Supporting Information

Luminescent properties of mixed-ligand MOFs containing fluorene scaffolds functionalized with isonicotinoyl arms

Andrea Delledonne, a Martina Orlandini, a Francesca Terenziani, a* Paolo Pio Mazzeo, a Alessia Bacchi, a Lucia Carlucci, b Angiolina Comotti, c Jacopo Peregoc and Paolo Pelagattia, d*

a Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy

^b Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy

^c Department of Materials Science, University of Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy

^d Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy

paolo.pelagatti@unipr.it

francesca.terenziani@unipr.it

Content

¹ H NMR analysis (Figures S1-S3)	pages 2-3
TGA analysis (Figures S4-S6)	pages 4-5
Crystallography (Figures S7-S9)	pages 6-7
Topological analysis (Figure S10)	page 8
PUM310 activation (Figure S11)	page 9
Volumetric adsorption properties (Figures S12-S13)	page 9-10
Luminescence and UV-vis characterization (Figures S14-S15)	pages 11-12

¹H NMR analysis

Figure S1 ¹H NMR spectrum of **PUM310** crystals after digestion in TFA-d. Spectrum recorded at 25°C after dilution with DMSO-d.

Figure S2 ¹H NMR spectrum of **PUM310CO** crystals after digestion in TFA-d. Spectrum recorded at 25°C after dilution with DMSO-d.

Figure S3 ¹H NMR spectrum of **PUM310Me**₂ crystals after digestion in TFA-d. Spectrum recorded at 25°C after dilution with DMSO-d.

TGA analyses

Figure S4 TGA trace of PUM310 (red), PUM310-a (blue) and PUM310-a' (light blue).

Figure S5 TGA trace of PUM310CO.

Figure S6 TGA trace of PUM310Me₂.

Crystallography

Figure S7 Ortep drawing of the ASU of **PUM310** All non-hydrogen atoms are shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in capped-stick style for the sake of clarity. Colour code: red=O, blue=N, white=C.

Figure S8 Ortep drawing of the ASU of **PUM310CO**. All non-hydrogen atoms are shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in capped-stick style for the sake of clarity. Colour code: red=O, blue=N, white=C. Disordered ligand is reported for completeness.

Figure S9 Ortep drawing of the ASU of **PUM310Me**₂. All non-hydrogen atoms are shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in capped-stick style for the sake of clarity. Colour code: red=O, blue=N, white=C.

Topological analysis

Figure S10 Molecular views of two catenated cubic cages of the thick layers in (a) **PUM310**, (b) **PUM310CO** and (c) **PUM310Me**₂ showing the arrangement of the ligands in the three structures.

MOF activation-XRPD analysis

Figure S11 Comparison between the calculated XRPD trace of PUM310 (black) and PUM310-a' (blue).

Volumetric adsorption properties

PUM310, PUM310CO and **PUM310Me₂** were subjected to N_2 and CO_2 adsorption isotherm analyses.

 N_2 adsorption isotherms at 77 K and CO_2 adsorption isotherms at 195 K were collected up to 1 bar using Micromeritics analyser ASAP2020 HD. **PUM310Me**₂ was previously activated at 70°C under dynamic vacuum for 5 hours, then overnight under dynamic vacuum before the collection of N_2 and CO_2 isotherms. **PUM310** underwent a thermal treatment at 70°C under dynamic vacuum for 2h, then at 60°C for 30 min and outgassing overnight under dynamic vacuum before gas adsorption measurements.

Figure S12 N₂ adsorption isotherms, collected at 77 K, of **PUM310** (red diamonds) and **PUM310Me2** (blue circles).

Figure S13 CO₂ adsorption isotherms, collected at 195 K, of PUM310 (red diamonds) and PUM310Me₂ (blue circles).

Sample	CO_2 adsorption at 0.98 p/p°
	(mmol/g)
PUM310	3.09
PUM310Me ₂	0.76

For **PUM310CO** no significative results were obtained.

Luminescence and UV-vis characterization

Figure S14 Top: solid state absorption, fluorescence emission and excitation spectra of H_2 ndca. Bottom: absorption and emission spectra of H_2 ndca in DMF. The corresponding excitation and emission wavelengths are reported in the legend.

The emission spectrum recorded on a thin film of ground powders of H_2 ndca is characterized by a broad emission band peaked at 450 nm, which is absent in the spectrum of H_2 ndca in solution, and could be due to the formation of excimer species. In the solid-state emission spectrum, a reminder of the emission band of H_2 ndca in solution is observed, recognizable thanks to the vibronic peaks (350-400 nm spectral region).

Figure S15 Comparison between solid state absorption of **1**, **2**, **3** (from top to bottom) and emission of H_2 ndca when incorporated in the corresponding MOFs structure.