Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

> Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

On the inverse correlation between the hydrogen bond strength and

chalcogen bond strength in the cyclic supramolecular heterosynthon

[-Se-N=]…[HOOC-]

Honghong Lan, Shaobin Miao, Yu Zhang and Weizhou Wang*

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China E-mail: wzw@lynu.edu.cn

Index

- 1. Methods
 - 1.1. Cocrystal synthesis
 - 1.2. Single-crystal X-ray diffraction
 - 1.3. Computational details
- 2. Table S1 Crystallographic data and structure refinement parameters for cocrystals I,II and III.
- 3. Fig. S1 The H…N and Se…O interatomic distances (green numbers, in Å) and the electron densities (blue numbers, in au) and their Laplacians (red numbers, in au) at the H…N and Se…O bond critical points in the cyclic supramolecular heterosynthons [–Se–N=]…[HOOC–] for the complexes formed between 2,1,3-benzoselenadiazole and a series of substituted and unsubstituted benzoic acid.
- 4. Cartesian coordinates for the π -stacked cluster formed by six 2,1,3-benzoselenadiazole molecules and six isophthalic acid molecules.
- 5. The CheckCIF reports for cocrystals I, II and III.

1. Methods

1.1. Cocrystal synthesis

The 2,1,3-benzoselenadiazole (purity \geq 98%), *m*-nitrobenzoic acid (purity \geq 98%), *p*-nitrobenzoic acid (purity \geq 98%), 1,3,5-benzenetricarboxylic acid (purity \geq 98%), and the solvent methanol (analytical reagent grade) were purchased from Zhengzhou Alfa Chemical Co., Ltd., China. All of them were used as received. The 1:1 mixtures of 2,1,3-benzoselenadiazole (0.0183 g, 0.1 mmol) with *m*-nitrobenzoic acid (0.0167 g, 0.1 mmol), *p*-nitrobenzoic acid (0.0167 g, 0.1 mmol) and 1,3,5-benzenetricarboxylic acid (0.0210 g, 0.1 mmol), respectively, were dissolved in 15 mL of methanol, respectively. Upon slow evaporation of the solution at room temperature, cocrystals I, II and III suitable for single-crystal X-ray diffraction were obtained after 2–3 days.

1.2. Single-crystal X-ray diffraction

Single-crystal X-ray diffraction data were gathered on an Oxford Diffraction SuperNova area-detector diffractometer equipped with Mo-K α X-ray source ($\lambda = 0.71073$ Å). The data reduction was treated by using CrysAlis Pro software.¹ The crystal structure was solved by SHELXS-2014 program.² Crystallographic data of cocrystals I, II and III were listed in Table S1. The CIF files of cocrystals I, II and III (CCDC deposition numbers: 2239190, 2239191 and 2239194) can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html. At the same time, the CIF files of cocrystals I, II and III were also provided as the electronic supplementary materials.

1.3. Computational details

The geometries of all the complexes were fully optimized at the PBEO-D3(BJ)/def2-TZVPP level of theory with the Gaussian 09 program.³⁻⁷ All these optimized structures were confirmed to be energy minima by frequency calculations at the same theory level. Previous studies on the noncovalent interactions have shown that the PBEO-D3(BJ)/def2-TZVPP calculations can give comparable results with the "golden standard" coupled cluster calculations.^{8,9}

3

To further confirm the existence of the hydrogen bond and chalcogen bond in the cyclic supramolecular heterosynthon [-Se-N=]…[HOOC-], the "atoms in molecules" (AIM) analysis has been performed with the PBEO-D3(BJ)/def2-TZVPP electron density.¹⁰ The AIM2000 software was employed to carry out the AIM analysis.¹¹ The analysis went further with those obtained by means of the natural bond orbital (NBO) theory of Weihnhold and co-workers.¹² The NBO analyses used the built-in subroutines of the Gaussian 09 program.

Cocrystal		II	III
CCDC No.	2239190	2239191	2239194
Empirical formula	$C_{13}H_9N_3O_4Se$	$C_{13}H_9N_3O_4Se$	$C_{27}H_{18}N_6O_6Se_3$
Formula weight	350.19	350.19	759.35
Crystal size/mm ³	0.28 × 0.25 × 0.24	$0.25 \times 0.24 \times 0.23$	$0.24 \times 0.21 \times 0.2$
Crystal system	triclinic	triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	P21
a/Å	6.6846(2)	6.7936(2)	3.9284(2)
b/Å	7.0498(2)	7.3480(3)	26.3154(12)
<i>c</i> /Å	15.0256(4)	14.7847(5)	13.1324(6)
α/°	97.105(2)	76.886(3)	90
<i>в</i> /°	94.771(2)	76.865(3)	91.977(4)
γ/°	109.331(3)	69.400(4)	90
V/Å ³	657.18(3)	663.98(4)	1356.79(11)
Ζ	2	2	2
$ ho_{ m calc}/ m g\cdot cm^{-3}$	1.770	1.752	1.859
Т/К	290	290	291
2ϑ range for data collection/°	6.516–56.938	6.66–56.7	6.928–57.062
Reflections collected	15586	15689	32014
Independent reflections [R _{int}]	3008 [0.0268]	3024 [0.0414]	6146 [0.0894]
$R_1, wR_2 (I > 2\sigma(I))$	0.0308, 0.0663	0.0414, 0.0932	0.0660, 0.1020
R_1 , wR_2 (all data)	0.0371, 0.0684	0.0537, 0.0980	0.0936, 0.1107
Goodness-of-fit on F ²	1.097	1.092	1.059

2. Table S1 Crystallographic data and structure refinement parameters for cocrystals I, II and III.

2,1,3-benzoselenadiazole…4-cyanobenzoic acid

2,1,3-benzoselenadiazole…3-nitrobenzoic acid

2,1,3-benzoselenadiazole…3-aminobenzoic acid [©]H

2,1,3-benzoselenadiazole…4-aminobenzoic acid

2,1,3-benzoselenadiazole…3-hydroxybenzoic acid 💣 H

2,1,3-benzoselenadiazole…4-hydroxybenzoic acid

3. Fig. S1 The H…N and Se…O interatomic distances (green numbers, in Å) and the electron densities (blue numbers, in au) and their Laplacians (red numbers, in au) at the H…N and Se…O bond critical points in the cyclic supramolecular heterosynthons [-Se-N=]…[HOOC-] for the complexes formed between 2,1,3-benzoselenadiazole and a series of substituted and unsubstituted benzoic acid.

4. Cartesian coordinates for the π -stacked cluster formed by six

2,1,3-benzoselenadiazole molecules and six isophthalic acid molecules.

Se	-3.560425	-3.431732	0.279888
Ν	-4.737601	-3.538894	1.606806
С	-4.092291	-3.620722	2.757909
С	-4.701846	-3.702804	4.036953
Н	-5.781038	-3.687977	4.114868
С	-3.898685	-3.794271	5.131299
Н	-4.343084	-3.860371	6.116967
Ν	-2.194212	-3.521035	1.411320
С	-2.654758	-3.617485	2.646989
С	-1.854989	-3.715190	3.814911
Н	-0.776670	-3.710422	3.724370
С	-2.478510	-3.805762	5.020178
Н	-1.887319	-3.882423	5.924594
Se	8.360839	-3.055993	-2.055611
Ν	7.568862	-3.309544	-0.480377
С	8.511164	-3.600549	0.400481
С	8.286281	-3.841682	1.781518
Н	7.279258	-3.792979	2.174400
С	9.357103	-4.108632	2.575222
Н	9.206391	-4.281545	3.633804
Ν	9.975173	-3.380669	-1.418711
С	9.858351	-3.644137	-0.127862
С	10.943024	-3.939239	0.741755
Н	11.948073	-3.966001	0.342280
С	10.684093	-4.159233	2.057385
Н	11.501018	-4.366580	2.737245
Se	-2.605976	3.472567	0.844112
Ν	-3.746762	3.290767	2.194214
С	-3.070723	3.148762	3.321787
С	-3.645500	2.985367	4.608693
Н	-4.722392	2.965005	4.713146
С	-2.813633	2.854076	5.676730
Н	-3.231364	2.730316	6.668479
Ν	-1.209936	3.343307	1.934242
С	-1.636640	3.173388	3.173907
С	-0.805165	3.018370	4.313481
Н	0.270137	3.019944	4.192241
С	-1.396854	2.865893	5.528975
Н	-0.781453	2.748033	6.412575
Se	9.218434	2.768425	-1.693240
N	8.459565	2.989409	-0.097776

С	9.416282	2.940250	0.813335
С	9.210769	3.049001	2.213902
Н	8.207961	3.184176	2.597095
С	10.290171	2.960451	3.035366
Н	10.151640	3.028505	4.107462
Ν	10.844912	2.628113	-1.020605
С	10.752847	2.741338	0.294119
С	11.849509	2.664061	1.194820
Н	12.845642	2.508753	0.802361
С	11.608262	2.768677	2.528064
Н	12.430313	2.694095	3.228949
Se	-9.015546	-0.063944	1.007397
Ν	-10.502290	0.152934	0.080869
С	-10.173814	0.261539	-1.196685
С	-11.100686	0.450857	-2.256626
Н	-12.155782	0.515118	-2.028169
С	-10.622554	0.546715	-3.525442
Н	-11.312972	0.690832	-4.347544
Ν	-7.975679	0.003330	-0.434338
С	-8.757278	0.178009	-1.487206
С	-8.305042	0.282706	-2.827937
Н	-7.245906	0.217325	-3.039239
С	-9.228996	0.461601	-3.809076
Н	-8.903074	0.543175	-4.839140
Se	3.065939	0.219120	-0.120534
Ν	1.740296	0.405681	-1.284349
С	2.237549	0.471079	-2.508032
С	1.477784	0.624819	-3.695791
Н	0.400377	0.700927	-3.632006
С	2.139042	0.673500	-4.882698
Н	1.578868	0.791489	-5.802337
Ν	4.283441	0.238977	-1.414944
С	3.675495	0.374983	-2.581934
С	4.325144	0.427401	-3.841959
Н	5.403074	0.353181	-3.888385
С	3.557816	0.573034	-4.955580
Н	4.032460	0.616834	-5.928317
0	-6.046469	-3.418456	-1.106918
0	-7.275993	-3.460529	0.757027
Н	-6.361640	-3.489861	1.164892
С	-9.622437	-3.214016	-0.627913
Н	-9.648434	-3.243677	0.451250
С	-8.408388	-3.315844	-1.294275
С	-8.372074	-3.284160	-2.683698

Н	-7.410372	-3.360852	-3.174821
С	-9.544012	-3.141210	-3.407662
Н	-9.513344	-3.113094	-4.489412
С	-7.127625	-3.408012	-0.550383
0	-13.116047	-2.540722	-1.268641
0	-12.047328	-2.989148	0.639381
Н	-12.931637	-2.790161	0.968455
С	-10.792688	-3.041817	-1.354611
С	-10.751422	-3.005761	-2.745562
Н	-11.677770	-2.858702	-3.285417
С	-12.099259	-2.831879	-0.692605
0	5.674717	-2.769103	-2.771800
0	4.898901	-3.159768	-0.715431
Н	5.881305	-3.188258	-0.522506
С	2.283567	-3.055972	-1.550997
Н	2.485521	-3.147430	-0.493682
С	3.332016	-2.949181	-2.455036
С	3.068658	-2.838829	-3.817578
Н	3.905034	-2.754260	-4.498710
С	1.762521	-2.834926	-4.274524
Н	1.559708	-2.746928	-5.334276
С	4.745540	-2.947845	-2.004908
0	-1.329881	-3.192214	-1.458858
0	0.175417	-3.230339	0.189757
Н	-0.661544	-3.338111	0.727280
С	0.972895	-3.043086	-2.011575
С	0.715143	-2.934333	-3.373566
Н	-0.316138	-2.930633	-3.703066
С	-0.175463	-3.158681	-1.078187
0	-5.123390	3.606173	-0.469196
0	-6.304306	3.267714	1.395559
Н	-5.379866	3.254014	1.780445
С	-8.696030	3.448072	0.071407
Н	-8.696782	3.292795	1.140292
С	-7.491046	3.568437	-0.609241
С	-7.485800	3.773348	-1.984223
Н	-6.531062	3.863231	-2.486664
С	-8.680192	3.855552	-2.680928
Н	-8.673835	4.011378	-3.752161
С	-6.190149	3.483071	0.100771
0	-12.260223	3.315200	-0.543741
0	-11.109664	3.235751	1.367657
Н	-12.007032	3.087580	1.688139
С	-9.892032	3.518822	-0.630782

С	-9.881658	3.724298	-2.008055
Н	-10.828742	3.768567	-2.529396
С	-11.204155	3.350646	0.033542
0	6.537265	3.191963	-2.429153
0	5.817570	3.359461	-0.321955
Н	6.790268	3.197409	-0.143848
С	3.208689	3.644942	-1.113869
Н	3.419329	3.485064	-0.066690
С	4.242377	3.645069	-2.039707
С	3.969364	3.854308	-3.388113
Н	4.792831	3.838793	-4.090187
С	2.667668	4.067630	-3.807931
Н	2.457165	4.234458	-4.856718
С	5.641377	3.379859	-1.625539
0	-0.397533	3.806031	-0.943517
0	1.136787	3.531599	0.656210
Н	0.309130	3.446926	1.211766
С	1.899385	3.819984	-1.542412
С	1.631701	4.039112	-2.888921
Н	0.601614	4.171488	-3.194639
С	0.764091	3.726360	-0.591683
0	0.691698	0.117517	1.620027
0	-0.677329	0.230724	-0.142687
Н	0.192352	0.329808	-0.627709
С	-2.909956	-0.061920	1.375689
Н	-3.003991	0.050596	0.305661
С	-1.653004	-0.065145	1.965153
С	-1.534060	-0.213938	3.343091
Н	-0.542970	-0.214623	3.778224
С	-2.667026	-0.354266	4.127106
Н	-2.572523	-0.468473	5.198998
С	-0.425999	0.099891	1.143573
0	-6.419003	-0.309860	2.206442
0	-5.381658	-0.060143	0.243294
Н	-6.324674	-0.054576	-0.092022
С	-4.045788	-0.201629	2.162072
С	-3.921262	-0.346179	3.540163
Н	-4.821217	-0.450718	4.132142
С	-5.399730	-0.196448	1.552079
0	12.555596	-0.843492	1.825031
0	11.517386	-0.588565	-0.136268
н	12.426684	-0.677517	-0.443386
С	9.057746	-0.373643	1.018817
Н	9.138338	-0.321604	-0.057729

С	10.191719	-0.550943	1.799659
С	10.080532	-0.616878	3.184765
Н	10.982497	-0.755405	3.767174
С	8.839967	-0.506944	3.787640
Н	8.754570	-0.557834	4.865953
С	11.539327	-0.677605	1.199311
0	5.471868	-0.042801	1.340357
0	6.777769	-0.011267	-0.470960
Н	5.884150	0.089136	-0.916460
С	7.812859	-0.267566	1.624768
С	7.706908	-0.334454	3.009150
Н	6.722944	-0.250742	3.453096
С	6.572046	-0.095239	0.825484

Notes and references

- 1 CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.39.6a, England, 2018.
- 2 G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- 3 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6169.
- 4 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 6 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- 7 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 8 W. Wang, T. Sun, Y. Zhang and Y. B. Wang, J. Chem. Phys., 2015, 143, 114312.
- 9 W. Wang, Y. Zhang and Y. B. Wang, Int. J. Quantum Chem., 2017, 117, e25345.
- 10 R. F. W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon Press, Oxford, 1990.
- 11 F. Biegler-König, J. Schönbohm and D. Bayles, J. Comput. Chem., 2001, 22, 545–559.
- 12 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899–926.

5. The CheckCIF reports for cocrystals I, II and III.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2239190, 2239191, 2239194

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 2239190

Bond precision:	C-C = 0.0034 A	Wave	length=0.71073
Cell:	a=6.6846(2)	b=7.0498(2)	c=15.0256(4)
	alpha=97.105(2)	beta=94.771(2	2) gamma=109.331(3)
Temperature:	290 K		
	Calculated	Rep	orted
Volume	657.18(4)	657	.18(3)
Space group	P -1	P -	1
Hall group	-P 1	-P	1
Moiety formula	C7 H5 N O4, C6 H4	N2 Se C6	H4 N2 Se, C7 H5 N O4
Sum formula	C13 H9 N3 O4 Se	C13	H9 N3 O4 Se
Mr	350.19	350	.19
Dx,g cm-3	1.770	1.7	70
Z	2	2	
Mu (mm-1)	2.877	2.8	77
F000	348.0	348	.0
F000′	347.97		
h,k,lmax	8,9,20	8,9	,19
Nref	3319	300	8
Tmin,Tmax	0.451,0.501	0.7	54,1.000
Tmin′	0.442		
Correction meth AbsCorr = MULTI	od= # Reported T L -SCAN	imits: Tmin=0.	754 Tmax=1.000
Data completene	ss= 0.906	Theta(max)=	28.469
R(reflections)=	0.0308(2720)		wR2(reflections)=
S = 1.097	Npar= 1	91	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Please Check PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.561 Check PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 1 Check

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	1	Report
PLAT012_ALERT_1_G Noshelx_res_checksum Found in CIF	Please	Check
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	4	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	304	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	7	Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

Datablock: 2239191

Bond precision:	C-C = 0.0045 A	Wavelength=0.71073		
Cell:	a=6.7936(2) alpha=76.886(3)	b=7.3480(3) beta=76.865(3)	c=14.7847(5)	
Temperature:	290 K		<u> </u>	

Calculated Reported 663.98(4) Volume 663.98(4) P -1 Space group P -1 -P 1 Hall group -P 1 Moiety formula C7 H5 N O4, C6 H4 N2 Se C6 H4 N2 Se, C7 H5 N O4 C13 H9 N3 O4 Se C13 H9 N3 O4 Se Sum formula 350.19 350.19 Mr 1.752 1.752 Dx, g cm-3 Ζ 2 2 2.848 2.848 Mu (mm-1) F000 348.0 348.0 F000′ 347.97 h,k,lmax 9,9,19 8,9,19 Nref 3319 3024 Tmin,Tmax 0.496,0.519 0.729,1.000 Tmin' 0.486 Correction method= # Reported T Limits: Tmin=0.729 Tmax=1.000 AbsCorr = MULTI-SCAN Theta(max) = 28.350Data completeness= 0.911 wR2(reflections) = R(reflections) = 0.0414(2581)0.0980(3024)S = 1.092Npar= 191 The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test. 💐 Alert level B PLAT094_ALERT_2_B Ratio of Maximum / Minimum Residual Density 4.05 Report PLAT196_ALERT_1_B No TEMP record and _measurement_temperature .NE. 293 Degree 🍛 Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Please Check PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.2 Note PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 4.000 Check PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min). 5 Note Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report PLAT012_ALERT_1_G No __shelx_res_checksum Found in CIF Please Check

```
0 ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

Datablock: 2239194

Bond precision:	C-C = 0.0160 A Wavelength=0.71073			0.71073
Cell:	a=3.9284(2) alpha=90	b=26.3154 beta=91.97	(12) 77(4)	c=13.1324(6) gamma=90
Temperature:	291 K			
	Calculated		Reported	
Volume	1356.79(11)		1356.79(11)
Space group	P 21		P 1 21 1	
Hall group	P 2yb		P 2yb	
Moiety formula	C9 H6 O6, 3(C6 H4	N2 Se)	3(C6 H4 N2	Se), C9 H6 O6
Sum formula	C27 H18 N6 O6 Se3		C27 H18 N6	06 Se3
Mr	759.35		759.35	
Dx,g cm-3	1.859		1.859	
Z	2		2	
Mu (mm-1)	4.122		4.122	
F000	744.0		744.0	
F000′	743.76			
h,k,lmax	5,35,17		5,34,17	
Nref	6915[3532]		6146	
Tmin,Tmax	0.387,0.438		0.554,1.00	0
Tmin'	0.358			

Correction method= # Reported T Limits: Tmin=0.554 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 1.74/0.89 Theta(max) = 28.531

R(reflections) = 0.0660(4825)

wR2(reflections) = 0.1107(6146)

S = 1.059Npar= 381

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🗣 Alert level A				
PLAT430_ALERT_2_A Short Inter DA Contact	Se2	N1		2.90 Ang.
	-x,1	L/2+y,2-z	=	2_557 Check

Author Response: The Checkcif software has a bug and cannot identify chalcogen bonds.

PLAT430_ALERT_2_A Short	Inter DA Contac	t Se303	•	2.82 Ang.
		х,у, z	=	1_555 Check

Author Response: The Checkcif software has a bug and cannot identify chalcogen bonds.

🞈 Alert level B

~

PLAT196_ALERT_1_B No TEMP record and _measurement_temperature .NE.	293	Degree
PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds	0.01596	Ang.
PLAT927_ALERT_1_B Reported and Calculated wR2 Differ by	0.0095	Check

Alert level C

STRVA01_ALERT_4_C Flack test results are ambiguous.	
From the CIF: _refine_ls_abs_structure_Flack 0.452	
From the CIF: _refine_ls_abs_structure_Flack_su 0.008	
PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ	Please Check
PLAT234_ALERT_4_C Large Hirshfeld Difference C25C26 .	0.17 Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	3.978 Check
PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min).	8 Note
PLAT926_ALERT_1_C Reported and Calculated R1 Differ by	0.0048 Check
PLAT987_ALERT_1_C The Flack x is >> 0 - Do a BASF/TWIN Refinement	Please Check

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	3 Report
PLAT012_ALERT_1_G Noshelx_res_checksum Found in CIF	Please Check
PLAT033_ALERT_4_G Flack x Value Deviates > 3.0 * sigma from Zero .	0.452 Note
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #	2 Note
C6 H4 N2 Se	
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #	3 Note
C6 H4 N2 Se	
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	252 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	0 Info

```
2 ALERT level A = Most likely a serious problem - resolve or explain
3 ALERT level B = A potentially serious problem, consider carefully
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
7 ALERT level G = General information/check it is not something unexpected
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
6 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock 2239190 - ellipsoid plot

Datablock 2239191 - ellipsoid plot

Datablock 2239194 - ellipsoid plot

