Supporting Information for

Facile and template-free synthesis of robust, highly active and easily recyclable submicrometer-sized hierarchical TS-1 aggregates composed of ultra-small nanocrystalline (< 50 nm)

Linghao Li ^{a, b}, Wei Wang ^a, Jian Huang ^{a, *}, Rongmin Dun ^a, Bowen Lu ^{a, b}, Yiwei Liu

^a, Jingxian Wu ^{a, b}, Siyu Yang ^{a, b}, Zile Hua ^{a, b, *}

^a State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. E-mail: <u>huangjian2@mail.sic.ac.cn</u>; <u>huazl@mail.sic.ac.cn</u>

^b Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Experimental Section

Materials

All chemicals were obtained from commercial suppliers and used without further purification: tetrapropylammonium hydroxide (TPAOH, Yixing Dahua Chemical, 25% in water), tetraethyl orthosilicate (TEOS, Shanghai Lingfeng Chemical Reagent, AR), tetrabutyl titanate (TBOT, Sinopharm Chemical Reagent, AR), isopropanol (Shanghai Lingfeng Chemical Reagent, AR), acetonitrile (Genereal-Reagent, AR), thiophene (Th, J&K Chemical, AR), benzothiphene (BT, J&K Chemical, AR), dibenzothiophene (DBT, J&K Chemical, AR), 4-methyldibenzothiophene (4-MDBT, J&K Chemical, AR), 4,6-dimethyldibenzothiophene (4,6-DMDBT, J&K Chemical, AR), hydrogen peroxide aqueous solution (H₂O₂, SCR, AR).

Synthesis of submicrometer-sized hierarchical TS-1 aggregates

In a typical run for preparation of aggTS-1, 10.98 g of TPAOH solution was added dropwise into a mixture of 10.42 g TEOS and 18.0 g of deionized water and continuously stirred for 4 h at 40 °C (Solution I). Meanwhile, 0.43 g TBOT was dissolved in 6.0 g of isopropanol (i-PrOH) in an icewater bath of 0 °C and kept stirring for 4 h (Solution II). Next, Solution I was cooled down to 4 °C in an ice-water bath firstly and then Solution II was added dropwise into it under stirring. The molar composition of sol precursor was SiO2: 0.025 TiO2: 0.27 TPAOH: 29.2 H2O: 2 i-PrOH. The resulting mixture was kept stirring at 4 °C for another 4 h and concentrated at 40 °C for 24 h. The obtained gel was then transferred in a freeze-drying machine and further dehydrated at -50 °C for 10 h to remove the residual moisture and get the fully dried gel precursors. To carry out the SAC treatment, 3.6 g of freeze-dried gel precursors were put into a smaller Teflon container which was then sealed in a 100 ml Teflon-lined stainless steel autoclave. 0.7 g of deionized water was added into the bottom of Teflon liner of the autoclave, avoiding the direct contact with the gel precursors. The SAC process was conducted at 180 °C for 10 h. After that, it was cooled to room temperature. The powder product was filtered, washed repeatedly with deionized water and dried at 80 °C overnight. Finally, it was calcined in a muffle furnace at 550 °C for 6 h. The resultant materials were denoted as aggTS-1(x), in which x refer to the TPAOH/SiO₂ molar ratio of the sol compositions, e.g. aggTS-1(0.27). Correspondingly, the control samples were named as TS-1(x), e.g. TS-1(0.27), which were synthesized according to the similar procedure but without the freeze-drying step before

SAC treatment.

Material characterization

SEM images were obtained on a field-emission scanning electron microscopy of Hitachi SU8220. HRTEM images and selected area electron diffraction patters were recorded on a JEM-2100F electron microscope. DLS measurements were recorded on a Malvern Panalytical-Zetasizer Nano-ZS90. XRD patterns were recorded on a Rigaku D/Max 2200PC powder X-ray diffractometer with Cu Ka radiation (40 kV, 40 mA) in the 20 range from 5° to 50°. The relative crystallinity of synthesized materials was calculated from the peak area of five strong peaks in the 2θ range of 22- 25° . UV-Vis diffuse reflectance spectra were recorded in the range of 190 - 800 nm on a Shimadzu UV-310PC spectrometer with an integrating sphere accessory and BaSO₄ as the reference. Nitrogen sorption isotherms were obtained on a Micromeritics TriStar 3020 porosimeter at 77 K. All samples were degassed at 150 °C for 12 h under flowing nitrogen before the measurement. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method and pore size distribution were calculated by the Barrett-Joyner-Halenda (BJH) method basing on the adsorption branches of the isotherms. The micropore volumes and external surface areas were derived from the t-plot method calculation. Elemental content analysis was recorded on an inductively coupled plasma optical emission spectrometer (ICP-OES) of Agilent 725. XPS results were obtained on an ESCAlab250.

Catalytic rection

The comprehensive oxidative desulfurization behavior was evaluated using thiophene (Th), benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), 4,6dimethyldibenzothiophene (4,6-DMDBT) as model sulfur compounds. Typically, 10 mL of model fuel oil (500 ppm sulphur content in *n*-octane), 10 mL of acetonitrile or water as solvent, 63.75 μ L of H₂O₂ (30 wt%), 50 mg catalyst were stirred at 333 K for 6 h. During this period of time, the products were sampled per hour, diluted in 1 mL ethanol and analyzed on Shimadzu GC-2010 Plus equipped with an autosampler, two 30 m Rxi-5Sil MS capillary columns, a flame ionization detector and a mass detector. For the recycling-regeneration of catalysts, the spent catalysts in the DBT reaction media were filtered and washed several times with acetonitrile. After dried at 60 °C for 12 h, the catalysts were transferred to a muffle furnace and calcined at 550 °C for 6 h. The regenerated catalyst is used for the new DBT catalytic oxidation reaction, and the recycling-regeneration test was conducted 5 times.

Figure S1. Digital photographs of synthesized (a) TS-1(0.27), (b) *agg*TS-1(0.27) dispersed in water.

gure S2. SEM images and DLS particle size distribution of sample aggTS-1(0.27) experienced (a) 1 h, (b) 3 h, and (c) 6 h ultrasonic treatment.

Figure S3. Conversion of 4-MDBT and 4,6-DMDBT as a function of reaction time over synthesized catalysts.

Figure S4. Thermogravimetric analysis curve of precursor of TS-1(0.27) and *agg*TS-1(0.27).

Figure S5 Powder XRD patterns of synthesized *agg*TS-1(0.27) with varied SAC treating times.

Figure S6 Digital photographs of synthesized (a) TS-1(0.27) and (b) aggTS-1(0.27) by SAC procedure.

Figure S7 SEM images of synthesized catalysts with different water content (a) 0 wt%, (b) 3 wt%, (c) 5 wt%.

Sample	S- substrate	Time (h)	Catal. amount (mg)	Solvent	Temp . (K)	H ₂ O ₂ /S	Conv. (%)	Ref.
HTS-1(0.35)	BT	6	100	MeOH	333	-	100	1
TS-1 H2	BT	6	100	MeOH	333	4	100	2
	Th	6	100	Water	333	4	90	2
HTS-1	Th	4	100	Water	333	4	100	
	BT	4	100	MeOH	333	4	100	3
	DBT	4	100	MeOH	333	4	100	
TS-1 meso	BT	3	50		323	10	87	4
TS-1 nanoplates	DBT	2	100	None	333	2	12	5
aggTS- 1(0.27)	Th	2	50	Water	333	4	100	
	BT	6	50	ACN	333	4	89.9 a	This work
	DBT	6	50	ACN	333	4	91.6 ^a	

Table S1 Ctalytic performance comparison between the *agg*TS-1 and the literature-reported TS-1 zeolites

^{*a*} The extraction contribution of solvent is included, i.e. 66.0% and 60.0% extraction efficiency for BT and DBT, respectively.

Reference

- 1. W. Wang, G. Li, L. Liu and Y. Chen, *Microporous and Mesoporous Materials*, 2013, **179**, 165-171.
- X. Wang, G. Li, W. Wang, C. Jin and Y. Chen, *Microporous and Mesoporous Materials*, 2011, 142, 494-502.
- 3. Q. Lv, G. Li and H. Sun, *Fuel*, 2014, **130**, 70-75.
- 4. A. Sengupta, P. D. Kamble, J. K. Basu and S. Sengupta, *Industrial & Engineering Chemistry Research*, 2012, **51**, 147-157.
- 5. G. Lv, S. Deng, Y. Zhai, Y. Zhu, H. Li, F. Wang and X. Zhang, *Applied Catalysis A-General*, 2018, **567**, 28-35.