hq)$
										$(ZnBr)$ H-4 \rightarrow L+1	$(\operatorname{ZnBr}) \operatorname{n}(\operatorname{Br})\operatorname{d}(\operatorname{Zn}) \rightarrow \pi^*(\operatorname{8hq})\operatorname{n}(\operatorname{Br})$
705										(SnBr) H-12→L	$(\text{SnBr}) \text{ n}(\text{Br})\text{n}(\text{H}_2\text{O}) \rightarrow \text{n}(8\text{hq-OH})\pi^*(8\text{hq})$
										(HgBr) H-10→L+1	(HgBr) σ (Hg-Br)d(Hg) $\rightarrow \pi/\pi^*(8hq)$
										(PbBr) H-1 \rightarrow L+10	$(PbBr) n(Br) \rightarrow \sigma^*(Pb-Br)$

Used abbreviations: d – d orbital, n – non-bonding orbital, σ - σ orbital, π - π orbital, * - an antibonding orbital.

3. Supplemental figures

XRPD pattern (Figure S1)

Figure S1. Experimental XRPD pattern of ZnBr (red) and theoretical XRPD patterns of CoBr (blue) and HgBr (green) generated in Mercury 2022.1.0 software based on CIF files of these compounds.

Molecular structures and intermolecular interactions (Figure S2-S18)

Figure S2. Molecular structure of CoCl. The equivalent atoms were generated according to symmetry transformations: (i) -x+1, y, -z+0.5.

Figure S3. Molecular structure of ZnCl. The equivalent atoms were generated according to symmetry transformations: (i) -x+1, y, -z+0.5.

Figure S4. Molecular structure of CdCl. The equivalent atoms were generated according to symmetry transformations: (i) -x+1, y, -z+0.5.

Figure S5. Molecular structure of CdBr. The equivalent atoms were generated according to symmetry transformations: (i) -x+1, y, -z+0.5.

Figure S6. Molecular structure of CoBr. The equivalent atoms were generated according to symmetry transformations: (i) -x+0.5, y, -z+0.5; (ii) -x+1.5, y, -z+0.5

Figure S7. Molecular structure of SnBr. The equivalent atoms were generated according to symmetry transformations: (i) -x+1, -y, -z+1.

Figure S8. Molecular structure of BiCl.

Figure S9. Molecular structure of PbBr. The equivalent atoms were generated according to symmetry transformations: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) x-1, y, z

Figure S10. 8hqH⁺ stacks assembled according to different motifs of π - π interactions in the studied compounds.

Figure S11. Molecular packing in SnCl(2) showing π - π interactions.

Figure S12. H-bond ring motifs in the structure of CuCl

CoBr

Figure S13. H-bond ring motifs in the structure of PbBr and CoBr

Figure S14. H-bond ring motifs in the structure of SnCl(1).

Figure S15. H-bond motifs in the structure of SnCl(2)

Figure S16. H-bond motifs in the structure of HgCl(2)

Figure S17. H-bond ring motifs in the structure of BiCl

Figure S18. H-bond ring motifs in the structure of 8hqHCl

UV-Vis spectra (Figure S19-S38)

Figure S19. Experimental (black) and calculated (red) UV-Vis spectra of FeCl. The most important oscillator strengths are shown as vertical red lines.

Figure S20. Experimental (black) and calculated (red) UV-Vis spectra of FeBr. The most important oscillator strengths are shown as vertical red lines.

Figure S21. Experimental (black) and calculated (red) UV-Vis spectra of CoCl. The most important oscillator strengths are shown as vertical red lines.

Figure S22. Experimental (black) and calculated (red) UV-Vis spectra of CoBr. The most important oscillator strengths are shown as vertical red lines.

Figure S23. Experimental (black) and calculated (red) UV-Vis spectra of CuCl. The most important oscillator strengths are shown as vertical red lines.

Figure S24. Experimental (black) and calculated (red) UV-Vis spectra of ZnCl. The most important oscillator strengths are shown as vertical red lines.

Figure S25. Experimental (black) and calculated (red) UV-Vis spectra of ZnBr. The most important oscillator strengths are shown as vertical red lines.

Figure S26. Experimental (black) and calculated (red) UV-Vis spectra of CdCl. The most important oscillator strengths are shown as vertical red lines.

Figure S27. Experimental (black) and calculated (red) UV-Vis spectra of CdBr. The most important oscillator strengths are shown as vertical red lines.

Figure S28. Experimental (black) and calculated (red) UV-Vis spectra of HgCl(1). The most important oscillator strengths are shown as vertical red lines.

Figure S29. Experimental (black) and calculated (red) UV-Vis spectra of HgCl(2). The most important oscillator strengths are shown as vertical red lines.

Figure S30. Experimental (black) and calculated (red) UV-Vis spectra of HgBr. The most important oscillator strengths are shown as vertical red lines.

Figure S31. Experimental (black) and calculated (red) UV-Vis spectra of SnCl(1). The most important oscillator strengths are shown as vertical red lines.

Figure S32. Experimental (black) and calculated (red) UV-Vis spectra of SnCl(2). The most important oscillator strengths are shown as vertical red lines.

Figure S33. Experimental (black) and calculated (red) UV-Vis spectra of SnBr. The most important oscillator strengths are shown as vertical red lines.

Figure S34. Experimental (black) and calculated (red) UV-Vis spectra of PbCl. The most important oscillator strengths are shown as vertical red lines.

Figure S35. Experimental (black) and calculated (red) UV-Vis spectra of PbBr. The most important oscillator strengths are shown as vertical red lines.

Figure S36. Experimental (black) and calculated (red) UV-Vis spectra of BiCl. The most important oscillator strengths are shown as vertical red lines.

Figure S37. Experimental (black) and calculated (red) UV-Vis spectra of 8hqHCl. The most important oscillator strengths are shown as vertical red lines.

Figure S38. Experimental (black) and calculated (red) UV-Vis spectra of 8hqHBr. The most important oscillator strengths are shown as vertical red lines.

Calculated molecular orbitals of the studied compounds, corresponding to Tables S6-S8. (Figure S39-S56). H letter indicates HOMO, L - LUMO, and +/-(number) represents subsequent orbitals below HOMO and above LUMO, respectively

Figure S39. Molecular orbitals of the compound FeCl.

Figure S39. continued.

Figure S40. Molecular orbitals of the compound FeBr.

βH-3

αH-2

αL

βH-4

αH

αH-3

Figure S40. continued

αL+1

βH-14

αH-12

βH-11

βH-6

Figure S41. Molecular orbitals of the compound CoCl.

Figure S41. continued.

Figure S42. Molecular orbitals of the compound CoBr.

Figure S42. continued

βH-21

xH-9

αH-10

βH-4

βH-9

αH-5

αH-1

Figure S43. Molecular orbitals of the compound CuCl.

H-12

H-11

H-8

L+1

L+2

Figure S44. Molecular orbitals of the compound ZnCl.

L+5

L+2

L+7

L+10

L+12

Figure S45. Molecular orbitals of the compound ZnBr.

H-

Figure S46. Molecular orbitals of the compound CdCl.

Figure S47. Molecular orbitals of the compound CdBr.

Figure S48. Molecular orbitals of the compound HgCl(1).

Figure S49. contiuned

Figure S51. Molecular orbitals of the compound SnCl(1).

Figure S52. Molecular orbitals of the compound SnCl(2).

Figure S52. continued

H-12

H-14

H-11

H-5

3

2

H-4

L+3

Figure S53. Molecular orbitals of the compound SnBr.

H-19

H-15

H-4

Figure S54. Molecular orbitals of the compound PbCl.

Figure S54. continued

Figure S55. Molecular orbitals of the compound PbBr.

Figure S56. Molecular orbitals of the compound BiCl.

Calculated molecular orbitals involved in the excitation process, corresponding to Table 2 of the main manuscript (Figure S57-S75). H letter indicates HOMO, L - LUMO, and +/-(number) represents subsequent orbitals below HOMO and above LUMO, respectively

βH-13

βL αн Figure S60. Molecular orbitals of CuCl

Figure S66. Molecular orbitals of HgCl(2)

Figure S73. Molecular orbitals of BiCl

Figure S74. Molecular orbitals of 8hqHCl

Figure S75. Molecular orbitals of 8hqHBr

3D-EEM fluorescence spectra (Figure S76-S95)

Figure S76. 3D-EEM fluorescence spectrum of FeCl

Figure S77. 3D-EEM fluorescence spectrum of FeBr

Figure S78. 3D-EEM fluorescence spectrum of CoCl

Figure S79. 3D-EEM fluorescence spectrum of CoBr

Figure S80. 3D-EEM fluorescence spectrum of CuCl

Figure S81. 3D-EEM fluorescence spectrum of ZnCl

Figure S82. 3D-EEM fluorescence spectrum of ZnBr

Figure S83. 3D-EEM fluorescence spectrum of CdCl

Figure S84. 3D-EEM fluorescence spectrum of CdBr

Figure S85. 3D-EEM fluorescence spectrum of HgCl(1)

Figure S86. 3D-EEM fluorescence spectrum of HgCl(2)

Figure S87. 3D-EEM fluorescence spectrum of HgBr

Figure S88. 3D-EEM fluorescence spectrum of SnCl(1)

Figure S89. 3D-EEM fluorescence spectrum of SnCl(2)

Figure S90. 3D-EEM fluorescence spectrum of SnBr

Figure S91. 3D-EEM fluorescence spectrum of PbCl

Figure S92. 3D-EEM fluorescence spectrum of PbBr

Figure S93. 3D-EEM fluorescence spectrum of BiCl

Figure S94. 3D-EEM fluorescence spectrum of 8hqHCl

Figure S95. 3D-EEM fluorescence spectrum of 8hqHBr

4. The data concerning the structures of (8hqBr₂H)₂[CuBr₄]·2H₂O and (8hqBr₂H)₄[Bi₂Br₁₀]·2H₂O

Molecular structure of $(8hqBr_2H)_2[CuBr_4]\cdot 2H_2O$. The equivalent atoms were generated according to symmetry transformations: (i) -x, y, -z+1.5.

Molecular structure of $(8hqBr_2H)_4[Bi_2Br_{10}]\cdot 2H_2O$. The equivalent atoms were generated according to symmetry transformation (i) -x+1, -y+1, -z+2.

Crystal data and structure refinement details

Compound	(8hqBr ₂ H) ₂ [CuBr ₄]·2H ₂ O	$(8hqBr_2H)_4[Bi_2Br_{10}]\cdot 2H_2O$	
Empirical formula	$C_{18}H_{16}Br_8N_2O_4Cu$	$C_{18}H_{14}BiBr_9N_2O_3$	
Formula weight	1027.15	1234.48	
Crystal system	Monoclinic	Triclinic	
Space group	C2/c	<i>P</i> -1	
Radiation	Mo Kα (0.71073 Å)	Mo Kα (0.71073 Å)	
Unit cell dimensions		· · · · ·	
<i>a</i> (Å)	7.78250(10)	11.5995(7)	
b (Å)	18.1498(3)	11.6721(5)	
c (Å)	19.2961(3)	12.3329(6)	
α (°)	90.00	68.963(4)	
β (°)	99.250(2)	63.154(5)	
γ (°)	90.00	76.750(4)	
Volume (Å ³)	2690.15(7)	1385.98(14)	
Z	4	2	
Calculated density (Mg/m ³)	2.536	2.958	
Absorption coefficient (mm ⁻¹)	12.723	19.358	
F(000)	1916	1116.0	
Min. and max. transmission	0.109 to 327	0.174 and 1.000	
θ Range for data collection (°)	5.76 to 63.16	6.134 to 50.052	
Index ranges	$-11 \le h \le 10$	$-13 \le h \le 13$	
	$-26 \le k \le 26$	$-13 \le k \le 13$	
	$-23 \le 1 \le 27$	$-14 \le 1 \le 14$	
Reflections collected / unique	44926 / 4192	27907 / 4877	
Rint	0.0506	0.1006	
Completeness (%)	99.9	99.8	
Data / restraints / parameters	4192 / 0 / 151	4877 / 0/ 303	
Goodness-of-fit on F^2	1.083	0.998	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0320	R1 = 0.0382	
	wR2 = 0.0692	wR2 = 0.0994	
R indices (all data)	R1 = 0.0403,	R1 = 0.0457	
	wR2 = 0.0720	wR2 = 0.1029	
Largest diff. peak and hole (e·Å-3)	1.14 and -0.72	3.06 and -2.09	

Structural data of the coordination polyhedra

i—j	dij [Å]	i—j—k	a _{ijk} [°]	i—j—k	a _{ijk} [°]
(8hqBr2H)2[CuBr4]·2H2O	1				
Cu1—Br1	2.3685(5)	Br1—Fe1—Br2	97.387(12)	Br2—Fe1—Br1 ⁱ	134.770(12)
Cu1—Br2	2.3930(5)	Br1—Fe1—Br1 ⁱ	99.26(3)	Br2—Fe1—Br2 ⁱ	99.98(3)
		Br1—Fe1—Br2 ⁱ	134.766(12)	Br1 ⁱ —Fe1—Br2 ⁱ	97.388(12)
(8hqBr ₂ H)4[Bi ₂ Br ₁₀]·2H ₂ G	C				
Bi1—Br1	2.8830(8)	Br1—Bi1—Br2	89.21(2)	Br2—Bi1—Br5 ⁱ	174.19(2)
Bi1—Br2	2.7622(8)	Br1—Bi1—Br3	91.82(3)	Br3—Bi1—Br4	91.11(3)
Bi1—Br3	2.7001(8)	Br1—Bi1—Br4	173.98(2)	Br3—Bi1—Br5	172.98(2)
Bi1—Br4	2.8505(8)	Br1—Bi1—Br5	85.80(2)	Br3—Bi1—Br5 ⁱ	90.84(2)
Bi1—Br5	3.0634(8)	Br1—Bi1—Br5 ⁱ	93.19(2)	Br4—Bi1—Br5	91.87(2)
Bi1—Br5 ⁱⁱ	3.0041(8)	Br2—Bi1—Br3	94.37(3)	Br4—Bi1—Br5 ⁱ	92.01(2)
		Br2—Bi1—Br4	85.33(3)	Br5—Bi1—Br5 ⁱ	82.70(2)
		Br2—Bi1—Br5	92.21(2)		

Symmetry transformations used to generate equivalent atoms: (i) -x, y, -z+1.5; (ii) -x+1, -y+1, -z+2.

Stacking interactions in the studied compounds. Each ring is indicated by one atom, which belongs solely to this ring. The α is a dihedral angle between planes I and J, β is an angle between Cg(I)-Cg(J) vector and normal to plane I, d_p is a perpendicular distance of Cg(I) on ring J plane.

R(I)•••R(J)	d(Cg•••Cg) [Å]	α [°]	β [°]	d _p [Å]
(8hqBr ₂ H) ₂ [CuBr ₄]·2H ₂ O				
N1•••C8 ⁱ	3.7008(18)	2.16(15)	24.7	3.3025(12)
C8•••C8 ⁱ	3.5728(18)	0.03(15)	20.6	3.3437(13)
C8•••C8 ⁱⁱ	4.3531(18)	0.03(15)	38.6	3.4001(13)
$(8hqBr_2H)_4[Bi_2Br_{10}]\cdot 2H_2O$				
C8•••C18 ⁱⁱⁱ	3.670(5)	3.9(4)	22.7	3.354(4)
C18•••C18 ^{iv}	3.739(5)	0.0(4)	26.5	3.346(4)

Symmetry transformations used to generate equivalent atoms: (i) -x+1.5, -y+0.5, -z+1; (ii) -x+0.5, -y+0.5, -z+1 (iii) x, y+1, z; (iv) -z+1, -y, -z+1.

Hydrogen bonds in the studied compounds

D-H•••A	d(D—H) [Å]	d(H•••A) [Å]	d(D•••A) [Å]	<(DHA) [°]	$G_d^a(n)$
(8hqBr ₂ H) ₂ [CuBr ₄]·2H ₂ O					
N1—H1N•••O99 ⁱ	0.88	1.94	2.760(4)	155	D(2)
O1—H1O•••O99	0.84	1.92	2.702(3)	154	D(2)
O99—H99O•••Br1 ⁱⁱ	0.87	2.93	3.520(2)	127	D(2)
O99—H99O•••Br2 ⁱⁱ	0.87	2.66	3.443(2)	150	D(2)
O99—H99P•••Br2	0.87	2.49	3.349(2)	168	D(2)
$(8hqBr_2H)_4[Bi_2Br_{10}]\cdot 2H_2O$					
N1—H1N•••O99	0.88	1.93	2.766(10)	157	D(2)
01—H1O•••Br5	0.84	2.83	3.647(7)	164	D(2)
N11—H11N•••Br4 ⁱ	0.88	2.63	3.361(7)	141	D(2)
O11—H11O•••O99	0.84	1.90	2.659(8)	149	D(2)
O99—H99O•••Br1	0.87	2.41	3.273(6)	170	D(2)
O99—H99P•••Br2	0.87	2.53	3.295(7)	148	D(2)

Symmetry transformations used to generate equivalent atoms: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1.5.