Square-planar and octahedral nickel complexes of an acylhydrazone ligand and the serendipitous isolation of a potential octahedral nickel acylhydrazone precursor

Supplementary Information

Rosa Carballo^{a,b}, Ana Belén Lago^{a,c,*}, María Vázquez-Toirán^a, Laura Estévez^d, Ezequiel M. Vázquez-López ^{a,b,*}

- a. Universidade de Vigo, Departamento de Química Inorgánica, Facultade de Química, 36310 Vigo, Spain; <u>alagobla@ull.edu.es</u>, <u>rcrial@uvigo.es</u>, mariavazqueztoiran@gmail.com, <u>ezequiel@uvigo.es</u>
- Metallosupramolecular Chemistry Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Galicia, Spain; <u>rcrial@uvigo.es</u>, <u>ezequiel@uvigo.es</u>
- c. Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), Tenerife, La Laguna, 38206, Spain; <u>alagobla@ull.edu.es</u>
- d. Universidade de Vigo, Departamento de Química Física, Facultade de Química, 36310
 Vigo, Spain; <u>lestevez@uvigo.es</u>

Content:

Figure S1. ¹ H NMR (400 MHz, dmso-d ₆) of HL	3
Figure S2. Ultraviolet-visible spectrum of HL in ethanol	3
Figure S3. Ultraviolet-visible spectrum of HL + NaOH (1:0.5) in ethanol	4
Figure S4. Ultraviolet-visible spectrum of HL + NaOH (1:1) in ethanol	4
Figure S5. Ultraviolet-visible spectrum of HL + NaOH (1:2) in ethanol	4
Figure S6. UV-vis diffuse reflectance spectrum of HL with KBr	5
Figure S7. Ultraviolet-visible spectrum of 2 in ethanol	5
Figure S8. UV–vis diffuse reflectance spectrum of 2 with KBr	5
Figure S9. Infrared spectra (IR) of HL, 2, 2b and 3 in the range 4000-400 cm ⁻¹	6
Table S1. Crystal and structure refinement data.	8
Table S2. Main bond distances and angles (Å,°) in 2a and 2b	8
Table S3. Main hydrogen bonds (Å) and angles (°) in 2a and 2b	9

Table S4. Main bond distances and angles (Å, $^{\circ}$) in 1a
Table S5. Main hydrogen bonds (Å) and angles (°) $1a$ 10
Table S6. Main bond distances and angles $(\text{\AA}, ^{\circ})$ in 310
Table S7. Main hydrogen bonds (Å) and angles (°) 311
Theoretical calculations
Table S8. HOMO and LUMO plots (isovalue ± 0.04 au) together with the HOMO-LUMO energy gap (H-L gap) computed at B3LYP/6-31++g(d,p)/SMD(ethanol) 11
Scheme S1. Possible reaction sequences to get the square complex $[Ni(L)_2]$ (2') from $[Ni(HL)_2(H_2O)_2]^{2+}$ (1')
Scheme S2. HL and L ⁻ geometries computed at the B3LYP/6-31++g(d,p)/SMD(ethanol) level of theory
Scheme S3. Evaluation of the spin state transition by addition of one and two pyridine ligands to 2 '
Figure S10. Cambridge Structural Database (CSD) distances analysis15
Figure S11. Cambridge Structural Database (CSD) torsion angles analysis16
Figure S12. DRX of compound 2 (blue) compared with the calculated of single crystals of 2a (red) and 2b (green)

Figure S1. ¹H NMR (400 MHz, dmso-d₆) of HL

Figure S2. Ultraviolet-visible spectrum of HL in ethanol

Figure S3. Ultraviolet-visible spectrum of HL + NaOH (1:0.5) in ethanol

Figure S4. Ultraviolet-visible spectrum of HL + NaOH (1:1) in ethanol

Figure S5. Ultraviolet-visible spectrum of HL + NaOH (1:2) in ethanol

Figure S6. UV-vis diffuse reflectance spectrum of HL with KBr

Figure S7. Ultraviolet-visible spectrum of 2 in ethanol.

Figure S8. UV–vis diffuse reflectance spectrum of 2 with KBr.

Figure S9. Infrared spectra (IR) of HL (A), 2 (B), 2b (C) and 3 (D) in the range 4000-400

(A) IR Spectra of **HL**

cm⁻¹

(B) IR Spectra of 2

(C) IR Spectra of 2b

compound	1 a	2a	2b	3
Empirical	C18 H23 N2 Ni0.5	C28 H26 N4 Ni	C34 H40 N4 Ni	C26H21.06N4Ni0.50O
formula	O7	O 8	O9	3
Formula weight	865.43	605.24	707.41	466.88
Crystal system	Triclinic	Monoclinic	Monoclinic	Trigonal
Space group	P-1	C 2/c	P 2 ₁ /n	R -3
CCDC ref.	2227433	2227434	2227435	2227436
<i>a</i> (Å)	7.8959(7)	20.6680(18)	10.8040(10)	34.338(2)
<i>b</i> (Å)	9.1120(7)	5.9629(5)	18.8611(14)	34.338(2)
<i>c</i> (Å)	13.1382(11)	23.892(2)	16.7162(14)	12.6009(11)
α (°)	93.469(5)	90	90	90
β (°)	94.076(4)	103.289(3)	99.623(3)	90
γ (°)	101.046(4)	90	90	120
$V(Å^3)$	922.74(13)	2865.7(4)	3358.4(5)	12867(2)
Ζ	2	4	4	18
λ(Å)	0.71073	0.71073	0.71073	1.54184
$T(\mathbf{K})$	173(2)	100(2)	100(2)	173(2)
ρ_{calcd} (g cm ⁻³)	1.471	1.403	1.399	1.085
μ (mm ⁻¹)	0.601	0.732	0.638	0.886
<i>F</i> (000)	430	1256	1488	4375
Indep. ref.(R_{int})	3819 (0.0750)	3583 (0.0612)	8361 (0.0424)	5673(0.0502)
final R indices	$R_1 = 0.0571$	$R_1 = 0.0556$	$R_1 = 0.0524$	$R_1 = 0.00670$
$[I > 2\sigma(I)]$	$wR_2 = 0.1387$	$wR_2 = 0.1314$	$wR_2 = 0.1117$	$wR_2 = 0.1924$

 Table S1. Crystal and structure refinement data.

Table S2. Main bond distances and angles $(\text{\AA}, ^{\circ})$ in 2a and 2b

Compound	2a	2b
Ni(1)-O(1)	1.847(2)	1.8384(16)/1.8400(16)
Ni(1)-N(2)	1.875(2)	1.8628(19)/1.8734(18)
O(1)-C(1)	1.294(3)	1.296(3)/1.297(3)
N(2)-C(8)	1.281(4)	1.297(3)/1.298(3)
N(2)-N(1)	1.409(3)	1.407(3)/1.409(2)
N(1)-C(1)	1.321(4)	1.324(3)/1.322(3)
Angles		
O(1)-Ni(1)-N(2)	83.93(10)	83.97(7)/83.80(7)
O(1)-C(1)-N(1)	124.1(3)	123.2(2)/123.3(2)
O(1)-C(1)-C(2)	116.4(3)	118.16(19)/117.98(19)
C(1)-N(1)-N(2)	107.6(2)	107.66(17)/107.89(17)

D-H···A	D-H	Н…А	D····A	D-H···A
Compound 2a				
O2-H2AO1W	0.84	2.02	2.841(7)	167
O3-H3AO3 #1	0.84	1.87	2.692(4)	164
O3-H3BO1W #2	0.77(8)	1.94(8)	2.702(4)	172(5)
intramolecular				
C3-H3O1	0.95	2.45	2.772(5)	100
C8-H8O1#3	0.95	2.32	2.916(4)	120
C14-H14N1	0.95	2.40	2.986(4)	120
#1=1-x,4-y,1-z; #2=1/2+	+x,7/2-y,1/2+z #3	B=1/2-x,3/2-y,1	l-z	
Compound 2b				
O1E-H1EN1B #1	0.81	2.04	2.841(3)	167(3)
O2A-H2AO1E #2	0.85	1.87	2.706(3)	172(3)
O2B-H2BO3B #3	0.80	1.97	2.751(3)	166(3)
O3A-H3A2O2A #4	0.74	2.10	2.848(3)	177(3)
O3B-H3B2O3E	0.79	1.84	2.624(2)	171(4)
O2E-H2E4N1A #5	0.80	2.11	2.896(3)	169(4)
O3E-H3E4O2E #6	0.81	1.94	2.742(3)	170(4)
intramolecular				
C8A-H8A O1B	0.95	2.43	2.982(3)	117
C8B-H8B O1A	0.95	2.39	2.938(3)	117
C14A-H14A N1A	0.95	2.28	2.901(3)	122
C14B-H14B N1B	0.95	2.34	2.906(3)	118
#1 = -1/2 + x, 1/2 - y, -1/2 + z	z;#2 = 1+x,y,z;#	43 = 1/2 - x, -1/2	+y,3/2-z; #4 =	5/2-x,-1/2+y,1/2-z
#5 = 3/2 - x, 1/2 + y, 1/2 - z #	ŧ6 = 1-x,1-y,1-z			

Table S3. Main hydrogen bonds (Å) and angles (°) in 2a and 2b

Table S4. Main bond distances and angles $(\text{\AA}, ^{\circ})$ in 1a

Compound	1 ^a		
Ni(1)-O(1)	2.012(2)	O(1)-Ni(1)-O(1W)	90.67(10)
Ni(1)-O(1W)	2.049(3)	O(1)-Ni(1)-N(2)	77.42(10)
Ni(1)-N(2)	2.171(3)	O(1W)-Ni(1)-N(2)	92.00(11)
O(1)-C(1)	1.256(4)	O(1)-C(1)-N(1)	120.4(3)
N(2)-C(8)	1.286(5)	O(1)-C(1)-C(2)	119.6(3)
N(2)-N(1)	1.402(4)	C(1)-N(1)-N(2)	117.4(3)
N(1)-C(1)	1.333(5)	O(1)-Ni(1)-O(1W)	90.67(10)
		O(1)-Ni(1)-N(2)	77.42(10)

D-H···A	D–H	Н…А	D····A	D–H··· A
Compound 1a				
N1-H1O1A	0.87	1.98	2.839(4)	170
O1E-H1EO2A1	0.80(6)	1.81(6)	2.550(6)	152
O1E-H1EO2A2	0.80(6)	2.028(6)	2.772(6)	156
O1W-H1WO2 #1	0.89(6)	1.83(5)	2.716(4)	174
O2-H2O1E #1	0.86(5)	1.71(5)	2.565(4)	175
O1W-H2WO1A #2	0.86(6)	1.85(6)	2.712(3)	179
O3-H30AO3 #3	0.84	1.88	2.708(7)	168
C7-H7 O1A1	0.95	2.39	3.293(5)	158
C8-H8 O1A	0.95	2.54	3.359(3)	144
C8-H8 O2A1	0.95	2.35	3.259(6)	159
intra				
C10-H10 O1 #4	0.95	2.42	2.933(5)	114
#1 = 1-x, 1-y, -z; #2 = -1+	x,y,z;#3 = -x,-1-	y,1-z; #4 = -x,-	-у,-z	

 Table S5.
 Main hydrogen bonds (Å) and angles (°) 1a.

Table S6. Main bond distances and angles $(\text{\AA}, ^{\circ})$ in 3

Compound	3		
Ni(1)-O(1)#1	2.025(2)	O(1)#1-Ni(1)-O(1)	180.00(13)
Ni(1)-O(1)	2.025(2)	O(1)#1-Ni(1)-N(2)	100.96(9)
Ni(1)-N(2)	2.040(3)	O(1)-Ni(1)-N(2)	79.04(9)
Ni(1)-N(2)#1	2.040(3)	O(1)#1-Ni(1)-N(2)#1	79.04(9)
Ni(1)-N(10)	2.156(3)	O(1)-Ni(1)-N(2)#1	100.96(9)
Ni(1)-N(10)#1	2.156(3)	N(2)-Ni(1)-N(2)#1	180.0
N(1)-C(1)	1.332(4)	O(1)#1-Ni(1)-N(10)	89.95(11)
O(1)-C(1)	1.264(4)	O(1)-Ni(1)-N(10)	90.05(11)
N(1)-N(2)	1.396(3)	N(2)-Ni(1)-N(10)	90.54(10)
N(2)-C(8)	1.273(4)	N(2)#1-Ni(1)-N(10)	89.46(10)
		O(1)-Ni(1)-N(10)#1	89.95(11)
		N(2)-Ni(1)-N(10)#1	89.46(10)
		N(2)#1-Ni(1)-N(10)#1	90.53(10)
		N(10)-Ni(1)-N(10)#1	180.0
		O(1)-C(1)-N(1)	126.1(3)
		O(1)-C(1)-C(2)	117.5(3)
		C(1)-N(1)-N(2)	110.7(2)
#1 -x+2,-y+1,-z+1			

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(20)N(1)#2	0.84	2.02	2.834(4)	163.0
O(2)-H(20)N(2)#2	0.84	2.54	3.174(4)	133.4
O(3)-H(10)N(32)#3	0.84	1.91	2.671(5)	150.9
C(22)-H(22)O(1)#1	0.95	2.55	3.085(5)	115.7
C(26)-H(26)O(1)	0.95	2.48	3.017(5)	116.0
C(34)-H(34)O(3)#4	0.95	2.39	3.261(9)	151.9
Symmetry transformatio	ons used to ge	enerate equivale	ent atoms:	
#1= -x+2,-y+1,-z+1; #2	= -x + y + 4/3, -	x+5/3,z-1/3; #	3= -y+1,x-y,z+2	1; #4 x,y,z-1

Table S7. Main hydrogen bonds (Å) and angles (°) 3.

Theoretical calculations

Table S8. HOMO and LUMO plots (isovalue ± 0.04 au) together with the HOMO-LUMO energy gap (H-L gap) computed at B3LYP/6-31++g(d,p)/SMD(ethanol).

*HOMO and LUMO plots and H-L energy gap of the ligand in the geometry of the SP complex.

Scheme S1. Possible reaction sequences to get the square planar complex $[Ni(L)_2]$ (2') from $[Ni(HL)_2(H_2O)_2]^{2+}$ (1').

Optimized molecular geometries together with corresponding energy differences, ΔE , (in kcal·mol⁻¹) computed for each step at the B3LYP/6-31++g(d,p)/SMD(ethanol) level of theory. Low and high spin states have been evaluated in the SP arrangement when possible.

Scheme S2. HL and L⁻ geometries computed at the B3LYP/6-31++g(d,p)/SMD(ethanol) level of theory.

It is also shown the steric hindrance between hydrogen atoms preventing rotation before deprotonation. Energy differences, ΔE , in kcal·mol⁻¹.

Scheme S3. Evaluation of the spin state transition by addition of one and two pyridine ligands to 2'.

Molecular geometries and energy differences, ΔE , computed at the B3LYP/6-31++g(d,p)/SMD(acetone) level of theory.

Figure S10. Cambridge Structural Database (CSD) distances analysis.

Figure S12. DRX of compound 2 (blue) compared with the calculated of single crystals of 2a (red) and 2b (green).