Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronic Supplementary Information (ESI)

Supporting Information

A Zirconium-based Microporous Metal-Organic Framework for Molecular Sieving CO₂ Separation

Yanshu Shi^a, Yi Xie^{*,a}, Thamraa Alshahrani,^b and Banglin Chen^{*,a}

^a Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-

0698, United States

^b Department of Physics, College of Science, Princess Nourah bint Abdulrahman University,

Riyadh, 11671, Saudi Arabia

Materials and Methods

All chemical reagents, solvents and gases were commercially available and directly used without further purification unless further noticed.

Powder X-ray diffraction analysis: Powder X-ray diffraction patterns were collected by a Panalytical X'Pert powder diffractometer equipped with a Cu sealed tube ($\lambda = 1.54184$ Å) at 40 kV and 40 mA over the 2θ range of 5–30°.

Scanning Electron microscopy (SEM) images were obtained using Hitachi S5500 device at an accelerating voltage of 30 kV.

Thermogravimetric analyses (TGA) were performed on a TGA/DCS system (Mettler-Toledo, Columbus, OH) with STARe software. Samples were heated from 25 to 800 °C at a rate of 5 °C/min under N_2 with flow rate 20 mL/min.

Synthesis of Zr-FA

 $ZrCl_4$ (58 mg, 0.25 mmol and 2,3-Dimethylmaleic anhydride (40 mg, 0.25 mmol) was added into a 21 mL glass vial, which was charged with. 4 mL N,N'-dimethylformamide (4 mL; > 99.8%) and formic acid (1.5 mL) were introduced. Single crystals were formed after following heating at 100 °C for 72 h. While powdered **Zr-FA** was synthesized through directly adding $ZrCl_4$ (58 mg, 0.25 mmol), DMF (4 mL) and formic acid (2.5 mL) were introduced. After sonication for 10 min, the obtained clear solution was heated at 100 °C for 24 h to obtain a microcrystalline powder of **Zr-FA** samples.

Gas Sorption Measurements

The gas sorption isotherms were collected on an automatic volumetric adsorption apparatus (Micromeritics ASAP 2020 surface area analyzer). Prior to the gas sorption analyses, the samples were washed with water several times and activated under dynamic vacuum overnight

at 60 °C (333K) for 24h. The sorption measurements of **Zr-FA** were kept at 273, and 298 K by using ice–water bath, and water bath in an air-conditioned laboratory (25 °C), respectively.

Isosteric heat of adsorption: The binding energy of CO_2 is reflected in the isosteric heat of adsorption, Q_{st} . The virial equation was employed to calculate the enthalpies of CO_2 adsorption:^[1]

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

where P is pressure (mmHg), N is the adsorbed quantity (mmol g^{-1}), T is the temperature (K), a_i and b_i are virial coefficients, R is the universal gas constant (8.314 J K⁻¹ mol⁻¹), and m and n determine the number of coefficients required to adequately describe the isotherm. Isotherms of **Zr-FA** for CO₂ reported here are estimated using pure-component collected at 273 and 298 K.

Calculation Details:

All the calculations were performed in the Material Studio 2019 package (BIOVIA, Dassault Systèmes, Materials Studio 2019, Dassault Systems, San Diego, 2018.). The single crystal structure of **Zr-FA** was taken as initial geometry for further computational calculations and considered as rigid in the simulations. The partial charge of framework was taken from Mulliken charge obtained from single point energy calculations using first-principle density functional theory (DFT) in the CASTEP code, using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional and on-the-fly generated ultrasoft

pseudopotentials. A cutoff energy of 450 eV and a $1 \times 1 \times 1$ *k*-point mesh were found to be enough for the total energy to converge within 1×10^{-5} eV atom ⁻¹. The simulated annealing (SA) calculations were performed to find the most energetically favorable binding site for CO₂ molecule, using universal forcefield. The interaction energy between gas and framework were computed through the Coulomb and Lennard-Jones 6-12 (LJ) potentials. The equilibration steps and the production steps were set as 1×10^6 and 5×10^6 , respectively, to ensure the equilibration. The cut-off radius was chosen as 15.5 Å for the LJ potential and the long-range electrostatic interactions were handled by the Ewald summation method, with a Buffer width of 0.5 Å and accuracy of 1×10^{-5} kcal mol⁻¹.

Ideal Absorbed Solution Theory (IAST) Calculation

The adsorption selectivity for CO₂/CH₄ or CO₂/N₂ separation is defined by

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the molar loadings in the adsorbed phase in equilibrium with the bulk gas phase with partial pressures p_1 and p_2 .

Breakthrough separation experiments: The breakthrough experiments were conducted in a dynamic gas breakthrough set-up. A stainless-steel column with inner dimensions of 4 mm and a length of 81 mm was used for sample packing. The activated sample (0.982 g Zr-FA) was then packed into the column. The flow and pressure of binary gas (CO_2/N_2 at 15/85, v/v, CO_2/CH_4 at 50/50, v/v) were controlled by using a pressure control valve and a mass flow controller. The outlet effluent from the column was continuously monitored by gas chromatography (GC-2014, Shimadzu) with a thermal conductivity detector. The column packed with activated sample was first purged with helium gas flow for 1 h at room temperature. The gas mixtures flow rate is 2 mL/min at 1 bar for CO_2/CH_4 at 50/50 (6 mL/min at 1 bar

 CO_2/N_2 at 15/85, v/v) during the breakthrough process. After the breakthrough experiment, the sample was regenerated with helium gas flow (80 mL/min) for about 50 min at 298 K.

Compounds	Carbon dioxide (CO ₂)	Methane (CH ₄)	Nitrogen (N ₂)
Polarizability (cm ³)	29.11x10 ²⁵	25.93x10 ²⁵	17.40×10^{25}
Kinetic Diameter (Å)	3.30	3.76	3.64
Boiling point (K)	194.7	111.7	77.35

Table S1. Physical properties of CO_2 , CH_4 and N_2 .^[2]

Fig. S1. CO₂ sorption isotherms for Zr-FA at 298 K.

Fig. S2. CO₂ sorption isotherms for Zr-FA at 273 K.

Fig. S3. The graphs of the single-site Langmuir-Freundlich equation fitting for

CO₂ isotherms of **Zr-FA** at 298 K.

Fig. S4. The graphs of the single-site Langmuir-Freundlich equation fitting for CH_4 isotherm of Zr-FA at 298 K.

Fig. S5. The graphs of the single-site Langmuir-Freundlich equation fitting for N_2 isotherm of Zr-FA at 298 K.

Fig. S6. a) IAST selectivity of Zr-FA for a) an equimolar CO_2/CH_4 mixture at 298 K; b) CO_2/N_2 (15:85) mixture at 298 K.

Fig. S8. Virial fitting for CO₂ isotherms of Zr-FA at 273K and 298K.

Fig. S9. PXRD patterns for as-synthesized Zr-FA.

Fig. S10. SEM images of Zr-FA.

Fig. S11. TGA curve of as-synthesized Zr-FA.

References

[1] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304–1315.
[2] C. E. Webster, R. S. Drago, M. C. Zerner, J. Am. Chem. Soc. 1998, 120, 5509-5516.