4-[4-(4-methoxyphenyl)-1,3-butadienyl]-1methylpyridinium 4-chlorobenzene sulphonate (MBMPCBS) – An efficient nonlinear optical crystal with superior thermal stability



Fig. S1. MBMPCBS Crystals grown in (a) millipore water (b) methanol (c) methanolacetonitrile solvent systems.



Fig. S2. Angle  $\theta$  ( $\mu$ ,  $\beta_{max}$ ) between the direction of the dipole moment  $\mu$  and the main direction of the first hyperpolarizability  $\beta_{max}$  of MBMPCBS.



Fig. S3. Angle between the molecular hyperpolarizability  $\beta_{max}$  and the polar *c*- *axis* for MBMPCBS.



Fig. S4. Hydrogen bonding in MBMPCBS (a) between cations and anions and (b) between anions.



Fig. S5. <sup>1</sup>H NMR of MBMPCBS.

MBMPCBS, <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD,  $\delta$ ): 8.616 (2H, d, J=7.0Hz, C<sub>5</sub>H<sub>4</sub>N<sup>+</sup>), 8.011(2H, d, J=7.0 Hz, C<sub>5</sub>H<sub>4</sub>N<sup>+</sup>), 7.821 (2H, d, J = 13.5 Hz, C<sub>6</sub>H<sub>4</sub>Cl-SO<sub>3</sub><sup>-</sup>), 7.775 (2H, d, J = 22.5 Hz, C<sub>6</sub>H<sub>4</sub>Cl-SO3), 7.571 (2H, d, J = 14.5Hz, C<sub>6</sub>H<sub>4</sub>-OCH<sub>3</sub>), 7.458 (2H, d, J = 13.5 Hz C<sub>6</sub>H<sub>4</sub>-OCH<sub>3</sub>), 7.102 (1H, d, J = 7Hz, C<sub>6</sub>H<sub>4</sub>-OCH<sub>3</sub>=C<sub>5</sub>H<sub>4</sub> N<sup>+</sup>), 6.840 (1H, d, J = 15.5 Hz, C<sub>6</sub>H<sub>4</sub>-OCH<sub>3</sub>=C<sub>5</sub>H<sub>4</sub> N<sup>+</sup>), 4.277 (3H, s, C<sub>6</sub>H<sub>4</sub>-OCH<sub>3</sub>), 3.855 (3H,s, C<sub>5</sub>H<sub>4</sub>N<sup>+</sup>-CH<sub>3</sub>).



Fig. S6. <sup>1</sup>H NMR of MBMPI.

MBMPI, <sup>1</sup>HNMR (500 MHz, CD<sub>3</sub>OD, δ) 3.855 (3H, s), 4.287 (3H, s), 6.852 (1H, d, J = 15 Hz), 6.981, (2H, d, J = 5 Hz), 7.0–7.1 (2H, m), 7.551 (2H, d, J = 3 Hz), 7.776 (1H, dm, J = 5.5 Hz), 8.031 (2H, d, J = 7 Hz), and 8.638 (2H, d, J = 7 Hz).



Fig. S7. Energy convergence plot depicting a global minimum.

Table S1. NLO results from DFT calculations.

| B3LYP/6-311+G             | Average pola    | arizability           | Polarizabilit   | y anisotropy          | 1st hyperpol    | arizability           | 2nd hyperpola | rizability            |
|---------------------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|-----------------------|---------------|-----------------------|
| (d,p)                     | AU              | 10 <sup>-24</sup> Esu | AU              | 10 <sup>-24</sup> Esu | AU              | 10 <sup>-30</sup> Esu | AU            | 10 <sup>-34</sup> Esu |
| Urea                      | 28.28878        | 4.192                 | 17.845397       | 2.645                 | 90.456874       | 0.7815                | 8017.4222     | 0.04038               |
| MBSC                      | 323.14854       | 47.89                 | 221.95955       | 32.89                 | 8603.2476       | 74.32                 | 294995.66     | 1.486                 |
| DAST                      | 367.37173<br>26 | 54.4445               | 180.97944<br>24 | 26.8212               | 14128.033<br>62 | 122.052               | 374932.556    | 1.88842               |
| MBMPCBS<br>(Present work) | 402.10166       | 59.59                 | 234.68301       | 34.78                 | 16880.376       | 145.8                 | 1015960.7     | 5.117                 |

| Identification code                      | Shelx                                                 |                        |  |
|------------------------------------------|-------------------------------------------------------|------------------------|--|
| Empirical formula                        | C <sub>23</sub> H <sub>22</sub> Cl N O <sub>4</sub> S |                        |  |
| Formula weight                           | 443.92                                                |                        |  |
| Temperature                              | 200(2) K                                              |                        |  |
| Wavelength                               | 0.71073 Å                                             |                        |  |
| Crystal system                           | Monoclinic                                            |                        |  |
| Space group                              | Рс                                                    |                        |  |
| Unit cell dimensions                     | a = 18.8216(2) Å                                      | α= 90°                 |  |
|                                          | b = 9.2134(2) Å                                       | β= 99.552°             |  |
|                                          | c = 12.6540(4)  Å                                     | γ= 90°                 |  |
| Volume                                   | 2163.92(10) Å <sup>3</sup>                            |                        |  |
| Ζ                                        | 4                                                     |                        |  |
| Density (calculated)                     | 1.363 Mg/m <sup>3</sup>                               |                        |  |
| Absorption coefficient                   | 0.303 mm <sup>-1</sup>                                |                        |  |
| F(000)                                   | 928                                                   |                        |  |
| Crystal size                             | 0.300 x 0.250 x 0.25                                  | 50 mm <sup>3</sup>     |  |
| Theta range for data collection          | 3.116 to 24.997°.                                     |                        |  |
| Index ranges                             | -22<=h<=22, -10<=                                     | k<=10, -15<=1<=14      |  |
| Reflections collected                    | 36832                                                 |                        |  |
| Independent reflections                  | 36832 [R(int) = ?]                                    |                        |  |
| Completeness to theta = $24.997^{\circ}$ | 99.2 %                                                |                        |  |
| Absorption correction                    | Semi-empirical from                                   | n equivalents          |  |
| Max. and min. transmission               | 0.7457 and 0.6354                                     |                        |  |
| Refinement method                        | Full-matrix least-squ                                 | ares on F <sup>2</sup> |  |
| Data / restraints / parameters           | 36832 / 176 / 602                                     |                        |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.043                                                 |                        |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0583, wR2 =                                    | 0.1462                 |  |
| R indices (all data)                     | R1 = 0.0726, wR2 =                                    | 0.1582                 |  |
| Absolute structure parameter             | -0.07(3)                                              |                        |  |
| Extinction coefficient                   | n/a                                                   |                        |  |
| Largest diff. peak and hole              | 0.404 and -0.388 e.Å <sup>-3</sup>                    |                        |  |

 Table S2. Crystallography data of MBMPCBS

|       | X               | Y        | Z         | U(eq)  |  |
|-------|-----------------|----------|-----------|--------|--|
|       | <b>52</b> 4 (2) | 2404(10) |           | 12 (2) |  |
| C(1)  | /34(5)          | 3484(10) | 4600(7)   | 42(2)  |  |
| C(2)  | 1156(6)         | 4685(10) | 4473(8)   | 42(2)  |  |
| C(3)  | 1616(6)         | 4665(11) | 3727(9)   | 46(2)  |  |
| C(4)  | 1665(4)         | 3461(9)  | 3078(6)   | 38(2)  |  |
| C(5)  | 1234(5)         | 2260(10) | 3220(7)   | 44(2)  |  |
| C(6)  | 780(5)          | 2283(10) | 3939(8)   | 52(2)  |  |
| C(7)  | 2134(5)         | 3398(10) | 2265(7)   | 45(2)  |  |
| C(8)  | 2477(5)         | 4495(11) | 1871(7)   | 45(2)  |  |
| C(9)  | 2911(5)         | 4295(12) | 1036(7)   | 48(2)  |  |
| C(10) | 3211(6)         | 5380(13) | 567(9)    | 50(3)  |  |
| C(11) | 3632(7)         | 5231(12) | -300(9)   | 48(3)  |  |
| C(12) | 3852(7)         | 6444(16) | -812(9)   | 58(3)  |  |
| C(13) | 4235(7)         | 6308(18) | -1618(9)  | 69(4)  |  |
| N(1)  | 4408(6)         | 5005(12) | -1979(9)  | 63(4)  |  |
| C(15) | 4217(6)         | 3773(15) | -1507(9)  | 59(3)  |  |
| C(16) | 3831(7)         | 3890(15) | -672(9)   | 55(3)  |  |
| C(17) | 262(7)          | 4545(13) | 6069(10)  | 65(3)  |  |
| C(18) | 7006(4)         | 5636(8)  | -4353(6)  | 31(2)  |  |
| C(19) | 7031(5)         | 5607(9)  | -3254(7)  | 40(2)  |  |
| C(20) | 7660(5)         | 5990(10) | -2558(8)  | 49(2)  |  |
| C(21) | 8262(5)         | 6351(10) | -2998(9)  | 50(2)  |  |
| C(22) | 8255(5)         | 6398(10) | -4090(9)  | 55(3)  |  |
| C(23) | 7619(5)         | 6048(10) | -4770(7)  | 43(2)  |  |
| C(14) | 4835(9)         | 4911(15) | -2854(12) | 81(5)  |  |
| O(1)  | 273(4)          | 3378(7)  | 5322(5)   | 58(2)  |  |
| Cl(1) | 9075(2)         | 6711(3)  | -2145(3)  | 81(1)  |  |
| S(1)  | 6194(1)         | 5192(2)  | -5236(2)  | 31(1)  |  |

**Table S3.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for MBMPCBS. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| O(2)  | 6343(12) | 3910(30)  | -5833(19) | 59(6) |
|-------|----------|-----------|-----------|-------|
| O(3)  | 5653(10) | 4930(30)  | -4584(13) | 48(7) |
| O(4)  | 6015(12) | 6430(20)  | -5950(20) | 66(8) |
| O(2') | 6446(13) | 4690(40)  | -6158(19) | 59(8) |
| O(3') | 5857(15) | 4090(30)  | -4675(19) | 59(8) |
| O(4') | 5807(11) | 6530(20)  | -5320(30) | 53(8) |
| C(24) | 2372(5)  | 8956(10)  | 1418(7)   | 43(2) |
| C(25) | 1738(5)  | 8615(10)  | 1789(9)   | 52(2) |
| C(26) | 1720(5)  | 8655(10)  | 2860(9)   | 49(2) |
| C(27) | 2323(5)  | 9020(10)  | 3602(8)   | 50(2) |
| C(28) | 2962(5)  | 9399(10)  | 3232(7)   | 40(2) |
| C(29) | 2985(4)  | 9369(8)   | 2151(6)   | 31(2) |
| N(2)  | 5582(7)  | 9970(13)  | 5843(9)   | 73(4) |
| C(31) | 5777(7)  | 8781(17)  | 6412(10)  | 69(4) |
| C(32) | 6158(7)  | 8853(16)  | 7432(9)   | 62(4) |
| C(33) | 6366(7)  | 10196(12) | 7910(10)  | 53(3) |
| C(34) | 6147(8)  | 11413(17) | 7300(10)  | 65(4) |
| C(35) | 5764(7)  | 11273(19) | 6290(11)  | 75(5) |
| C(36) | 6784(6)  | 10340(13) | 8976(9)   | 50(3) |
| C(37) | 7081(5)  | 9285(11)  | 9609(7)   | 46(2) |
| C(38) | 7520(5)  | 9470(11)  | 10641(8)  | 46(2) |
| C(39) | 7859(5)  | 8380(10)  | 11214(7)  | 46(2) |
| C(40) | 8331(5)  | 8446(9)   | 12258(7)  | 38(2) |
| C(41) | 8384(6)  | 9667(10)  | 12917(8)  | 43(2) |
| C(42) | 8838(6)  | 9705(10)  | 13901(8)  | 44(2) |
| C(43) | 9258(5)  | 8489(10)  | 14232(7)  | 42(2) |
| C(44) | 9223(5)  | 7285(11)  | 13564(8)  | 52(2) |
| C(45) | 8767(5)  | 7262(10)  | 12612(7)  | 41(2) |
| C(46) | 9733(8)  | 9577(13)  | 15935(10) | 66(3) |
| C(30) | 5161(9)  | 9885(16)  | 4752(12)  | 92(6) |
| O(5)  | 9724(4)  | 8384(8)   | 15187(5)  | 57(2) |
| Cl(2) | 915(2)   | 8290(3)   | 3320(3)   | 81(1) |
| S(2)  | 3797(1)  | 9814(2)   | 1667(2)   | 31(1) |
| O(6)  | 3970(13) | 8580(20)  | 1050(30)  | 67(8) |
| O(7)  | 3646(13) | 11080(30) | 980(30)   | 67(7) |
| O(8)  | 4322(11) | 10090(40) | 2597(14)  | 62(8) |

| O(6') | 4168(16) | 8440(30)  | 1700(40) | 50(10) |
|-------|----------|-----------|----------|--------|
| O(7') | 3550(20) | 10330(80) | 610(30)  | 71(13) |
| O(8') | 4160(20) | 10850(50) | 2400(40) | 65(11) |

**Table S4.** Bond lengths [Å] and angles  $[\circ]$  for MBMPCBS.

| C(1)-O(1)   | 1.364(10) |
|-------------|-----------|
| C(1)-C(2)   | 1.387(12) |
| C(1)-C(6)   | 1.399(12) |
| C(2)-C(3)   | 1.383(15) |
| C(2)-H(2)   | 0.9500    |
| C(3)-C(4)   | 1.393(13) |
| C(3)-H(3)   | 0.9500    |
| C(4)-C(5)   | 1.402(12) |
| C(4)-C(7)   | 1.464(12) |
| C(5)-C(6)   | 1.348(13) |
| C(5)-H(5)   | 0.9500    |
| C(6)-H(6)   | 0.9500    |
| C(7)-C(8)   | 1.339(13) |
| C(7)-H(7)   | 0.9500    |
| C(8)-C(9)   | 1.450(13) |
| C(8)-H(8)   | 0.9500    |
| C(9)-C(10)  | 1.335(14) |
| C(9)-H(9)   | 0.9500    |
| C(10)-C(11) | 1.464(16) |
| C(10)-H(10) | 0.9500    |
| C(11)-C(12) | 1.389(16) |
| C(11)-C(16) | 1.395(17) |
| C(12)-C(13) | 1.349(18) |
| C(12)-H(12) | 0.9500    |
| C(13)-N(1)  | 1.343(17) |
| C(13)-H(13) | 0.9500    |
| N(1)-C(15)  | 1.358(15) |
| N(1)-C(14)  | 1.476(19) |
|             |           |

| C(15)-C(16)  | 1.382(16) |
|--------------|-----------|
| C(15)-H(15)  | 0.9500    |
| C(16)-H(16)  | 0.9500    |
| C(17)-O(1)   | 1.434(12) |
| C(17)-H(17A) | 0.9800    |
| C(17)-H(17B) | 0.9800    |
| C(17)-H(17C) | 0.9800    |
| C(18)-C(19)  | 1.383(11) |
| C(18)-C(23)  | 1.398(11) |
| C(18)-S(1)   | 1.785(8)  |
| C(19)-C(20)  | 1.399(12) |
| C(19)-H(19)  | 0.9500    |
| C(20)-C(21)  | 1.385(13) |
| C(20)-H(20)  | 0.9500    |
| C(21)-C(22)  | 1.380(14) |
| C(21)-Cl(1)  | 1.750(9)  |
| C(22)-C(23)  | 1.392(13) |
| C(22)-H(22)  | 0.9500    |
| C(23)-H(23)  | 0.9500    |
| C(14)-H(1A)  | 0.9800    |
| C(14)-H(1B)  | 0.9800    |
| C(14)-H(1C)  | 0.9800    |
| S(1)-O(2')   | 1.408(18) |
| S(1)-O(4')   | 1.425(16) |
| S(1)-O(3)    | 1.433(15) |
| S(1)-O(3')   | 1.443(16) |
| S(1)-O(2)    | 1.453(16) |
| S(1)-O(4)    | 1.461(14) |
| C(24)-C(25)  | 1.389(12) |
| C(24)-C(29)  | 1.407(11) |
| C(24)-H(24)  | 0.9500    |
| C(25)-C(26)  | 1.362(14) |
| C(25)-H(25)  | 0.9500    |
| C(26)-C(27)  | 1.389(14) |
| C(26)-Cl(2)  | 1.743(9)  |
| C(27)-C(28)  | 1.405(12) |

| C(27)-H(27) | 0.9500    |
|-------------|-----------|
| C(28)-C(29) | 1.376(11) |
| C(28)-H(28) | 0.9500    |
| C(29)-S(2)  | 1.786(8)  |
| N(2)-C(31)  | 1.328(16) |
| N(2)-C(35)  | 1.346(19) |
| N(2)-C(30)  | 1.476(19) |
| C(31)-C(32) | 1.371(17) |
| C(31)-H(31) | 0.9500    |
| C(32)-C(33) | 1.404(18) |
| C(32)-H(32) | 0.9500    |
| C(33)-C(34) | 1.384(16) |
| C(33)-C(36) | 1.451(17) |
| C(34)-C(35) | 1.37(2)   |
| C(34)-H(34) | 0.9500    |
| C(35)-H(35) | 0.9500    |
| C(36)-C(37) | 1.323(14) |
| C(36)-H(36) | 0.9500    |
| C(37)-C(38) | 1.434(13) |
| C(37)-H(37) | 0.9500    |
| C(38)-C(39) | 1.337(13) |
| C(38)-H(38) | 0.9500    |
| C(39)-C(40) | 1.466(12) |
| C(39)-H(39) | 0.9500    |
| C(40)-C(45) | 1.393(12) |
| C(40)-C(41) | 1.394(12) |
| C(41)-C(42) | 1.389(15) |
| C(41)-H(41) | 0.9500    |
| C(42)-C(43) | 1.395(13) |
| C(42)-H(42) | 0.9500    |
| C(43)-O(5)  | 1.373(11) |
| C(43)-C(44) | 1.390(12) |
| C(44)-C(45) | 1.359(13) |
| C(44)-H(44) | 0.9500    |
| C(45)-H(45) | 0.9500    |
| C(46)-O(5)  | 1.449(12) |

| C(46)-H(46A)   | 0.9800    |
|----------------|-----------|
| C(46)-H(46B)   | 0.9800    |
| C(46)-H(46C)   | 0.9800    |
| C(30)-H(2A)    | 0.9800    |
| C(30)-H(2B)    | 0.9800    |
| C(30)-H(2C)    | 0.9800    |
| S(2)-O(8')     | 1.42(3)   |
| S(2)-O(7')     | 1.42(3)   |
| S(2)-O(8)      | 1.429(17) |
| S(2)-O(6')     | 1.44(2)   |
| S(2)-O(6)      | 1.450(14) |
| S(2)-O(7)      | 1.452(16) |
| O(1)-C(1)-C(2) | 125.2(8)  |
| O(1)-C(1)-C(6) | 117.0(8)  |
| C(2)-C(1)-C(6) | 117.9(9)  |
| C(3)-C(2)-C(1) | 120.3(9)  |
| C(3)-C(2)-H(2) | 119.8     |
| C(1)-C(2)-H(2) | 119.8     |
| C(2)-C(3)-C(4) | 121.5(9)  |
| C(2)-C(3)-H(3) | 119.2     |
| C(4)-C(3)-H(3) | 119.2     |
| C(3)-C(4)-C(5) | 117.2(8)  |
| C(3)-C(4)-C(7) | 123.6(8)  |
| C(5)-C(4)-C(7) | 119.2(8)  |
| C(6)-C(5)-C(4) | 121.3(9)  |
| C(6)-C(5)-H(5) | 119.3     |
| C(4)-C(5)-H(5) | 119.3     |
| C(5)-C(6)-C(1) | 121.7(9)  |
| C(5)-C(6)-H(6) | 119.2     |
| C(1)-C(6)-H(6) | 119.2     |
| C(8)-C(7)-C(4) | 128.0(9)  |
| C(8)-C(7)-H(7) | 116.0     |
| C(4)-C(7)-H(7) | 116.0     |
| C(7)-C(8)-C(9) | 122.7(9)  |
| C(7)-C(8)-H(8) | 118.7     |

| C(9)-C(8)-H(8)      | 118.7     |
|---------------------|-----------|
| C(10)-C(9)-C(8)     | 124.0(11) |
| С(10)-С(9)-Н(9)     | 118.0     |
| C(8)-C(9)-H(9)      | 118.0     |
| C(9)-C(10)-C(11)    | 125.8(11) |
| C(9)-C(10)-H(10)    | 117.1     |
| С(11)-С(10)-Н(10)   | 117.1     |
| C(12)-C(11)-C(16)   | 116.0(13) |
| C(12)-C(11)-C(10)   | 121.0(11) |
| C(16)-C(11)-C(10)   | 123.1(10) |
| C(13)-C(12)-C(11)   | 121.1(14) |
| С(13)-С(12)-Н(12)   | 119.5     |
| С(11)-С(12)-Н(12)   | 119.5     |
| N(1)-C(13)-C(12)    | 122.0(13) |
| N(1)-C(13)-H(13)    | 119.0     |
| С(12)-С(13)-Н(13)   | 119.0     |
| C(13)-N(1)-C(15)    | 120.1(12) |
| C(13)-N(1)-C(14)    | 120.0(10) |
| C(15)-N(1)-C(14)    | 119.8(11) |
| N(1)-C(15)-C(16)    | 118.8(13) |
| N(1)-C(15)-H(15)    | 120.6     |
| C(16)-C(15)-H(15)   | 120.6     |
| C(15)-C(16)-C(11)   | 122.1(12) |
| C(15)-C(16)-H(16)   | 119.0     |
| C(11)-C(16)-H(16)   | 119.0     |
| O(1)-C(17)-H(17A)   | 109.5     |
| O(1)-C(17)-H(17B)   | 109.5     |
| H(17A)-C(17)-H(17B) | 109.5     |
| O(1)-C(17)-H(17C)   | 109.5     |
| H(17A)-C(17)-H(17C) | 109.5     |
| H(17B)-C(17)-H(17C) | 109.5     |
| C(19)-C(18)-C(23)   | 119.6(8)  |
| C(19)-C(18)-S(1)    | 120.5(6)  |
| C(23)-C(18)-S(1)    | 120.0(6)  |
| C(18)-C(19)-C(20)   | 120.8(9)  |
| C(18)-C(19)-H(19)   | 119.6     |

| C(20)-C(19)-H(19) | 119.6     |
|-------------------|-----------|
| C(21)-C(20)-C(19) | 118.1(9)  |
| С(21)-С(20)-Н(20) | 120.9     |
| C(19)-C(20)-H(20) | 120.9     |
| C(22)-C(21)-C(20) | 122.5(9)  |
| C(22)-C(21)-Cl(1) | 118.3(8)  |
| C(20)-C(21)-Cl(1) | 119.2(8)  |
| C(21)-C(22)-C(23) | 118.4(9)  |
| С(21)-С(22)-Н(22) | 120.8     |
| C(23)-C(22)-H(22) | 120.8     |
| C(22)-C(23)-C(18) | 120.6(9)  |
| C(22)-C(23)-H(23) | 119.7     |
| C(18)-C(23)-H(23) | 119.7     |
| N(1)-C(14)-H(1A)  | 109.5     |
| N(1)-C(14)-H(1B)  | 109.5     |
| H(1A)-C(14)-H(1B) | 109.5     |
| N(1)-C(14)-H(1C)  | 109.5     |
| H(1A)-C(14)-H(1C) | 109.5     |
| H(1B)-C(14)-H(1C) | 109.5     |
| C(1)-O(1)-C(17)   | 117.9(8)  |
| O(2')-S(1)-O(4')  | 117.3(13) |
| O(2')-S(1)-O(3')  | 114.4(15) |
| O(4')-S(1)-O(3')  | 112.5(13) |
| O(3)-S(1)-O(2)    | 112.3(10) |
| O(3)-S(1)-O(4)    | 112.1(11) |
| O(2)-S(1)-O(4)    | 110.7(13) |
| O(2')-S(1)-C(18)  | 102.9(10) |
| O(4')-S(1)-C(18)  | 102.9(7)  |
| O(3)-S(1)-C(18)   | 107.1(7)  |
| O(3')-S(1)-C(18)  | 104.7(8)  |
| O(2)-S(1)-C(18)   | 107.1(8)  |
| O(4)-S(1)-C(18)   | 107.2(7)  |
| C(25)-C(24)-C(29) | 119.6(8)  |
| C(25)-C(24)-H(24) | 120.2     |
| C(29)-C(24)-H(24) | 120.2     |
| C(26)-C(25)-C(24) | 119.7(9)  |

| C(26)-C(25)-H(25) | 120.2     |
|-------------------|-----------|
| С(24)-С(25)-Н(25) | 120.2     |
| C(25)-C(26)-C(27) | 121.8(9)  |
| C(25)-C(26)-Cl(2) | 119.6(8)  |
| C(27)-C(26)-Cl(2) | 118.6(8)  |
| C(26)-C(27)-C(28) | 118.9(9)  |
| С(26)-С(27)-Н(27) | 120.5     |
| C(28)-C(27)-H(27) | 120.5     |
| C(29)-C(28)-C(27) | 119.7(8)  |
| C(29)-C(28)-H(28) | 120.1     |
| C(27)-C(28)-H(28) | 120.1     |
| C(28)-C(29)-C(24) | 120.2(8)  |
| C(28)-C(29)-S(2)  | 120.4(6)  |
| C(24)-C(29)-S(2)  | 119.4(6)  |
| C(31)-N(2)-C(35)  | 118.7(13) |
| C(31)-N(2)-C(30)  | 121.3(13) |
| C(35)-N(2)-C(30)  | 120.0(11) |
| N(2)-C(31)-C(32)  | 121.6(14) |
| N(2)-C(31)-H(31)  | 119.2     |
| C(32)-C(31)-H(31) | 119.2     |
| C(31)-C(32)-C(33) | 120.8(13) |
| C(31)-C(32)-H(32) | 119.6     |
| C(33)-C(32)-H(32) | 119.6     |
| C(34)-C(33)-C(32) | 116.0(14) |
| C(34)-C(33)-C(36) | 120.7(12) |
| C(32)-C(33)-C(36) | 123.3(11) |
| C(35)-C(34)-C(33) | 120.5(15) |
| C(35)-C(34)-H(34) | 119.7     |
| C(33)-C(34)-H(34) | 119.7     |
| N(2)-C(35)-C(34)  | 122.3(13) |
| N(2)-C(35)-H(35)  | 118.8     |
| C(34)-C(35)-H(35) | 118.8     |
| C(37)-C(36)-C(33) | 127.3(12) |
| C(37)-C(36)-H(36) | 116.3     |
| C(33)-C(36)-H(36) | 116.3     |
| C(36)-C(37)-C(38) | 125.9(11) |

| C(36)-C(37)-H(37)   | 117.1     |
|---------------------|-----------|
| C(38)-C(37)-H(37)   | 117.1     |
| C(39)-C(38)-C(37)   | 123.8(10) |
| C(39)-C(38)-H(38)   | 118.1     |
| C(37)-C(38)-H(38)   | 118.1     |
| C(38)-C(39)-C(40)   | 128.4(9)  |
| C(38)-C(39)-H(39)   | 115.8     |
| C(40)-C(39)-H(39)   | 115.8     |
| C(45)-C(40)-C(41)   | 117.3(8)  |
| C(45)-C(40)-C(39)   | 119.6(8)  |
| C(41)-C(40)-C(39)   | 123.0(8)  |
| C(42)-C(41)-C(40)   | 122.0(9)  |
| C(42)-C(41)-H(41)   | 119.0     |
| C(40)-C(41)-H(41)   | 119.0     |
| C(41)-C(42)-C(43)   | 118.9(9)  |
| C(41)-C(42)-H(42)   | 120.6     |
| C(43)-C(42)-H(42)   | 120.6     |
| O(5)-C(43)-C(44)    | 116.0(8)  |
| O(5)-C(43)-C(42)    | 124.6(8)  |
| C(44)-C(43)-C(42)   | 119.4(9)  |
| C(45)-C(44)-C(43)   | 120.7(9)  |
| C(45)-C(44)-H(44)   | 119.6     |
| C(43)-C(44)-H(44)   | 119.6     |
| C(44)-C(45)-C(40)   | 121.7(9)  |
| C(44)-C(45)-H(45)   | 119.2     |
| C(40)-C(45)-H(45)   | 119.2     |
| O(5)-C(46)-H(46A)   | 109.5     |
| O(5)-C(46)-H(46B)   | 109.5     |
| H(46A)-C(46)-H(46B) | 109.5     |
| O(5)-C(46)-H(46C)   | 109.5     |
| H(46A)-C(46)-H(46C) | 109.5     |
| H(46B)-C(46)-H(46C) | 109.5     |
| N(2)-C(30)-H(2A)    | 109.5     |
| N(2)-C(30)-H(2B)    | 109.5     |
| H(2A)-C(30)-H(2B)   | 109.5     |
| N(2)-C(30)-H(2C)    | 109.5     |

| H(2A)-C(30)-H(2C) | 109.5     |
|-------------------|-----------|
| H(2B)-C(30)-H(2C) | 109.5     |
| C(43)-O(5)-C(46)  | 117.2(8)  |
| O(8')-S(2)-O(7')  | 116(2)    |
| O(8')-S(2)-O(6')  | 113.1(17) |
| O(7')-S(2)-O(6')  | 113.9(18) |
| O(8)-S(2)-O(6)    | 113.5(11) |
| O(8)-S(2)-O(7)    | 113.0(11) |
| O(6)-S(2)-O(7)    | 110.2(12) |
| O(8')-S(2)-C(29)  | 106.1(15) |
| O(7')-S(2)-C(29)  | 103.1(15) |
| O(8)-S(2)-C(29)   | 105.8(8)  |
| O(6')-S(2)-C(29)  | 103.1(10) |
| O(6)-S(2)-C(29)   | 106.7(7)  |
| O(7)-S(2)-C(29)   | 107.2(9)  |
|                   |           |

Symmetry transformations used to generate equivalent atoms:

|       | U11    | U <sup>22</sup> | U33    | U <sup>23</sup> | U13     | U12    |  |
|-------|--------|-----------------|--------|-----------------|---------|--------|--|
| C(1)  | 33(5)  | 49(5)           | 41(5)  | 1(4)            | 0(4)    | 1(4)   |  |
| C(2)  | 48(6)  | 39(5)           | 35(5)  | -3(4)           | -2(5)   | -2(5)  |  |
| C(3)  | 48(6)  | 42(5)           | 46(6)  | 4(5)            | 1(5)    | -7(5)  |  |
| C(4)  | 38(5)  | 43(5)           | 30(4)  | 5(4)            | 0(4)    | 10(4)  |  |
| C(5)  | 53(6)  | 26(5)           | 53(6)  | 3(4)            | 10(5)   | -4(4)  |  |
| C(6)  | 56(6)  | 41(6)           | 57(6)  | 1(5)            | 6(5)    | -13(5) |  |
| C(7)  | 48(5)  | 40(5)           | 46(5)  | 1(4)            | 4(4)    | 6(4)   |  |
| C(8)  | 44(6)  | 51(6)           | 38(5)  | -1(5)           | 2(4)    | 1(5)   |  |
| C(9)  | 44(5)  | 56(6)           | 42(6)  | -1(5)           | 3(4)    | -3(5)  |  |
| C(10) | 45(6)  | 59(6)           | 46(6)  | -3(5)           | 3(5)    | -6(5)  |  |
| C(11) | 42(6)  | 65(7)           | 33(6)  | 1(5)            | -2(5)   | -13(5) |  |
| C(12) | 54(7)  | 69(8)           | 48(7)  | 12(5)           | 0(5)    | -15(6) |  |
| C(13) | 52(7)  | 106(12)         | 43(7)  | 23(7)           | -5(5)   | -33(7) |  |
| N(1)  | 39(6)  | 111(11)         | 36(6)  | 5(5)            | -1(5)   | -16(5) |  |
| C(15) | 45(6)  | 82(9)           | 48(7)  | -7(6)           | 2(5)    | -17(6) |  |
| C(16) | 43(6)  | 75(9)           | 46(6)  | 0(6)            | 6(5)    | -21(6) |  |
| C(17) | 64(8)  | 74(7)           | 61(7)  | -5(7)           | 25(6)   | 10(7)  |  |
| C(18) | 36(5)  | 23(4)           | 35(4)  | -4(3)           | 6(3)    | 2(3)   |  |
| C(19) | 43(5)  | 39(5)           | 37(5)  | 6(4)            | 5(4)    | 6(4)   |  |
| C(20) | 52(6)  | 39(5)           | 50(6)  | 1(4)            | -8(4)   | 8(4)   |  |
| C(21) | 39(5)  | 34(5)           | 72(7)  | -3(5)           | -9(5)   | 3(4)   |  |
| C(22) | 38(5)  | 44(6)           | 82(8)  | -9(5)           | 10(5)   | -8(4)  |  |
| C(23) | 47(5)  | 36(5)           | 50(6)  | -1(4)           | 16(4)   | 1(4)   |  |
| C(14) | 49(9)  | 157(17)         | 37(7)  | 13(6)           | 5(7)    | -25(7) |  |
| O(1)  | 46(4)  | 76(5)           | 56(4)  | -1(3)           | 17(3)   | -3(3)  |  |
| Cl(1) | 56(2)  | 50(2)           | 121(3) | -16(2)          | -32(2)  | 1(1)   |  |
| S(1)  | 38(2)  | 25(1)           | 30(1)  | 2(1)            | 7(1)    | 1(1)   |  |
| O(2)  | 70(12) | 61(13)          | 45(10) | -21(9)          | 10(8)   | 13(10) |  |
| O(3)  | 34(9)  | 78(18)          | 35(8)  | -5(7)           | 12(7)   | -6(8)  |  |
| O(4)  | 63(12) | 41(9)           | 83(16) | 35(10)          | -22(11) | -12(8) |  |
| O(2') | 51(12) | 100(20)         | 30(12) | -26(12)         | 11(9)   | 8(13)  |  |

**Table S5.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for MBMPCBS. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$ 

| O(3') | 55(13) | 52(16)  | 66(12) | 24(11)  | -1(10)  | -23(11) |
|-------|--------|---------|--------|---------|---------|---------|
| O(4') | 45(10) | 31(9)   | 75(18) | -11(9)  | -12(10) | 9(7)    |
| C(24) | 45(5)  | 41(6)   | 44(5)  | 2(4)    | 5(4)    | -1(4)   |
| C(25) | 43(5)  | 41(6)   | 70(7)  | 2(5)    | -1(5)   | -4(4)   |
| C(26) | 41(5)  | 33(5)   | 78(7)  | 11(5)   | 22(5)   | 5(4)    |
| C(27) | 57(6)  | 40(5)   | 59(6)  | 3(4)    | 30(5)   | 5(5)    |
| C(28) | 40(5)  | 44(5)   | 36(5)  | -2(4)   | 11(4)   | 4(4)    |
| C(29) | 36(5)  | 26(4)   | 33(4)  | 1(3)    | 9(4)    | 2(3)    |
| N(2)  | 52(7)  | 139(14) | 32(6)  | 11(5)   | 18(5)   | 48(6)   |
| C(31) | 58(8)  | 103(11) | 48(7)  | -7(7)   | 12(6)   | 41(7)   |
| C(32) | 62(8)  | 91(10)  | 34(6)  | 8(6)    | 12(5)   | 38(7)   |
| C(33) | 44(7)  | 80(8)   | 40(7)  | 5(5)    | 19(5)   | 28(6)   |
| C(34) | 56(8)  | 85(9)   | 57(7)  | 24(6)   | 24(6)   | 26(7)   |
| C(35) | 58(8)  | 118(13) | 57(8)  | 41(8)   | 30(7)   | 52(8)   |
| C(36) | 50(6)  | 58(6)   | 42(6)  | 3(5)    | 11(5)   | 16(5)   |
| C(37) | 44(5)  | 54(6)   | 40(5)  | 0(4)    | 14(4)   | 8(5)    |
| C(38) | 45(6)  | 55(6)   | 40(5)  | 1(5)    | 10(4)   | 5(5)    |
| C(39) | 47(5)  | 47(6)   | 44(5)  | -2(4)   | 9(4)    | -4(4)   |
| C(40) | 37(5)  | 40(5)   | 38(5)  | 3(4)    | 10(4)   | -10(4)  |
| C(41) | 62(7)  | 26(4)   | 43(6)  | 4(4)    | 16(5)   | 8(5)    |
| C(42) | 62(7)  | 35(5)   | 35(5)  | 0(4)    | 11(5)   | -9(5)   |
| C(43) | 34(5)  | 53(6)   | 40(5)  | 2(4)    | 13(4)   | -8(4)   |
| C(44) | 55(6)  | 44(6)   | 58(6)  | 2(5)    | 8(5)    | 11(5)   |
| C(45) | 46(6)  | 31(5)   | 47(5)  | 2(4)    | 6(4)    | 4(4)    |
| C(46) | 78(9)  | 77(8)   | 40(6)  | -1(6)   | 0(6)    | -25(7)  |
| C(30) | 54(10) | 190(20) | 32(7)  | 13(7)   | 11(7)   | 47(8)   |
| O(5)  | 46(4)  | 77(5)   | 46(4)  | -2(3)   | -1(3)   | 3(3)    |
| Cl(2) | 60(2)  | 50(2)   | 146(3) | 15(2)   | 57(2)   | 3(1)    |
| S(2)  | 38(2)  | 27(1)   | 30(1)  | 0(1)    | 10(1)   | -2(1)   |
| O(6)  | 78(12) | 38(8)   | 99(19) | -28(10) | 50(13)  | -12(8)  |
| O(7)  | 65(11) | 67(13)  | 72(14) | 43(10)  | 25(10)  | 11(10)  |
| O(8)  | 43(10) | 110(20) | 31(8)  | -2(8)   | 1(7)    | -24(10) |
| O(6') | 45(14) | 36(12)  | 80(20) | 8(12)   | 39(15)  | 13(9)   |
| O(7') | 53(17) | 120(40) | 39(18) | 37(18)  | 13(14)  | 10(20)  |
| O(8') | 70(20) | 60(20)  | 70(20) | -18(16) | 19(16)  | -30(17) |
|       |        |         |        |         |         |         |

|        | X    | Y    | Z     | U(eq) |  |  |
|--------|------|------|-------|-------|--|--|
|        |      |      |       |       |  |  |
| H(2)   | 1129 | 5525 | 4899  | 50    |  |  |
| H(3)   | 1905 | 5493 | 3656  | 55    |  |  |
| H(5)   | 1263 | 1412 | 2802  | 53    |  |  |
| H(6)   | 483  | 1462 | 3997  | 62    |  |  |
| H(7)   | 2205 | 2463 | 1983  | 54    |  |  |
| H(8)   | 2433 | 5443 | 2149  | 54    |  |  |
| H(9)   | 2986 | 3333 | 810   | 57    |  |  |
| H(10)  | 3144 | 6334 | 819   | 60    |  |  |
| H(12)  | 3732 | 7385 | -590  | 70    |  |  |
| H(13)  | 4386 | 7159 | -1941 | 82    |  |  |
| H(15)  | 4346 | 2848 | -1747 | 71    |  |  |
| H(16)  | 3697 | 3029 | -341  | 66    |  |  |
| H(17A) | 745  | 4679 | 6483  | 97    |  |  |
| H(17B) | -76  | 4314 | 6556  | 97    |  |  |
| H(17C) | 109  | 5440 | 5678  | 97    |  |  |
| H(19)  | 6615 | 5324 | -2970 | 48    |  |  |
| H(20)  | 7673 | 6002 | -1804 | 59    |  |  |
| H(22)  | 8675 | 6663 | -4371 | 65    |  |  |
| H(23)  | 7600 | 6088 | -5524 | 52    |  |  |
| H(1A)  | 4665 | 4090 | -3321 | 122   |  |  |
| H(1B)  | 5344 | 4770 | -2551 | 122   |  |  |
| H(1C)  | 4780 | 5811 | -3273 | 122   |  |  |
| H(24)  | 2391 | 8912 | 673   | 52    |  |  |
| H(25)  | 1319 | 8355 | 1299  | 63    |  |  |
| H(27)  | 2304 | 9013 | 4348  | 60    |  |  |
| H(28)  | 3376 | 9676 | 3726  | 48    |  |  |
| H(31)  | 5649 | 7858 | 6103  | 83    |  |  |
| H(32)  | 6283 | 7982 | 7821  | 74    |  |  |
|        |      |      |       |       |  |  |

**Table S6.** Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for MBMPCBS.

| H(34)  | 6264  | 12352 | 7586  | 77  |  |
|--------|-------|-------|-------|-----|--|
| H(35)  | 5621  | 12125 | 5887  | 90  |  |
| H(36)  | 6851  | 11298 | 9251  | 59  |  |
| H(37)  | 6997  | 8319  | 9358  | 55  |  |
| H(38)  | 7572  | 10420 | 10934 | 56  |  |
| H(39)  | 7783  | 7442  | 10905 | 55  |  |
| H(41)  | 8101  | 10497 | 12686 | 52  |  |
| H(42)  | 8862  | 10545 | 14341 | 52  |  |
| H(44)  | 9522  | 6468  | 13775 | 63  |  |
| H(45)  | 8744  | 6418  | 12176 | 50  |  |
| H(46A) | 9870  | 10472 | 15603 | 99  |  |
| H(46B) | 10082 | 9371  | 16583 | 99  |  |
| H(46C) | 9252  | 9693  | 16125 | 99  |  |
| H(2A)  | 5256  | 10747 | 4344  | 138 |  |
| H(2B)  | 4646  | 9839  | 4795  | 138 |  |
| H(2C)  | 5300  | 9013  | 4393  | 138 |  |

| Identification code                  | MBMPI                                              |
|--------------------------------------|----------------------------------------------------|
| Empirical formula                    | C <sub>17</sub> H <sub>18</sub> NOI                |
| Formula weight                       | 379.22                                             |
| Temperature/K                        | 173(2)                                             |
| Crystal system                       | Monoclinic                                         |
| Space group                          | $P2_1/n$                                           |
| a/Å                                  | 6.3116(12)                                         |
| b/Å                                  | 7.6593(13)                                         |
| c/Å                                  | 33.650(6)                                          |
| $\alpha/^{\circ}$                    | 90                                                 |
| β/°                                  | 91.663(6)                                          |
| $\gamma/^{\circ}$                    | 90                                                 |
| Volume/Å <sup>3</sup>                | 1626.0(5)                                          |
| Z                                    | 4                                                  |
| $\rho_{calc}g/cm^3$                  | 1.549                                              |
| $\mu/mm^{-1}$                        | 1.965                                              |
| F(000)                               | 752.0                                              |
| Crystal size/mm <sup>3</sup>         | $0.358 \times 0.228 \times 0.097$                  |
| Radiation                            | MoKα ( $\lambda = 0.71073$ )                       |
| $2\Theta$ range for data collection/ | <sup>o</sup> 4.844 to 54.982                       |
| Index ranges                         | $-8 \le h \le 8, -9 \le k \le 9, -43 \le l \le 43$ |
| Reflections collected                | 25101                                              |
| Independent reflections              | $3685 [R_{int} = 0.0508, R_{sigma} = 0.0297]$      |
| Data/restraints/parameters           | 3685/0/183                                         |
| Goodness-of-fit on F <sup>2</sup>    | 1.176                                              |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0408, wR_2 = 0.1191$                      |
| Final R indexes [all data]           | $R_1 = 0.0417, wR_2 = 0.1203$                      |
| Largest diff. peak/hole / e Å-3      | 3 0.48/-0.85                                       |

Table S7. Crystal data and structure refinement for MBMPI.

**Table S8.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for MBMPI. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X          | Y         | Ζ          | U(eq)     |
|------|------------|-----------|------------|-----------|
| C1   | 11952(6)   | 8226(4)   | 7986.3(11) | 28.9(7)   |
| C2   | 12635(6)   | 9054(5)   | 7640.3(12) | 31.9(7)   |
| C3   | 11293(6)   | 9159(5)   | 7313.6(11) | 31.7(7)   |
| C4   | 9254(6)    | 8451(4)   | 7310.9(11) | 28.8(7)   |
| C5   | 8571(6)    | 7708(5)   | 7666.1(11) | 32.2(7)   |
| C6   | 9897(6)    | 7608(5)   | 8000.8(11) | 32.2(7)   |
| C7   | 12757(8)   | 7332(6)   | 8651.6(13) | 46.7(10)  |
| C8   | 7954(6)    | 8501(5)   | 6944.4(12) | 33.7(8)   |
| C9   | 6107(6)    | 7676(5)   | 6872.8(11) | 32.6(7)   |
| C10  | 4925(6)    | 7801(5)   | 6502.0(11) | 32.6(7)   |
| C11  | 3023(6)    | 7045(5)   | 6442.4(11) | 33.9(8)   |
| C12  | -1417(7)   | 6180(5)   | 5718.4(15) | 42.2(10)  |
| C13  | -203(7)    | 6187(5)   | 6061.9(14) | 38.5(9)   |
| C14  | 1733(6)    | 7090(5)   | 6080.1(11) | 31.7(7)   |
| C15  | 2316(6)    | 7976(6)   | 5735.6(12) | 36.7(8)   |
| C16  | 1030(7)    | 7924(6)   | 5401.4(12) | 41.0(9)   |
| C17  | -2181(9)   | 7023(8)   | 5030.3(16) | 58.9(13)  |
| N1   | -797(5)    | 7021(5)   | 5395.3(11) | 38.7(7)   |
| 01   | 13423(4)   | 8112(4)   | 8289.9(9)  | 36.5(6)   |
| I1   | -3058.1(4) | 1456.5(4) | 5650.7(2)  | 42.14(13) |

**Table S9.** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for MBMPI. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|
| C1   | 33.9(17)        | 21.3(15) | 31.5(17)        | -3.7(13)        | -0.6(14)        | 1.8(13)         |
| C2   | 31.5(17)        | 26.8(17) | 37.7(19)        | -4.3(14)        | 3.9(14)         | -3.5(14)        |

**Table S9.** Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for MBMPI. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------|-----------------|-----------|-----------------|-----------------|-----------------|------------------------|
| C3   | 37.6(18)        | 27.5(17)  | 30.1(17)        | -0.5(14)        | 4.6(14)         | -2.9(14)               |
| C4   | 30.1(17)        | 24.0(16)  | 32.3(18)        | -1.3(13)        | 0.0(14)         | 2.7(13)                |
| C5   | 27.6(16)        | 33.4(18)  | 35.7(19)        | 3.8(15)         | 1.9(14)         | -3.4(14)               |
| C6   | 35.3(18)        | 31.5(18)  | 29.9(17)        | 3.9(14)         | -0.1(14)        | -3.6(14)               |
| C7   | 56(3)           | 44(2)     | 39(2)           | 6.4(18)         | -15.7(19)       | -12(2)                 |
| C8   | 39(2)           | 29.2(18)  | 32.6(18)        | 0.9(14)         | 0.4(15)         | 2.4(14)                |
| C9   | 37.5(18)        | 28.1(17)  | 32.1(18)        | 2.5(14)         | 0.0(14)         | 0.9(14)                |
| C10  | 38.2(19)        | 28.2(17)  | 31.2(18)        | 0.5(14)         | 0.3(14)         | 3.9(14)                |
| C11  | 42(2)           | 29.2(17)  | 30.6(18)        | 4.0(14)         | -3.5(15)        | -1.1(15)               |
| C12  | 35(2)           | 31.0(19)  | 60(3)           | 1.2(18)         | -5.8(18)        | -6.1(16)               |
| C13  | 40(2)           | 28.7(18)  | 47(2)           | 7.2(16)         | -1.2(17)        | -3.3(15)               |
| C14  | 35.4(18)        | 25.2(16)  | 34.4(18)        | -1.5(14)        | -1.8(14)        | 1.3(14)                |
| C15  | 34.7(18)        | 43(2)     | 31.9(18)        | 1.5(16)         | -3.7(15)        | -6.6(16)               |
| C16  | 44(2)           | 47(2)     | 31.9(19)        | 1.1(17)         | -3.9(16)        | -0.5(18)               |
| C17  | 55(3)           | 72(3)     | 49(3)           | -10(2)          | -24(2)          | -4(3)                  |
| N1   | 37.2(17)        | 38.3(18)  | 40.1(18)        | -6.2(14)        | -8.3(14)        | 1.9(14)                |
| 01   | 35.9(14)        | 34.1(14)  | 39.1(15)        | 1.0(11)         | -7.3(11)        | -2.7(11)               |
| I1   | 39.70(18)       | 45.08(19) | 41.53(18)       | -2.91(11)       | -0.73(11)       | -9.11(11)              |

| Table | <b>S10.</b> | Bond | Lengths | for | MBMPI. |
|-------|-------------|------|---------|-----|--------|
|       |             |      | 0       |     |        |

| Aton | n Atom | Length/Å | Ator | n Atom | Length/Å |
|------|--------|----------|------|--------|----------|
| C1   | C2     | 1.405(5) | C9   | C10    | 1.438(5) |

## Table S10. Bond Lengths for MBMPI.

| Aton | n Atom | Length/Å | Aton | 1 Atom | Length/Å |
|------|--------|----------|------|--------|----------|
| C1   | C6     | 1.383(5) | C10  | C11    | 1.343(6) |
| C1   | 01     | 1.363(5) | C11  | C14    | 1.446(5) |
| C2   | C3     | 1.371(6) | C12  | C13    | 1.369(6) |
| C3   | C4     | 1.396(5) | C12  | N1     | 1.332(6) |
| C4   | C5     | 1.403(5) | C13  | C14    | 1.403(6) |
| C4   | C8     | 1.462(5) | C14  | C15    | 1.402(6) |
| C5   | C6     | 1.386(5) | C15  | C16    | 1.368(6) |
| C7   | 01     | 1.430(5) | C16  | N1     | 1.344(6) |
| C8   | С9     | 1.342(6) | C17  | N1     | 1.487(6) |

### Table S11. Bond Angles for MBMPI.

| Atom | Atom | Atom | Angle/°  | Atom | n Atom | n Atom | Angle/°  |
|------|------|------|----------|------|--------|--------|----------|
| C6   | C1   | C2   | 119.6(3) | C10  | C11    | C14    | 126.5(4) |
| 01   | C1   | C2   | 115.5(3) | N1   | C12    | C13    | 121.1(4) |
| 01   | C1   | C6   | 124.8(3) | C12  | C13    | C14    | 120.3(4) |
| C3   | C2   | C1   | 119.6(3) | C13  | C14    | C11    | 119.5(4) |
| C2   | C3   | C4   | 122.0(4) | C15  | C14    | C11    | 123.6(4) |
| C3   | C4   | C5   | 117.3(3) | C15  | C14    | C13    | 116.8(4) |
| C3   | C4   | C8   | 119.3(3) | C16  | C15    | C14    | 120.1(4) |
| C5   | C4   | C8   | 123.4(3) | N1   | C16    | C15    | 121.0(4) |
| C6   | C5   | C4   | 121.4(3) | C12  | N1     | C16    | 120.6(4) |
| C1   | C6   | C5   | 119.8(3) | C12  | N1     | C17    | 119.7(4) |
| C9   | C8   | C4   | 127.1(4) | C16  | N1     | C17    | 119.7(4) |
| C8   | C9   | C10  | 123.4(4) | C1   | 01     | C7     | 117.0(3) |
| C11  | C10  | C9   | 122.7(4) |      |        |        |          |

## Table S12. Hydrogen Bonds for MBMPI.

| D   | Η    | Α               | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
|-----|------|-----------------|----------|----------|----------|---------|
| C7  | H7A  | $I1^1$          | 0.98     | 3.28     | 3.894(5) | 122.6   |
| C7  | H7B  | I1 <sup>2</sup> | 0.98     | 3.12     | 4.087(5) | 170.7   |
| C12 | H12  | I1              | 0.95     | 3.16     | 3.768(4) | 123.5   |
| C15 | H15  | I1 <sup>3</sup> | 0.95     | 3.05     | 3.970(4) | 164.3   |
| C16 | H16  | I14             | 0.95     | 2.97     | 3.829(4) | 150.5   |
| C17 | H170 | CI15            | 0.98     | 3.30     | 3.904(5) | 121.5   |

# Table S13. Torsion Angles for MBMPI.

| Α  | В   | С   | D    | Angle/°   | Α   | B   | С   | D   | Angle/°   |
|----|-----|-----|------|-----------|-----|-----|-----|-----|-----------|
| C1 | C2  | C3  | C4   | -0.6(6)   | C10 | C11 | C14 | C13 | 178.2(4)  |
| C2 | C1  | C6  | C5   | 4.2(6)    | C10 | C11 | C14 | C15 | -0.8(7)   |
| C2 | C1  | 01  | C7   | 177.8(4)  | C11 | C14 | C15 | C16 | 178.5(4)  |
| C2 | C3  | C4  | C5   | 3.7(5)    | C12 | C13 | C14 | C11 | -178.4(4) |
| C2 | C3  | C4  | C8   | -175.8(3) | C12 | C13 | C14 | C15 | 0.7(6)    |
| C3 | C4  | C5  | C6   | -2.8(6)   | C13 | C12 | N1  | C16 | -1.0(7)   |
| C3 | C4  | C8  | C9   | 169.9(4)  | C13 | C12 | N1  | C17 | -178.5(4) |
| C4 | C5  | C6  | C1   | -1.0(6)   | C13 | C14 | C15 | C16 | -0.6(6)   |
| C4 | C8  | C9  | C10  | 179.9(4)  | C14 | C15 | C16 | N1  | -0.4(7)   |
| C5 | C4  | C8  | C9   | -9.6(6)   | C15 | C16 | N1  | C12 | 1.2(7)    |
| C6 | C1  | C2  | C3   | -3.4(5)   | C15 | C16 | N1  | C17 | 178.7(5)  |
| C6 | C1  | 01  | C7   | -1.6(5)   | N1  | C12 | C13 | C14 | 0.0(7)    |
| C8 | C4  | C5  | C6   | 176.6(4)  | 01  | C1  | C2  | C3  | 177.1(3)  |
| C8 | C9  | C10 | )C11 | -176.3(4) | 01  | C1  | C6  | C5  | -176.4(3) |
| C9 | C10 | C11 | C14  | -179.5(4) |     |     |     |     |           |

| ' | Table               | <b>S14.</b>          | Hydrogen | Atom | Coordinates | (Å×10 <sup>4</sup> ) | and | Isotropic | Displacement | Parameters |
|---|---------------------|----------------------|----------|------|-------------|----------------------|-----|-----------|--------------|------------|
| ( | (Å <sup>2</sup> ×10 | 0 <sup>3</sup> ) for | · MBMPI. |      |             |                      |     |           |              |            |

| Atom | n X               | Y       | Z       | U(eq) |
|------|-------------------|---------|---------|-------|
| H2   | 14018.99          | 9538.28 | 7632.81 | 38    |
| H3   | 11764.59          | 9731.39 | 7081.85 | 38    |
| H5   | 7168.74           | 7262.77 | 7677.31 | 39    |
| H6   | 9394.99           | 7117.39 | 8239.66 | 39    |
| H7A  | 11653.63          | 8055.68 | 8767.73 | 70    |
| H7B  | 13969.65          | 7243.34 | 8838.99 | 70    |
| H7C  | 12190.43          | 6163.48 | 8595.87 | 70    |
| H8   | 8474.65           | 9191.47 | 6733.98 | 40    |
| H9   | 5550.31           | 6973.97 | 7077.7  | 39    |
| H10  | 5514.02           | 8443.8  | 6290.56 | 39    |
| H11  | 2468.51           | 6418.69 | 6659.78 | 41    |
| H12  | -2724.7           | 5564.31 | 5710.12 | 51    |
| H13  | -671.73           | 5579.13 | 6289.17 | 46    |
| H15  | 3606.11           | 8614.1  | 5734.12 | 44    |
| H16  | 1435.14           | 8535.07 | 5169.94 | 49    |
| H17A | <b>-</b> 2931.52  | 5905.26 | 5008.17 | 88    |
| H17E | <b>3</b> -1310.88 | 7188.65 | 4796.72 | 88    |
| H17C | 2-3212.51         | 7974.84 | 5045.29 | 88    |

 Table S15. The coordinates of the equilibrium structure

#### EQUILIBRIUM GEOMETRY

### COORDINATES OF ALL ATOMS ARE (ANGS)

| ATOM | CHARGE | E X               | Y           | Z             |
|------|--------|-------------------|-------------|---------------|
| с.   | 6.0    | 11.2318359722 -4  | .2676809228 | -8.2080909332 |
| C    | 6.0    | 10.0455479791 -3. | 7956590977  | -7.6884936839 |
| C    | 6.0    | 9.4663452975 -4.3 | 858081050   | -6.5551471073 |
| С    | 6.0    | 10.1374627206 -5  | 5168859048  | -6.0254090332 |
| С    | 6.0    | 11.2955448608 -5. | 9666107108  | -6.5984518227 |
| N    | 7.0    | 11.8325279986 -5. | .3576499343 | -7.6866427495 |
| С    | 6.0    | 13.0864368741 -5. | .8577080156 | -8.2826081576 |
| С    | 6.0    | 8.2765012842 -3.8 | 052854916   | -5.9733450920 |
| С    | 6.0    | 7.7428630497 -4.1 | 118160572   | -4.7633788063 |
| С    | 6.0    | 6.6033111214 -3.4 | 536381246   | -4.1998845076 |
| С    | 6.0    | 6.1239430071 -3.7 | 264267281   | -2.9606874933 |
| С    | 6.0    | 5.0039166625 -3.0 | 933047077   | -2.2857830105 |
| С    | 6.0    | 4.6114838774 -3.5 | 571431959   | -1.0126096823 |
| С    | 6.0    | 3.5537593995 -2.9 | 891093294   | -0.3286952431 |
| С    | 6.0    | 2.8407827561 -1.9 | 224316310   | -0.8943086826 |
| С    | 6.0    | 3.2144749532 -1.4 | 381899042   | -2.1564716778 |
| С    | 6.0    | 4.2783409046 -2.0 | 206968803   | -2.8312159955 |
| 0    | 8.0    | 1.8207973483 -1.4 | 323484154   | -0.1486456350 |
| С    | 6.0    | 1.0665947151 -0.3 | 318799855   | -0.6494059141 |
| С    | 6.0    | 12.6318960551 -2. | 5952043449  | -4.7226263265 |
| С    | 6.0    | 12.9030600431 -3. | .4485376906 | -3.6543216786 |
| С    | 6.0    | 12.1118013618 -3  | 4142595578  | -2.5084490535 |
| С    | 6.0    | 11.0523450258 -2. | 5138769090  | -2.4477576235 |
| С    | 6.0    | 10.7786089690 -1. | 6434940481  | -3.4981201023 |
| С    | 6.0    | 11.5783927711 -1. | .6873086534 | -4.6388178338 |
| S    | 16.0   | 13.6780499458 -2. | 6616925419  | -6.2119973459 |
| 0    | 8.0    | 14.7645107172 -1. | .6995250117 | -5.9894990583 |
| 0    | 8.0    | 12.7489274644 -2. | .3010682118 | -7.3293547300 |
| 0    | 8.0    | 14.0998335420 -4  | .0915529320 | -6.2788352566 |
| CL   | 17.0   | 10.0294408167 -2. | 4789174168  | -1.0057384845 |
| Н    | 1.0    | 11.7330066823 -3. | 7884254476  | -9.0331856219 |
| Н    | 1.0    | 9.6142028954 -2.9 | 054278759   | -8.1253789837 |
| Н    | 1.0    | 9.7608182463 -6.0 | 384883373   | -5.1566231260 |
| Н    | 1.0    | 11.8469105869 -6  | .8109997894 | -6.2097761151 |
| Н    | 1.0    | 13.6793657005 -5. | .0036988753 | -8.5980557797 |

| Н | 1.0 | 13.6550274676 -6.3780169305 -7.5176900759 |
|---|-----|-------------------------------------------|
| Н | 1.0 | 12.8512852977 -6.5194872069 -9.1202828758 |
| Н | 1.0 | 7.8166117990 -3.0062226332 -6.5491946900  |
| Н | 1.0 | 8.2113196118 -4.8762632172 -4.1477684070  |
| Н | 1.0 | 6.1295718000 -2.6897561026 -4.8108536546  |
| Н | 1.0 | 6.6299175570 -4.5013712336 -2.3879554870  |
| Н | 1.0 | 5.1527788198 -4.3810998261 -0.5592180730  |
| Н | 1.0 | 3.2539752329 -3.3500918509 0.6476962223   |
| Н | 1.0 | 2.6879601445 -0.6114832043 -2.6142105308  |
| Н | 1.0 | 4.5498717355 -1.6222614250 -3.8017728193  |
| Н | 1.0 | 0.3262682478 -0.1098772470 0.1169296702   |
| Н | 1.0 | 1.7013011740 0.5464726036 -0.8062646303   |
| Н | 1.0 | 0.5558220849 -0.5890640464 -1.5836521796  |
| Н | 1.0 | 13.7260553347 -4.1480352707 -3.7348449950 |
| Н | 1.0 | 12.3172955263 -4.0696677665 -1.6709470735 |
| Н | 1.0 | 9.9525803160 -0.9470767788 -3.4244279131  |
| Н | 1.0 | 11.3770862454 -1.0325870784 -5.4780701405 |
|   |     |                                           |