Supporting information for Solubility Enhancements through Crystalline Solid Solutions, Non-linear Tammann Diagram and T-X Phase Diagram of Salicylic acid - Benzoic acid

Seyed Sepehr Mohajerani, Francesco Ricci and Fredrik L Nordstrom

Table 1. DSC summary for SA-BA

X(BA)	DSC	Low temperature endotherm			High temperature endotherm						
	endotherms		-	-	- T	Entholou	-	т	-		Entholoy
moi DA/mal		inset	onset	peak	offset	Enthalpy	inset	onset	l _{peak}	offset	Enthalpy
SA+BA											
5/(1.5/(°C	°C	°C	°C	J/g	°C	°C	°C	°C	J/g
0	One						154.07	158.64	159.16	160.98	189.56
	endotherm						(0.08)	(0.006)	(0.09)	(0.23)	(4.21)
0.0168	One						146.383	157.1	158.36	160.64	189.51
	endotherm						(1.6)	(0.4)	(0.15)	(0.21)	(0.28)
0.0265	One						143.78	156.53	158.01	160.32	185.4
	endotherm						(0.81)	(0.24)	(0.22)	(0.248)	(3.37)
0.0490	One						137.42	153.61	156.4	158.95	172.01
	endotherm						(0.72)	(0.97)	(0.42)	(0.22)	(2.00)
0.0598	Two	99.95	106.61	110.33	112.00	(0.85)	131.69	153.67	156.46	159.19	170.8
	separated endotherms	(3.30)	(2.81)	(0.79)	(0.26)	(0.13)	(1.06)	(1.15)	(0.43)	(0.22)	(5.86)
0.0682	Two	104.07	109.15	110.94	112.61	1.79	127.52	151.55	155.27	157.85	170.65
	separated	(1.74)	(0.63)	(0.08)	(0.24)	(0.08)	(1.17)	(0.43)	(0.14)	(0.10)	(3.89)
	endotherms										
0.0899	Two	104.85	109.87	110.91	112.46	4.3	123.04	149.99	154.21	157.66	159.7
	separated	(0.23)	(0.16)	(0.03)	(0.12)	(0.40)	(1.73)	(0.19)	(0.055)	(0.41)	(4.46)
	endotherms										
0.1014	Two	104.32	110.16	111.02	112.793	6.99	121.54	148.32	153.71	156.58	152.1
	separated	(1.05)	(0.04)	(0.04)	(0.09)	(1.19)	(2.04)	(2.12)	(0.79)	(1.05)	(4.99)
	endotherms										
0.1228	Two	104.73	110.16	110.96	112.56	9.35	118.14	146.01	152.43	155.79	152.72
	separated	(0.39)	(0.04)	(0.05)	(0.19)	(0.50)	(2.2)	(1.58)	(0.46)	(0.49)	(1.98)
0 1624	endotherms	102.2	110.2	111.02	112 70	16 49		142.15	150.06	152.20	121.26
0.1034	nortially	103.3	(0.08)	(0.005)	(0.07)	10.48		142.15	150.06	153.39	(8 60)
	overlanning	(0.75)	(0.08)	(0.003)	(0.07)	(0.00)		(1.400)	(0.70)	(0.200	(8.03)
	endotherms										
0.2167	Two	103.61	110.39	111.23	113.07	23.75		137.52	147.43	150.75	119.31
	partially	(0.83)	(0.05)	(0.06)	(0.17)	(0.92)		(0.81)	(0.17)	(0.35)	(3.06)
	overlapping										
	endotherms										
0.2734	Two	102.52	110.46	111.25	113.17	37.46		131.95	142.1	147.24	101.41
	partially	(0.67)	(0.05)	(0.040	(0.190	(3.86)		(1.79)	(0.54)	(1.150)	(2.84)
	overlapping										
	endotherms										
0.3090	Two	103.11	110.37	111.51	113.38	50.07		126.85	139.98	144.35	92.798
	partially	(0.69)	(0.10)	(0.08)	(0.23)	(0.04)		(1.61)	(0.50	(0.33)	(1.67)
	overlapping										
0 27/2	Two	102 50	110.49	111 65	112.25	64.25		122.20	124 61	140.96	80.02
0.3743	nartially	(0.33)	(0.03)	(0.27)	(0.26)	(3.28)		(1 09)	(0.62)	(1.83)	(1 52)
	overlanning	(0.55)	(0.03)	(0.27)	(0.20)	(3.20)		(1.05)	(0.02)	(1.05)	(1.52)
	endotherms										
0.4237	Two	102.79	110.48	111.68	113.57	81.26		120.39	129.48	136.39	63.45
	partially	(0.77)	(0.01)	(0.22)	(0.23)	(2.75)		(0.19)	(0.21)	(0.82)	(2.16)
	overlapping										
	endotherms										
0.4749	Two	102.43	110.97	111.65	113.51	99.39			123.4	132.19	42.52
	mostly	(0.63)	(0.32)	(0.14)	(0.02)	(3.23)			(0.15)	(0.06)	(1.18)
	overlapping										
	endotherms										

0.5479	Two	102.64	110.92	111.64	114.10	126.61				124.68	15.68
	mostly	(0.24)	(0.23)	(0.14)	(0.32)	(1.16)				(0.71)	(1.17)
	overlapping										
	endotherms										
0.5856	One	102.66	111.40	111.55	116.93	142.29					
	endotherm	(0.68)	(0.33)	(0.09)	(1.66)	(2.10)					
0.6632	Two	104.87			111.81	78.847		111.58	112.04	115.11	58.4
	mostly	(0.84)			(0.11)	(0.49)		(0.27)	(0.19)	(0.19)	(0.12)
	overlapping										
	endotherms										
0.6980	Two	103.94	110.98	111.94	111.65	55.23				115.86	81.08
	mostly	(0.73)	(0.43)	(0.32)	(0.14)	(2.42)				(0.03)	(0.94)
	overlapping										
	endotherms										
0.7364	Two	103.74	110.08	112.48	111.66	43.06				117.09	94.22
	mostly	(0.75)	(0.4)	(0.3)	(0.32)	(7.42)				(1.16)	(4.8)
	overlapping										
	endotherms										
0.7730	Two	104.43		111.44	111.68	17.6		111.86	114.21	118.09	118.97
	partially	(2.05)		(0.24)	(0.24)	(1.02)		(0.28)	(0.31)	(1.31)	(5.84)
	overlapping										
	endotherms										
0.8113	Two	105.29		111.2	111.74	7.87		113.1	115.45	118.91	128
	partially	(0.12)		(0.13)	(0.15)	(0.73)		(0.13)	(0.11)	(0.18)	(3.7)
	overlapping										
	endotherms										
0.8396	Two	105.72		111.24	111.83	3.15		114.28	116.21	119.78	131.97
	partially	(0.14)		(0.10)	(0.15)	(0.10)		(0.28)	(0.19)	(0.36)	(0.10)
	overlapping										
	endotherms										
0.8670	Two	106.875		112.32	112.46	2.09		115.06	117.05	120.22	136.82
	partially	(0.13)		(0.13)	(0.08)	(0.20)		(0.33)	(0.06)	(0.43)	(0.89)
	overlapping										
	endotherms										
0.9053	One						116.00	117.3	118.52	121.36	138.84
	endotherm						(0.63)	(0.32)	(0.81)	(0.76)	(1.64)
0.9239	One						116.58	117.9	118.93	121.78	140.38
	endotherm						(0.10)	(0.15)	(0.21)	(0.09)	(0.99)
0.9412	One						117.99	119.32	120.78	123.43	141.41
	endotherm						(0.77)	(0.83)	(0.74)	(0.89)	(1.21)
0.9652	One						119.12	120.22	121.41	123.71	142.61
	endotherm						(0.22)	(0.36)	(0.58)	(0.35)	(1.6)
0.9807	One						120.06	121.53	122.62	123.73	144.71
	endotherm						(0.18)	(0.41)	(0.36)	(0.22)	(1.49)
1	One						121.2	122.2	123.15	125.22	147.10
	endotherm						(0.16)	(0.08)	(0.15)	(0.13)	(1.20)

Figure 1. DSC at X(BA) = 0.0490

Figure 2. DSC at X(BA) = 0.0682

Figure 3. DSC at X(BA) = 0.2167

Figure 4. DSC at X(BA) = 0.3743

Figure 5. DSC at X(BA) = 0.5856

Figure 6. DSC at X(BA) = 0.7730

Figure 7. DSC at X(BA) = 0.8670

Figure 8. DSC at X(BA) = 0.9412

Figure 9. DSC at X(BA) = 1.000

Solid	Liquid	Solid	Liquid	Solid	Conc.	Conc.	X(SA)	X(BA)	X(solvent)
phase					of SA	of BA			
	w% BA	w% BA	mol%	mol%	mg	mg	mmol	mmol	mol
	in SA	in SA	BA in	BA in	SA/g	BA/g	SA/(mo	BA/(mo	solvent/(m
			SA	SA	solven	solven	l total)	l total)	ol total)
					t	t			
SA	0%	0%	0%	0%	23.37	0.00	3.6813	0.0000	0.99632
α	3.97%	0.27%	4.47%	0.30%	24.88	1.03	3.9184	0.1834	0.99590
α	5.05%	0.31%	5.67%	0.35%	24.46	1.30	3.8520	0.2315	0.99592
α	10.54%	0.75%	11.75%	0.85%	25.36	2.99	3.9920	0.5318	0.99548
α	11.91%	0.81%	13.26%	0.92%	26.49	3.58	4.1678	0.6372	0.99519
α	17.30%	1.28%	19.13%	1.45%	25.81	5.40	4.0607	0.9609	0.99498
α	16.54%	1.16%	18.32%	1.31%	26.13	5.18	4.1107	0.9217	0.99497
α	17.96%	1.76%	19.84%	1.99%	27.23	5.96	4.2830	1.0602	0.99466
α	26.12%	2.01%	28.56%	2.27%	26.87	9.50	4.2238	1.6889	0.99409
α	23.98%	2.26%	26.30%	2.54%	27.08	8.54	4.2565	1.5188	0.99423
α	31.79%	3.12%	34.52%	3.52%	28.21	13.15	4.4302	2.3358	0.99323
α	35.69%	3.95%	38.56%	4.44%	32.13	17.83	5.0380	3.1625	0.99180
α	34.29%	4.21%	37.11%	4.73%	32.91	17.17	5.1604	3.0456	0.99179
α	44.74%	6.34%	47.80%	7.12%	36.11	29.23	5.6479	5.1714	0.98918
α	46.23%	6.37%	49.30%	7.15%	36.98	31.80	5.7810	5.6221	0.98860
α	46.40%	6.99%	49.48%	7.83%	37.54	32.50	5.8665	5.7447	0.98839
α	47.90%	7.77%	50.98%	8.70%	38.72	35.60	6.0463	6.2880	0.98767
α+β	52.99%	59.05%	56.05%	61.99%	44.02	49.63	6.8517	8.7364	0.98441
α+β	53.64%	9.83%	56.69%	10.97%	42.78	49.50	6.6599	8.7163	0.98462
α+β	53.52%	38.20%	56.57%	41.14%	44.73	51.50	6.9586	9.0625	0.98398
α+β	53.70%	40.29%	56.75%	43.28%	43.65	50.63	6.7931	8.9117	0.98430
α+β	54.36%	74.02%	57.39%	76.31%	42.75	50.92	6.6545	8.9637	0.98438
β	54.89%	83.02%	57.91%	84.69%	41.25	50.19	6.4235	8.8388	0.98474
β	58.97%	85.42%	61.91%	86.88%	33.88	48.70	5.2833	8.5885	0.98613
β	61.18%	86.40%	64.07%	87.79%	31.25	49.25	4.8735	8.6886	0.98644
β	65.94%	89.23%	68.65%	90.35%	24.38	47.21	3.8082	8.3394	0.98785
β	70.25%	91.51%	72.76%	92.42%	19.23	45.40	3.0069	8.0296	0.98896
β	79.22%	93.90%	81.17%	94.57%	11.60	44.23	1.8171	7.8334	0.99035
β	84.05%	96.23%	85.63%	96.65%	8.18	43.09	1.2816	7.6364	0.99108
β	87.15%	96.99%	88.47%	97.33%	6.33	42.90	0.9917	7.6061	0.99140
BA	100%	100%	100%	100%	0.00	42.40	0	7.5256	0.99247

Table 2. Solid-Liquid Equilibria (SLE) summary at 25°C

Figure 10. XRPD of solids from SLE study. The compositions are given in mole BA/mol (SA+BA). The color coding represents the solid phases, i.e. green denotes CSS phase α , blue represents CSS α and β , and red corresponds to CSS phase β .

Solid	Method ¹	Regression	R ² of	Invariant	Solvus
solution		curve	regression		mol
phase					BA/(mol
					BA + SA)
α	A	Polynomial	0.9922	0.5669 ²	0.109
α	В	Linear	0.9797	43.58 ³	0.113
α	С	Linear	0.9958	50.43 ⁴	0.124
β	A	Polynomial	0.9963	0.5669 ²	0.825
В	В	Linear	0.9726	50.43 ⁴	0.843
β	С	Linear	0.9981	43.58 ³	0.831

Table 3. Determination of solvi at 25°C through SLE data using three approaches

- Method A: Regression of X(BA) data in solid vs liquid in region a or c to invariant point. Method B: Regression of solubility data of either BA or SA in region a or c to invariant point. Method C: Regression of concentration data of either BA or SA in region a or c to invariant point
- 2. Units in mol BA/(mol BA+SA)
- 3. Units in mg SA/g solvent
- 4. Units in mg BA/g solvent

Methods B: Solubility of $\boldsymbol{\alpha}$ to the invariant point

Figure 11. Solubility change of α to invariant point. Linear regression of the solubility increase and extrapolation to the invariant point (method B) yields solvus of α : X(BA) = 0.113

BA solubility 52.00 50.00 48.00 46.00 40.00 40.00 40.00 0.0000 0.0500 0.1000 0.1500 0.2000 X(SA), solid (mol SA/mol (SA+BA)

Figure 12. Solubility change of β to invariant point. Linear regression of the solubility increase and extrapolation to the invariant point (method B) yields solvus of β : X(SA) = 0.157 or X(BA) = 0.843

Method C: Concentration of BA to the invariant point

Figure 13. Concentration change of BA to the invariant point. Linear regression and extrapolation to the invariant point (method C) gives solvus for α : X(BA) = 0.124

Methods B: Solubility of β to the invariant point

Method C: Concentration of SA to the invariant point

Figure 14. Concentration change of SA to the invariant point. Linear regression and extrapolation to the invariant point (method C) gives solvus of α : X(SA) = 0.169 or X(BA) = 0.831