Electronic Supplementary Information

Four isostructural lanthanide metal-organic frameworks:

luminescent properties and fluorescence sensing for Fe³⁺ and Cr₂O₇²⁻

ions

Li-Juan Zhao, Bin Li and Guo-Ping Yong*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China

E-mail: gpyong@ustc.edu.cn

Table S1 Selected bond distances (Å) and angles (°) for 1^a .

I	
Eu(1)-O(1)	2.308(3)
Eu(1)-O(3)	2.382(3)
Eu(1)-O(4)#4	2.363(3)
Eu(1)-O(5)#5	2.431(3)
Eu(1)-O(6)#5	2.522(3)
Eu(1)-O(7)	2.426(4)
Eu(1)-O(8)	2.373(3)
Eu(1)-O(9)	2.441(4)
O(1)-Eu(1)-O(3)	85.22(12)
O(1)-Eu(1)-O(4)#4	86.75(11)
O(1)-Eu(1)-O(5)#5	88.36(13)
O(1)-Eu(1)-O(6)#5	75.70(12)
O(1)-Eu(1)-O(7)	75.72(14)
O(1)-Eu(1)-O(8)	144.10(13)
O(1)-Eu(1)-O(9)	147.00(13)
O(3)-Eu(1)-O(4)#4	157.11(12)
O(3)-Eu(1)-O(5)#5	73.02(11)
O(3)-Eu(1)-O(6)#5	121.89(10)
O(3)-Eu(1)-O(7)	78.82(13)
O(3)-Eu(1)-O(8)	70.48(12)
O(3)-Eu(1)-O(9)	120.82(13)
O(4)#4-Eu(1)-O(5)#5	128.14(11)
O(4)#4-Eu(1)-O(6)#5	76.43(10)
O(4)#4-Eu(1)-O(7)	78.43(13)
O(4)#4-Eu(1)-O(8)	105.37(13)
O(4)#4-Eu(1)-O(9)	75.53(13)
O(5)#5-Eu(1)-O(6)#5	52.44(10)
O(5)#5-Eu(1)-O(7)	148.67(15)
O(5)#5-Eu(1)-O(8)	108.26(14)
O(5)#5-Eu(1)-O(9)	81.46(14)
O(6)#5-Eu(1)-O(7)	142.65(12)
O(6)#5-Eu(1)-O(8)	139.60(13)
O(6)#5-Eu(1)-O(9)	73.21(12)
O(7)-Eu(1)-O(8)	73.96(15)
O(7)-Eu(1)-O(9)	125.78(15)
O(8)-Eu(1)-O(9)	68.53(13)

^{*a*} Symmetry code: #4= -x+1, y+1/2, -z+1/2, #5 = -x, -y, -z.

analytes	Ln-MOFs	solvent s	quenching constants Ksv (M ⁻¹)	detection limits (µM)	references
Fe ³⁺	1	H_2O	8.31×10 ³	6.93	This Work
	2	H_2O	5.63×10 ³	26.11	This Work
	3	H_2O	2.86×10 ⁴	1.72	This Work
	4	H_2O	1.50×10 ⁴	3.63	This Work
	[Eu(BCB)(DMF)]·(DMF) _{1.5} (H ₂ O) ₂	$\rm H_2O$	2.35 ×10 ⁴	1.78	[1]
	[Eu(PMBB) _{1.5} (H ₂ O) ₂]	$\rm H_2O$	3.66×10 ³	2.09	[2]
	[Tb(PMBB) _{1.5} (H ₂ O) ₂]	H ₂ O	3.53×10 ³	2.22	
	[Tb ₄ (TATB) ₂]	$\rm H_2O$	5.95×10 ³	4.84	[3]
	$\{[Eu(qptca)_{1/2}(H_2qptca)_{1/2}(H_2O)_2] \cdot DMF\}n$	H ₂ O	2.28×10 ³	6.45	[4]
	[Eu ₃ (BDC) _{4.5} (H ₂ O)(DMF) ₂]	H ₂ O	1.30×10 ⁵	11.53	[5]
	[Tb(tftba) _{1.5} (phen)(H ₂ O)]n	H ₂ O	4.04×10 ⁴	12.70	[6]
	${[Eu(dpc)(2H_2O)] \cdot (Hbibp)_{0.5}}n$	DMF	4.84×10 ³	13.20	[7]
	$[Eu_4(pta)_5(Hpta)_2(H_2O)_4]\cdot 9H_2O$	$\rm H_2O$	1.12×10 ⁴	35.00	[8]
	$[Tb(Hpta)(C_2O_4)]$ ·3H ₂ O	H_2O	1.22×10 ⁴	26.00	
$Cr_2O_7^{2-}$	1	H ₂ O	1.04×10^{4}	5.11	This Work
	2	H_2O	1.37×10 ⁴	1.97	This Work
	3	H ₂ O	2.31×10 ⁴	1.71	This Work
	4	H_2O	2.85×10 ⁴	2.10	This Work
	[Eu(PMBB) _{1.5} (H ₂ O) ₂]	H_2O	7.18×10 ³	1.07	[2]
	[Tb(PMBB) _{1.5} (H ₂ O) ₂]	H ₂ O	1.06×10 ⁴	0.74	
	$[Zn(4-dptb)(2,2'-bha)]\cdot 4H_2O$	H_2O	2.84×10 ³	1.43	[9]
	$[Cd(4dptb)(4,4'odpa)(H_2O)_2]\cdot H_2O$	H_2O	1.85×10 ³	4.46	
	Eu-MOF(H ₃ L)	H_2O	1.29×10 ⁴	1.95	[10]
	[Cd(DPTTZ) (5-AIP)]	H ₂ O	3.31×10 ⁴	2.60	[11]
	Tb-MOF(H ₂ atdbc)	$\rm H_2O$	8.5×10 ³	2.92	[12]
	$\{[Cd_2(TFBA)(bibp)_2H_2O] \cdot DMF \cdot 2H_2O\}n$	$\rm H_2O$	6.73×10 ⁵	3.60	[13]
	{[Eu(dpc)(2H ₂ O)]·(Hbibp) _{0.5} }n	DMF	3.97×10 ³	10.10	[7]

Table S2 The comparison this work with recently published articles related to sensing

 $H_3BCB = 4,4',4''$ -benzenetricarbonyltri-benzoic acid;

 $H_2PMBB = 4,4$ ·-((1,4- phenylenebis(methylene))bis(oxy))dibenzoic acid;

 $H_3TATB = 4,4',4''-(1,3,5-triazine-2,4,6-triyl)$ tribenzoic acid;

H₄qptca = [1,1':4',1'':4'',1''':4''',1''''-quinquephenyl]-2,2'',2'''',5''-tetracarboxylic acid;

 $H_2BDC = 1,4$ -benzenedicarboxylic acid;

phen = 1,10-phenanthroline; H₂tftba = 2,3,5,6-tetrafluoroterephthalic acid;

 H_4 dpc = 2-(3',4'-dicarboxylphenoxy)isophthalic acid; bibp = 4,4'-bis(imidazolyl) biphenyl;

 H_2 pta = 2-(4-pyridyl)terephthalic acid; $H_2C_2O_4$ = oxalic acid;

4-dptb = N³,N⁴-bis(pyridine-4-ylmethyl)thiophene-3,4-dicarboxamide; 2,2'-H2bha = 2,2'-biphenyl acid; 4,4'-H2odpa = 4,4'-oxybisbenzoic acid;

 $H_3L = 4,4',4''$ -triazine-2,4,6-tribenzoic acid;

5-AIP = 5-Aminoisophthalic acid; DPTTZ = 2, 5-di(pyridine-4-yl) thiazolo[5,4-d]thiazole;

 $H_2atdbc = 4,4'-(4-amino-1,2,4-triazol-3,5-diyl)dibenzoic acid;$

 H_3 TFBA = tris(3'-F-4'-carboxybiphenyl)amine; bibp = 4,4'-Di(1H-imidazole-1-yl)-1,1'-biphenyl.

References

- [1] M. Y. Zhang, F. Y. Yi, L. J. Liu, G. P. Yan, H. Liu and J. F. Guo, *Dalton Trans.*, 2021, **50**, 15593-15601.
- [2] Z. D. Zhou, C. Y. Wang, G. S. Zhu, B. Du, B. Y. Yu, C. C. Wang, J. Mol. Struct., 2022, 1251, 132009.
- [3] X. F. Zhang, L. H. Feng, S. Y. Ma, T. F. Xia, F. F. Jiao, Z. Kong, X. Duan, J. Solid State Chem., 2022, 312, 123232.
- [4] J. Q. Wu, X. Y. Ma, C. L. Liang, J. M. Lu, Q. Shi and L. X. Shao, *Dalton Trans.*, 2022, 51, 28902-897.
- [5] J. J. Zhao, P. Y. Liu, Z. P. Dong, Z. L. Liu, Y. Q. Wang, *Inorg. Chim. Acta.*, 2020, 511, 119843.
- [6] H. H. Yu, J. Q. Chi, Z. M. Su, X. Li, J. Sun, C. Zhou, X. L. Hu and Q. Liu, *CrystEngComm*, 2020, 22, 3638-3643.
- [7] Y. Du, H. Y. Yang, R. J. Liu, C. Y. Shao and L. R. Yang, *Dalton Trans.*, 2020, 49, 13003-13016.
- [8] L. J. Duan, C. C. Zhang, P. P. Cen, X. Y. Jin, C. Liang, J. H. Yang and X. Y. Liu, *CrystEngComm*, 2020, 22, 1695-1704
- [9] X. L. Wang, Y. Wang, N. Xu, J. X. Ma and G. C. Liu, *CrystEngComm*, 2023, 25, 1186-1192.
- [10] Y. X. Sun, G. Guo, W. M. Ding, W. Y. Han, J. Li and Z. P. Deng, *CrystEngComm*, 2022, 24, 1358-1367.
- [11] A. K. Hosseini, Y. Pourshirzad, A. Tadjarodi, J. Solid State Chem., 2023, 317, 123676.
- [12] J. X. Li, B. Q. Yu, L. H. Fan, L. Wang, Y. C. Zhao, C. Y. Sun, W. J. Li, Z. D.

Chang, J. Solid State Chem., 2022, 306, 122782.

[13] J. Ru, R. F. Zhang, Y. X. Wang, X. X. Ma, Q. Gu, X. M. Du, L. L. Li, Y. L. Wang, J. Solid State Chem., 2022, 311, 123119.

Scheme S1 The synthesis procedure for H₂L ligand.

Fig. S1 ¹H NMR (400 MHz, dmso- d_6) of H₂L ligand.

Fig. S2 IR absorption of H₂L ligand and Ln-MOFs 1–4.

Fig. S3 Powder XRD profiles of simulated 1 and as-synthesized Ln-MOFs 1–4.

Fig. S4 (a) The distorted dodecahedral coordination geometry of Eu^{3+} centre, (b) the trinuclear secondary building unit in 1.

Fig. S5 The supramolecular interactions between guest DMF molecules and the coordinating H_2O molecules in 1.

Fig. S6 Powder XRD profiles of (a) as-synthesized Ln-MOFs 1–4 and water-treated 1–4, (b) as-synthesized 1 and DMF-treated 1–4.

Fig. S7 Solid-state excitation spectra of H₂L ligand and Ln-MOFs 1–4.

Fig. S8 Solid-state emission spectra of H_2L ligand, and Ln-MOFs 3 and 4 (the inset is the corresponding photograph of 4 taken under 254 nm UV irradiation).

Fig. S9 The bar chart of luminescent intensities at maximum emission wavelength (*ca.* 613 nm) of **1** suspended in different metal ion aqueous solutions.

Fig. S10 The bar chart of luminescent intensities at maximum emission wavelength (*ca.* 542 nm) of 2 suspended in different metal ion aqueous solutions.

Fig. S11 The bar chart of luminescent intensities at maximum emission wavelength (*ca.* 386 nm) of **3** suspended in different metal ion aqueous solutions.

Fig. S12 The bar chart of luminescent intensities at maximum emission wavelength (*ca.* 392 nm) of 4 suspended in different metal ion aqueous solutions.

Fig. S13 Plot of I_0/I versus concentration of Fe³⁺ ion aqueous solutions for 1.

Fig. S14 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of Fe³⁺ ion aqueous solutions for 1. (b) Luminescent intensity versus concentration of Fe³⁺ ion aqueous solutions for 1.

Fig. S15 Plot of I_0/I versus concentration of Fe³⁺ ion aqueous solutions for 2.

Fig. S16 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of Fe³⁺ ion aqueous solutions for **2**. (b) Luminescent intensity versus concentration of Fe³⁺ ion aqueous solutions for **2**.

Fig. S17 Plot of I_0/I versus concentration of Fe³⁺ ion aqueous solutions for **3** (a) and **4** (b).

Fig. S18 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of Fe³⁺ ion aqueous solutions for **3**. (b) Luminescent intensity versus concentration of Fe³⁺ ion aqueous solutions for **3**.

Fig. S19 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of Fe³⁺ ion aqueous solutions for **4**. (b) Luminescent intensity versus concentration of Fe³⁺ ion aqueous solutions for **4**.

Fig. S20 PXRD patterns of Ln-MOFs 1–4 treated by $Fe(NO_3)_3$ aqueous solutions, indicating that 1–4 retain their frameworks after immersed in $Fe(NO_3)_3$ aqueous solutions.

Fig. S21 UV-vis adsorption spectra of different $M(NO_3)_X$ aqueous solutions, and the excitation spectra of Ln-MOFs 1–4.

Fig. S22 (a) IR absorption and (b) N1s spectrum of 1 before (red line) and after (black line) sensing Fe^{3+} ion.

Fig. S23 Luminescence intensities of 1 ($\lambda_{ex} = 365$ nm) in different metal ions (1×10^{-2} mol L⁻¹, red bar chart) and corresponding mixed-metal solutions containing Fe³⁺ ions (1×10^{-3} mol L⁻¹, gray bar chart). Note: Because 1 could possess inferior selectivity for sensing Fe³⁺ ions, it shows weak quenching effect compared those without other interference ions.

Fig. S24 Luminescence intensities of 2 ($\lambda_{ex} = 365 \text{ nm}$) in different metal ions ($1 \times 10^{-2} \text{ mol } L^{-1}$, green bar chart) and corresponding mixed-metal solutions containing Fe³⁺ ions ($1 \times 10^{-3} \text{ mol } L^{-1}$, gray bar chart).

Fig. S25 Luminescence intensities of 3 ($\lambda_{ex} = 300 \text{ nm}$) in different metal ions (1×10⁻² mol L⁻¹, blue bar chart) and corresponding mixed-metal solutions containing Fe³⁺ ions (1×10⁻³ mol L⁻¹, gray bar chart).

Fig. S26 Luminescence intensities of 4 ($\lambda_{ex} = 300 \text{ nm}$) in different metal ions ($1 \times 10^{-2} \text{ mol } L^{-1}$, blue bar chart) and corresponding mixed-metal solutions containing Fe³⁺ ions ($1 \times 10^{-3} \text{ mol } L^{-1}$, gray bar chart).

Fig. S27 Luminescence spectra (λ_{ex} = 345 nm) of 3 dispersed in (a) different anionic aqueous solutions (The inset photographs taken under 254 nm UV irradiation, showing the quenching effects before (left) and after (right) dispersion in the Cr₂O₇²⁻ aqueous solution.), and (b) various concentrations of the Cr₂O₇²⁻ aqueous solutions.

Fig. S28 Luminescence spectra (λ_{ex} = 345 nm) of 4 dispersed in (a) different anionic aqueous solutions (The inset photographs taken under 254 nm UV irradiation, showing the quenching effects before (left) and after (right) dispersion in the Cr₂O₇²⁻ aqueous solution.), and (b) various concentrations of the Cr₂O₇²⁻ aqueous solutions.

Fig. S29 The bar chart of luminescent intensities of samples suspended in different anionic aqueous solutions with maximum emission wavelength at 613 nm of 1 (a), 542 nm of 2 (b), 386 nm of 3 (c) and 392 nm of 4 (d).

Fig. S30 Plot of I_0/I versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S31 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for 1. (b) Luminescent intensity versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for 1.

Fig. S32 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for **2**. (b) Luminescent intensity versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for **2**.

Fig. S33 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for **3**. (b) Luminescent intensity versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for **3**.

Fig. S34 (a) Stern–Volmer plot of $I_0/I-1$ versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for 4. (b) Luminescent intensity versus concentration of $Cr_2O_7^{2-}$ anion aqueous solutions for 4.

Fig. S35 PXRD patterns of (a) Ln-MOFs 1–4 treated by $K_2Cr_2O_7$ aqueous solutions, and (b) re-solvated 2 by DMF/H₂O solution.

Fig. S36 UV-vis adsorption spectra of different K_yA aqueous solutions, and the excitation spectra of Ln-MOFs 1–4.

Fig. S37 Luminescence intensities of 1 (a), 2 (b), 3 (c) and 4 (d) in different anion aqueous solutions $(1 \times 10^{-2} \text{ mol } L^{-1})$, black bar chart) and their corresponding mixed-anion solutions containing $Cr_2O_7^{2-}$ anions $(1 \times 10^{-3} \text{ mol } L^{-1})$, red bar chart).