Electronic Supporting Information

Highly selective C₂H₂ and CO₂ capture based on two new Zn^{II}-MOFs and fluorescence sensing of two doped MOFs with Eu^{III}

Xin-Wei Meng,^a Tao Ding,^{*a} Bin Liu,^a Xue-Song Gong,^a Bo Liu,^a and Li-Na Zheng^{*a}

^aSchool of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China.

Zn-MOF 1				
N11-Zn(1)-O14	101.1(9)	N11-Zn(1)-O54	103.3(9)	
O14-Zn(1)-Zn(4)#1	73.7(5)	O14-Zn(1)-O54	81.8(10)	
O54-Zn(1)-Zn(4)#1	76.5(5)	O25#2-Zn(1)-Zn(4)#1	79.7(6)	
O25#2-Zn(1)-N11	100.8(9)	O25#2-Zn(1)-O14	96.6(11)	
O25#2-Zn(1)-O54	155.7(8)	O25#2-Zn(1)-O65#2	75.4(11)	
O65#2-Zn(1)-Zn(4)#1	80.1(7)	O65#2-Zn(1)-N11	105.0(10)	
O65#2-Zn(1)-O14	153.6(9)	O65#2-Zn(1)-O54	95.2(9)	
N31-Zn(3)-N23	103.3(10)	N31-Zn(3)-O35	95.2(11)	
N23-Zn(3)-O35	121.4(10)	O85#3-Zn(3)-N31	110.1(13)	
O85#3-Zn(3)-N23	116.4(12)	O85#3-Zn(3)-O35	107.8(11)	
N21-Zn(2)-N33	106.9(10)	O34#4-Zn(2)-N21	113.7(12)	
O34#4-Zn(2)-N33	110.9(11)	O84#2-Zn(2)-N21	112.0(11)	
O84#2-Zn(2)-N33	104.8(9)	O84#2-Zn(2)-O34#4	108.1(9)	
N13-Zn(4)-Zn(1)#5	175.2(7)	O24#5-Zn(4)-Zn(1)#5	82.1(6)	
N13-Zn(4)-O24#5	101.1(8)	O24#5-Zn(4)-O64#5	93.6(11)	
N13-Zn(4)-O64#5	102.8(9)	O24#5-Zn(4)-O15#6	83.0(10)	
N13-Zn(4)-O15#6	98.6(9)	O24#5-Zn(4)-O55#6	160.3(8)	
N13-Zn(4)-O55#6	98.5(9)	O64#5-Zn(4)-Zn(1)#5	80.4(6)	
O15#6-Zn(4)-Zn(1)#5	78.2(6)	O64#5-Zn(4)-O55#6	82.8(11)	
O15#6-Zn(4)-O64#5	158.5(8)	O15#6-Zn(4)-O55#6	93.3(10)	
O55#6-Zn(4)-Zn(1)#5	78.3(6)			

Table S1. Selected Bond Length (Å) and Angles (°) for Zn-MOF 1-2

Symmetrical codes: #1 x-1, y, z-1; #2 -x+1, y-1/2, -z; #3 -x+2, y-1/2, -z; #4 x, y, z+1; #5 x+1, y, z+1; #6 -x+2, y-1/2, -z+1; #7 x, y, z-1; #8 -x+1, y+1/2, -z; #9 -x+2, y+1/2, -z+1; #10 -x+2, y+1/2, -z for **Zn-MOF 1**.

Zn-MOF 2				
N(1)-Zn(1)-Zn(2)	180.0	N(2)-Zn(2)-Zn(1)	180.0	
N(1)-Zn(1)-O(3)	99.8(6)	N(2)-Zn(2)-O(1)	102.4(7)	
N(1)-Zn(1)-O(4)	100.0(6)	N(2)-Zn(2)-O(2)	98.7(7)	

99.4(7)	N(2)-Zn(2)-O(6)	101.4(7)
103.1(6)	N(2)-Zn(2)-O(8)	101.4(7)
80.2(6)	O(6)-Zn(2)-Zn(1)	78.6(7)
76.5(6)	O(8)-Zn(2)-Zn(1)	80.4(6)
80.0(6)	O(8)-Zn(2)-O(6)	77.2(8)
80.6(7)	N(3)-Zn(3)-O(10)	60.9(4)
76.9(6)	N(3)-Zn(3)-O(10)#2	61.1(4)
76.9(7)	N(4)#1-Zn(3)-O(10)#2	62.1(4)
77.6(7)	N(4)#1-Zn(3)-O(10)	63.1(4)
79.2(7)	O(10)-Zn(3)-O(10)#2	77.6(4)
81.3(7)		
	99.4(7) 103.1(6) 80.2(6) 76.5(6) 80.0(6) 80.6(7) 76.9(6) 76.9(7) 77.6(7) 79.2(7) 81.3(7)	99.4(7) N(2)-Zn(2)-O(6) 103.1(6) N(2)-Zn(2)-O(8) 80.2(6) O(6)-Zn(2)-Zn(1) 76.5(6) O(8)-Zn(2)-Zn(1) 80.0(6) O(8)-Zn(2)-O(6) 80.6(7) N(3)-Zn(3)-O(10) 76.9(6) N(3)-Zn(3)-O(10)#2 76.9(7) N(4)#1-Zn(3)-O(10)#2 77.6(7) N(4)#1-Zn(3)-O(10)#2 81.3(7) V

Symmetrical codes: #1 x, -y+1/2, z+1/2, #2 -x+1, -y+1/2, z+0, #3 x, -y+1/2, z-1/2 for **Zn-MOF 2**

Table S2. A comparison of various MOF materials used for selective adsorption for C_2H_2 and CO_2 over CH_4

MOFs materials	IAST calculated selectivity		Ref.
	C ₂ H ₂ /CH ₄	CO ₂ /CH ₄	
$\{[Cu_4(L)_2(H_2O)_4]\cdot 4DMF\cdot 8H_2O\}_n$		3.2	43
ZJNU-63	13.1	3.5	44
Sc-ABTC	14.7		45
$\{[Co_6(\mu 3-OH)4(Ina)_8](H_2O)_{10}(DMA)_2\}_n$	9.6		46
ZJU-16a	7.5		47
${[Zn_3(dbba)_2(bipy)(DMF)]\cdot 3DMF\cdot 4H_2O}_n$		4	48
$\{[Co_3(L)(OH)_2(H_2O)_4]\cdot 2DMF\cdot 2H_2O\}_n$	13	4	49
SNNU-5-In	10	3.9	50
Zn-MOF 1	15.1	6.8	This work
Zn-MOF 1	14.2	6.5	This work

Zn-MOF 114.26.5This workTable S3 Comparison the Ksv of Eu@Zn-MOF 1 and Eu@Zn-MOF 2 towards Fe³⁺ ions with other materials.

Materials	Solvent	<i>Ksv</i> (M ⁻¹)	Ref.
Bis(rhodamine)-1	CH ₃ CN	7.50×10^{3}	51
Bis(rhodamine)-2	CH ₃ CN	5.10×10^{3}	51
BUT-14	H ₂ O	2.17×10^{3}	52
BUT-15	H ₂ O	1.66×10^{4}	52
Eu ³⁺ @MIL-53-COOH (Al)	H ₂ O	5.12×10^{3}	53
Ln(cpty)3	H ₂ O	4.10×10^{3}	54
Benzimidazole-based sensor	H ₂ O	8.51×10^{4}	55
FJU-13a-Eu	H ₂ O	2.03×10^{4}	56
Eu ₂ (MFDA) ₂ (HCOO) ₂ (H ₂ O) ₆	DMF	1.58×10^{3}	57

Tb-DSOA	H ₂ O	3.54×10^{3}	58
Eu(atpt)1.5(phen)(H2O)	CH ₃ CH ₂ OH	7.60×10^{3}	59
Eu@Zn-MOF 1	H ₂ O	1.53×10^{4}	This work
Eu@Zn-MOF 2	H ₂ O	1.43×10^{4}	This work

Figure S1. The L⁴⁻ ligand viewed as two 3-c nodes.

Figure S2. Single-crystal structure of 1. (a) Coordination environments of Zn ions in Zn-MOF 1. The hydrogen atoms are omitted for clarity. #1 x-1, y, z-1; #2 -x+1, y-1/2, -z; #3 -x+2, y-1/2, -z; #4 x, y, z+1; #5 x+1, y, z+1; (b) Coordination environments of Zn ions in Zn-MOF 2. The hydrogen atoms are omitted for clarity.#1 x, -y+1/2, z+1/2 #2 -x+1, -y+1/2, z+0 #3 x, -y+1/2, z-1/2.

Figure S3. 2D double-layer of Zn-MOF 1 (a), Zn-MOF 2 (b).

Figure S4. PXRD patterns. Simulated, as-synthesized, Gas-adsorption and Solvent exchanged of Zn-MOF 1 (a) and Zn-MOF 2 (d). After being soaked in acidic and basic solutions for different time periods of Zn-MOF 1 (b) and Zn-MOF 2 (e). Before and after immersion in Fe³⁺of Eu@Zn-MOF 1 (c) and

Figure S5. TGA for Zn-MOF 1 (a) and Zn-MOF 2 (b): As-synthesized, exchanged and Gas-adsorption samples.

Figure S6. IR for (a) Zn-MOF 1, (b) Eu@Zn-MOF 1, (c) Zn-MOF 2, (d) Eu@Zn-MOF 2: ligand and as-synthesized samples.

IAST adsorption selectivity calculation

The experimental isotherm data for pure CO_2 , CH_4 and C_2H_2 (measured at 298 K) were fitted using a Langmuir-Freundlich (L-F) model.

$$q = \frac{\mathbf{a} \times \mathbf{b} \times \mathbf{p}^{\mathsf{c}}}{1 + \mathbf{b} \times \mathbf{p}^{\mathsf{c}}}$$

Where q and p are adsorbed amounts and pressures of component i, respectively. The adsorption selectivities for binary mixtures of CO_2/CH_4 at 273 and 298 K and C_2O_2/CH_4 at 298K, defined by Where qi is the amount of i adsorbed and pi is the partial pressure of i in the mixture.

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

Figure S7. (a) The consistency plot, (c) BET surface area plot, and (e) Langmuir surface area plot for Zn-MOF 1, (b) The consistency plot, (d) BET surface area plot, and (f) Langmuir surface area plot for Zn-MOF 2

MOF2.

$$\begin{split} S_{BET} &= 1/(0.042 \times 10^{-6} + 359.82) \times 10^{5} / 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} \\ &= 1209.83 \text{ m}^2 \text{ g}^{-1} \\ S_{Langmuir} &= (1/0.00357) / 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} \\ &= 1219.38 \text{ m}^2 \text{ g}^{-1} \end{split}$$

BET constant C=1+359.81/0.042×10⁵×10⁻⁶=857.69

$$(P/P_0)_{\rm nm} = \frac{1}{\sqrt{C}+1} = 0.033018$$

 $S_{BET} = 1/(0.019 \times 10^{-6} + 359.35) \times 10^{5}/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1211.41 \text{ m}^2 \text{ g}^{-1}$

 $S_{Langmuir} = (1/0.0031)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1404.27 \text{ m}^2 \text{ g}^{-1}$

BET constant C=1+359.35/0.042 \times 10⁵ \times 10⁻⁶=856.60

Figure S8. (a) C₂H₂ adsorption isotherms of Zn-MOF 1 at 298 K with fitting by L-F model: a =8.84199, b =0.01393, c =0.01892, Chi² = 5.41538E-6, R² = 1.00000; (b) CO₂ adsorption isotherms of Zn-MOF 1 at 298 K with fitting by L-F model: a =23.4444, b =0.00127, c =0.00587, Chi² = 2.36173E-6, R² = 1.00000; (c) CH₄ adsorption isotherms of Zn-MOF 1 at 298 K with fitting by L-F model: a = 13.12646, b =6.55114E-4, c =0.04004, Chi² = 2.72873E-7, R² =0.9999; (d) C₂H₂ adsorption isotherms of Zn-MOF

2 at 298 K with fitting by L-F model: a =8.4592, b =0.01342, c =0.0337, Chi² = 3.49595E-6, R² = 1.00000; (e) CO₂ adsorption isotherms of **Zn-MOF 2** at 298 K with fitting by L-F model: a =21.34253, b =0.00116, c =-0.00884, Chi² =1.6233E-6, R² = 1.00000; (f) CH₄ adsorption isotherms of **Zn-MOF 2** at 298 K with fitting by L-F model: a = 12.09448, b =6.88961E-4, c =0.03614, Chi² = 1.10292E-7, R² =1.0000;

Calculation of sorption heat for C₂H₂ and CO₂ uptakes using Virial 2 model

The above equation was applied to fit the combined C₂H₂ and CO₂ and isotherm data for desolvated 1 at

273 and 298 K, where P is the pressure, N is the adsorbed amount, T is the temperature, ai and bi are virial coefficients, and m and n are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

$$lnp = lnN + 1/T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

Figure S9. (a) Virial analysis of the C₂H₂ adsorption data at 298 K and 273 K for **Zn-MOF 1**. Fitting results:

A0 = -2862.81452, A1 = 286.59277, A2 = -55.76345, A3 =6.96046, A4 = -0.15284, Chi^2 = 5.35045E-6, R^2 = 1, B0=18.5486, B1 = -0.74012, B2 = 0.14685, B3 =-0.01399; (b) Virial analysis of the CO2 adsorption data at 298 K and 273 K for **Zn-MOF 1**. Fitting results: A0= -2170.06756, A1= -254.82424, A2 = 154.06248, A3 =-30.59728, A4 = -0.25843, Chi^2 = 2.30489E-5, R^2 = 0.99998 B0=17.66738, B1 = 1.02847, B2 = -0.60576, B3 =0.12369; (c) Virial analysis of the C₂H₂ adsorption data at 298 K and 273 K for **Zn-MOF 2**. Fitting results: A0= -3647.84636, A1 = 117.62901, A2 = -37.56691, A3 =4.22109, A4 = -0.09628, Chi² = 5.97073E-6, R² = 1; B0= 21.32644, B1 = -0.16174, B2 = 0.09364, B3 = -0.00673,(d) Virial analysis of the CO2 adsorption data at 298 K and 273 K for Zn-MOF 2. Fitting results: A0= 3023.00731, A1= -83.10174, A2 = -7.2069, A3 = 12.87007, A4 = -0.34707, Chi² = 1.54628E-5, R² = 0.99999 B0= -0.51505, B1 = 0.4125, B2 = -0.03495, B3 = -0.02818

Figure S10. Comparison of fluorescence properties of Eu@Zn-MOF 1 (a) and Eu@Zn-MOF 2 (b) before and after recovery.

Figure S11. UV-vis adsorption spectra of $M(NO_3)_x$ aqueous solutions and the excitation spectrum of

Eu@Zn-MOF 1 (a) and Eu@Zn-MOF 2 (b).

Figure S12. Comparison of the XPS spectra of Eu@Zn-MOF 1 before (a) and after (b) treatment with $\sum_{i=1}^{3+1} \frac{1}{2} \frac{1}{$

Figure S13. Comparison of the XPS spectra of Eu@Zn-MOF 2 before (a) and after (b) treatment with Fe³⁺ ions: overall spectra (left); N1s (middle); O1s (right)