Electronic Supporting Information (ESI)† for

Polymorph II of Hydroxyurea 150 years after its first synthesis

Sunil K. Rai,*^{ab} Srinu Tothadi,^b Mihails Arhangelskis,^c Christy P. George,^d Rajesh G. Gonnade^d and Ashwini K. Nangia*^{be}

^aDepartment of Chemistry, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
^bDivision of Organic Chemistry, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan Road, Pune 411008, India.
^cFaculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093, Warsaw, Poland.
^dCenter for Materials Characterization, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pashan, Pune, India
^eSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Central University P.O., Hyderabad 500046, India

Email: *Email: sunilbhu28@gmail.com, ashwini.nangia@gmail.com,

Table of Contents

1.	List of Coformers	S1-S2
2.	Single crystal X-ray Crystallography	S2-S4
3.	Hirshfeld Surface Analysis	S4-S8
4.	Images of Hot Stage Microscopy (HSM)	S8-S9
5.	Computational Studies	S9-S11
6.	References	S11-S12

1. List of Coformers

Table S1. List of coformers attempted for cocrystallization with hydroxyurea (HU) in water, methanol and ethanol solvents, and in some cases mixture of water and alcohol. Stoichiometry of HU:conformer was tried in 1:1, 1:2 and 2:1. In some cases ternary mixture was also tried in 1:1:1 ratio. Outcome is reported on the basis of cell parameter check by single crystal X-ray diffraction.

S. No.	Coformer	S. No.	Coformer
1.	Imidazole	47.	1,3,5-triazine
2.	2,3,5,6-Tetramethylpyrazine	48.	Isonicotinic acid
3.	2,3-Diethyl-5-methylpyrazine	49.	Isopropylamine
4.	2,3-Diethylpyrazine	50.	Isoquinoline
5.	2,3-Dihydroxybenzoic acid	51.	Isovaleric acid
6.	2,4-Dihydroxybenzoic acid	52.	ketoprofen
7.	2,5-Dihydroxy-1,4-dithiane	53.	Lactic acid
8.	2,5-Dihydroxybenzoic acid	54.	L-Alanine
9.	2,5-Dimethylpyrazine	55.	L-Aspartic acid
10.	2,6-Dihydroxybenzoic acid	56.	L-Glutamine
11.	2,6-Dimethylpyrazine	57.	L-Histidine
12.	2-Acetylpyridine	58.	Malic acid
13.	2-Ethylpyrazine	59.	Mefanamic acid
14.	2-Hydroxybenzoic acid	60.	Myo-Inositol
15.	2-Picolinamide	61.	n-Butylamine
16.	3,4-Dihydroxybenzoic acid	62.	Niclosamide
17.	3-Hydroxybenzoic acid	63.	Nicotinamide
18.	3-Methylcrotonic acid	64.	Nicotinic acid
19.	4-Hydroxybenzoic acid	65.	Niflumic acid
20.	Acetamide	66.	Nilotinib
21.	Aconitic acid	67.	Oxalic acid
22.	Adipic acid	68.	Oxoprosin
23.	Albendazole	69.	Panobinostat
24.	Ascorbic acid	70.	Pazopanib
25.	Belinostat	71.	Phenethylamine
26.	Benzoic acid	72.	Ponatinib
27.	Benzamide	73.	Propylamine
28.	Butyric acid	74.	Pyrazine

29.	Isobutylamine	75.	Pyrazine-2-carboxamide
30.	Indole	76.	Pyrazinoic acid
31.	Ibuprofen	77.	Pyridoxine
32.	Caffeine	78.	Pyruvic acid
33.	Citric acid	79.	Resorcinol
34.	Dabrafenib	80.	Sodium valproate
35.	Dehydroacetic acid	81.	Sorbic acid
36.	Diclofenac	82.	Succinic acid
37.	Disodiumsuccinate hexahydrate	83.	Tetrasodiumethylenediaminetetraacetate
			dihydrate
38.	DL-Alanine	84.	Thiolactic acid
39.	Etodolac	85.	Tolfenamic acid
40.	Flufenamic acid	86.	Trimethylamine
41.	Flurbiprofen	87.	Tripropylamine
42.	Folic acid hydrate	88.	Urea
43.	Fumaric acid	89.	Valproic acid
44.	Hexylamine	90.	Vanillic acid
45.	Hydroquinone	91.	Xanthine
46.	Isobutyric acid		

2. Single Crystal X-ray Crystallography

Single crystal X-ray diffraction data was collected on a Bruker SMART APEX II single crystal X-ray CCD diffractometer having graphite monochromatized (Mo-K α , $\lambda = 0.71073$ Å) radiation at low temperature(100K).¹ The X-ray generator was operated at 50 kV and 30 mA. The data reduction was performed using APEX-II software. Intensities were corrected for absorption using SADABS,¹ and the structure was solved and refined using SHELX97.²All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were geometrically fixed with thermal parameters equivalent to 1.2 times that of the atom to which they are bonded. Molecular diagram was prepared using ORTEP, and the packing diagrams were generated using Mercury version 3.10.³ PLATON was used for the analysis of bond lengths, bond angles, and other geometrical parameters.⁴ Crystallographic parameters are shown in Table S2.

Identification code	form I	form II
CCDC no.	2249768	1911362
Empirical formula	CH ₄ N ₂ O ₂	CH ₄ N ₂ O ₂
Formula weight	76.06	76.06
Temperature/K	100	100
Crystal system	monoclinic	tetragonal
Space group	$P2_1/c$	$I4_1/a$
a/Å	8.3422(10)	9.19730(10)
b/Å	4.8944(6)	9.19730(10)
c/Å	8.7962(10)	14.6452(5)
α/°	90	90
β/°	122.423(3)	90
γ/°	90	90
Volume/Å ³	303.16(6)	1238.84(5)
Ζ	4	16
Z'	1	1
$\rho_{calc}g/cm^3$	1.666	1.631
µ/mm ⁻¹	0.156	0.153
F(000)	160.0	640.0
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.786 to 53.976	5.23 to 72.758
Index ranges	$-10 \le h \le 10, -6 \le k \le 6, -$	$-12 \le h \le 15, -15 \le k \le 15,$
	$11 \le 1 \le 11$	$-24 \le l \le 24$
Reflections collected	7731	33045
Independent reflections	641 [$R_{int} = 0.0590, R_{sigma} =$	$1506 [R_{int} = 0.0329, R_{sigma}]$
	0.0269]	= 0.0113]
Data/restraints/parameters	641/0/47	1506/0/47
Goodness-of-fit on F ²	1.164	1.155
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0657, wR_2 = 0.1882$	$R_1 = 0.0389, wR_2 = 0.1069$
Final R indexes [all data]	$R_1 = 0.0662, wR_2 = 0.1885$	$R_1 = 0.0436, wR_2 = 0.1120$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.44	0.46/-0.29

 Table S2. Crystallographic Parameters of HU form I and II.

Fig. S1 Overlay of experimental (for commercial HU) and calculated powder XRD lines from the crystal structures of HU from I.

Fig. S2 Overlay of calculated powder XRD lines from the crystal structures to show the difference between novel from II compared to the known form I (Refcode: UREAOH01).

3. Hirshfeld Surface Analysis

The Hirshfeld surface emerged from an attempt to define the space occupied by a molecule in a crystal for the purpose of partitioning the crystal electron density into molecular fragments. Graphical tools based on the Hirshfeld surface and the associated two-dimensional (2D) fingerprint plot offered considerable promise for exploring packing modes and intermolecular interactions in molecular crystals.⁵ Calculations were performed using the Crystal Explorer package. The d_{norm} and percentage contribution of various interactions in form I and form II

are shown in Fig. S3. Fingerprint plots and decomposed fingerprint plots are shown in Table S3.

Fig. S3 Hirshfeld surfaces of (a) form I and (b) form II, generated over d_{norm} , where, selected values are min = -0.737, mean = 0.249 Å, and max = 0.891 Å.

Table S3. Fingerprint plots and decomposed fingerprint plots of form I and form II.

4. Images of Hot Stage Microscopy (HSM)

Fig. S4 HSM images of form I upon heating at different temperature points.

Fig. S5 HSM images of form II upon heating at different temperature points.

5. Computational Studies

In order to investigate the intermolecular interaction in various synthons (Fig S3), computational studies were performed using the DFT-D method (Grimme's D2 dispersion model) equipped in Gaussian 09.⁶ An appropriate density functional theory ω B97X-D/aug-cc-PVTZ/def2-TZV was used. Interaction energies (Δ E) were calculated by subtracting the energy of the two monomers using the formula [Δ E = (E_{Dimer}) –2(E_{Monomer})]. Further, dimer energies were corrected for basis set superposition error by the use of the counterpoise method.

Fig. S6 Representation of synthons used for the calculation of intermolecular interactions energy in form I (Refcode: UREAOH01) and II. These interactions are (a) N2–H4···O2, (b) N2–H3···O2, (c) O1–H1···O2, and (d) N1–H2···O1.

Table S4. Single point energy (E) of Hydroxyurea (HU) and its dimers calculated at ω B97X-D/aug-cc-PVTZ/def2-TZV level of theory for form I (Refcode: UREAOH01) and II. Dimer interaction energies are represented by ΔE .

S.	Interaction	form I		form II	
No.		E (kJ/mol)	$\Delta E(kJ/mol)$	E (kJ/mol)	$\Delta E(kJ/mol)$
	HU	-788769.35		-788636.14	
1	N2-H4…O2	-1577576.57	-37.86	-1577300.64	-28.41
2	N2-H3····O2	-1577559.29	-20.54	-1577299.22	-26.95
3	01–H1…O2	-1577594.56	-55.86	-1577313.86	-41.59
4	N1-H2…O1	-1577548.92	-10.21	-1577281.77	-9.50

Table S5. Total energy of HU after optimization of H atoms' only and its dimers calculated at ω B97X-D/aug-cc-PVTZ/def2-TZV level of theory for form I (Refcode: UREAOH01) and II. Dimer interaction energies are represented by ΔE .

S.	interaction	form I		form II	
No.		E (kJ/mol)	$\Delta E(kJ/mol)$	E (kJ/mol)	$\Delta E(kJ/mol)$
	HU	-788845.67		-788844.83	
1	N2–H4…O2	-1577720.54	-29.20	-1577720.92	-31.25
2	N2-H3···O2	-1577718.99	-27.61	-1577719.83	-30.17
3	01–H1…O2	-1577733.55	-42.22	-1577731.72	-42.09
4	N1-H2…O1	-1577708.99	-17.61	-1577702.38	-12.72

Periodic DFT Calculations

Periodic DFT calculations were performed using the plane-wave DFT code CASTEP.⁷ Crystal structures of the two polymorphs were converted into CASTEP input format using the program cif2cell.⁸ The structures were geometry-optimized using each of the following methods: PBE+MBD*, PBE+D2 and LDA. The plane wave basis set was truncated at 800 eV plane-wave cutoff, the 1st electronic Brillouin zone was sampled with $2\pi x 0.05$ Å⁻¹ k-point spacing. Geometry optimization was deemed converged upon satisfying the following convergence criteria: maximum energy change: $2x10^{-5}$ eV/atom; maximum atomic force: 0.05 eV/Å; maximum atomic displacement: 10^{-3} Å, maximum residual stress: 0.1 GPa.

Table S6. Total energies of the two polymorphs of HU after periodic DFT geometry optimization.

Polymorph	Calculated energies per formula unit /eV			
	PBE+MBD*	PBE+D2	LDA	
form I	-1654.1957	-1654.1576	-1653.4135	
form II	-1654.1949	-1654.1591	-1653.4100	

6. References

1. Bruker (2016). APEX3, SAINT and SADABS.Bruker AXS Inc., Madison, Wisconsin, USA.

2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *ActaCrystallogr.,Sect. C: Struct. Chem.*2015, *71*, 3–8.

3. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr.2012, 45(4), 849-854.

4. Spek, A. L. Structure Validation in Chemical Crystallography. *ActaCryst*.**2009**, *D65*, 148-155.

5. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. ActaCrystallogr., Sect. B 2004, 60, 627–668.

6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.

R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,

X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;Peralta, J. E.; Ogliaro, F.; Bearpark,

M.; Heyd, J. J.; Brothers, E.; Kudin,K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.:Wallingford, CT, 2009.

7. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, *Zeitschrift für Krist. - Cryst. Mater.*, 2005, **220**, 567–570.

8. T. Björkman, Comput. Phys. Commun., 2011, 182, 1183–1186.