Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Exploring the supramolecular profile of 5-phenylhydantoins

Anita Lazić, a Lidija Radovanović, a Jelena Rogan, b Nataša Valentić, b Goran Janjić, c Ivana Đorđević and Nemanja Trišović* b

^a University of Belgrade,Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.

^b University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia. E-mail: ntrisovic@tmf.bg.ac.rs

^c University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, National Institute of the Republic of Serbia, Njegoševa 12, 11001 Belgrade, Serbia.

Table S1 Selected bond lengths (Å) and angles (°) in the investigated compounds.

	1	2	3	4
N1 C2	1.334(2)	1.333(2)	1.332(3)	1.336(2)
C2 O1	1.228(2)	1.216(2)	1.214(3)	1.223(2)
C2 N3	1.384(2)	1.395(2)	1.392(3)	1.390(3)
N3 C4	1.369(2)	1.349(2)	1.348(3)	1.359(2)
C4 O2	1.201(2)	1.216(2)	1.220(2)	1.208(2)
C4 C5	1.534(2)	1.529(2)	1.534(3)	1.538(3)
C5 N1	1.460(2)	1.452(2)	1.458(3)	1.459(2)
C5 C6	1.527(2)	1.530(2)	1.531(3)	1.522(2)
C2-N1-C5	113.3(1)	113.7(1)	113.5(2)	112.7(2)
O1-C2-N1	127.8(1)	129.1(2)	128.1(2)	127.4(2)
O1-C2-N3	124.7(1)	124.3(1)	124.7(2)	125.1(2)
N1-C2-N3	107.6(1)	106.5(1)	107.2(2)	107.5(2)
C2-N3-C4	111.9(1)	112.4(1)	112.1(2)	112.3(2)
O2-C4-N3	126.7(1)	126.8(1)	127.0(2)	127.0(2)
O2-C4-C5	126.7(1)	126.2(1)	125.6(2)	126.6(2)
N3-C4-C5	106.6(1)	107.0(1)	107.3(2)	106.4(2)
N1-C5-C4	100.3(1)	100.3(1)	99.9(2)	100.7(1)

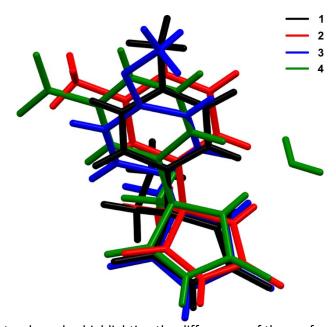
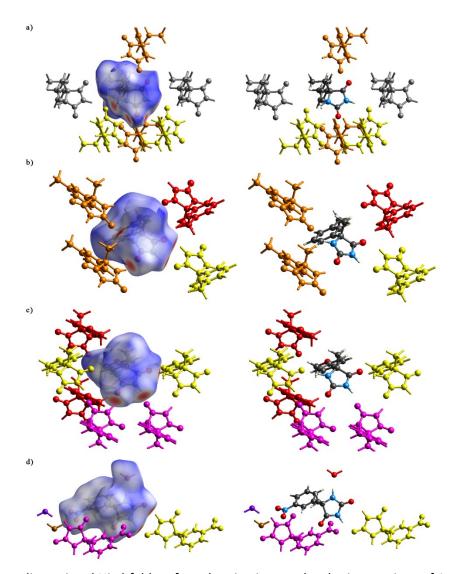
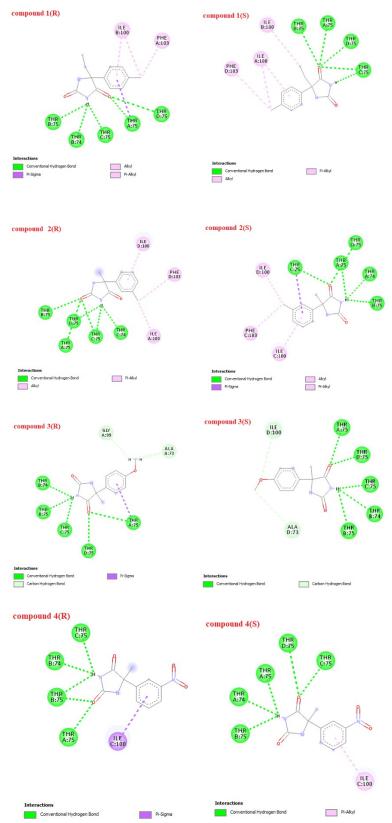


Fig. S1 A structural overlay highlighting the differences of the conformations of 1–4.

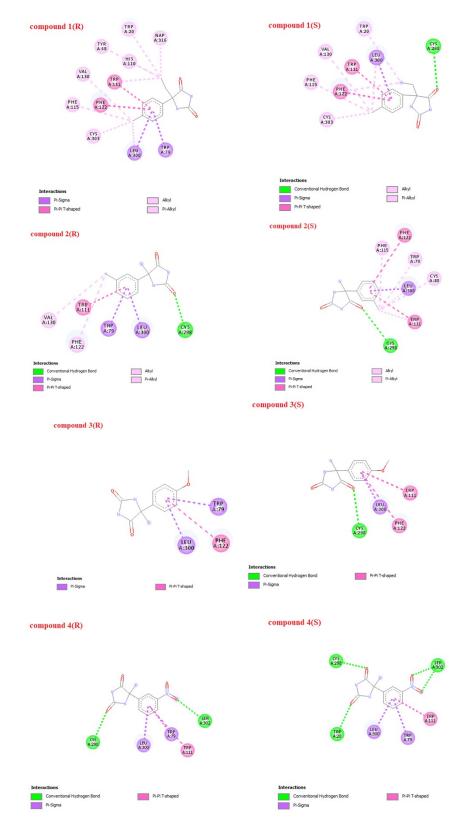

Fig. S2 The three-dimensional Hirshfeld surface showing intermolecular interactions of 1–4 (a–d) plotted over d_{norm} . The pair of molecules colored by the same color interacts with the central unit through the same type of interaction. a) Yellow-coloured pairs of molecules are in contact with the central unit through interaction labelled as A and A' in Fig. 3; orange-coloured pairs of molecules are in contact with the central unit through interaction labelled as B and B' in Fig. 3; grey-coloured pairs of molecules are in contact with the central unit through interaction labelled as C and C' in Fig. 3. b) Orange-coloured pairs of molecules are in contact with the central unit through interaction labelled as A and A' in Fig. 3; the yellowcoloured molecule is in contact with the central unit through the interaction labelled as B in Fig. 3; the red-coloured molecule is in contact with the central unit through interaction labelled as C in Fig. 3. c) Yellow-coloured pairs of molecules are in contact with the central unit through interaction labelled as A and A' in Fig. 3; red-coloured pairs of molecules are in contact with the central unit through interaction labelled as B and B' in Fig. 3; cyclamen-coloured pairs of molecules are in contact with the central unit through interaction labelled as C and C' in Fig. 3. d) Yellow-coloured molecule is in contact with the central unit through interaction labelled as A in Fig. 3; cyclamen-coloured molecule is in contact with the central unit through interaction labelled as B in Fig. 3; violet-coloured molecule is in contact with the central unit through interaction labelled as C in Fig. 3; brown-coloured molecule is in contact with the central unit through interaction labelled as D in Fig. 3.

Table S2. Calculated surface minima and maxima (kcal/mol) for compounds **1–4**.

	1		2		3		4	
	min	max	min	max	min	max	min	max
1	-35.80	43.24	-35.33	44.12	-35.58	43.74	-30.74	51.20
2	-31.74	41.89	-30.95	42.54	-32.30	41.77	-30.59	48.54
3	-11.71	16.31	-12.32	18.55	-18.03	21.79	-29.77	26.22
4	-8.09	16.31	-9.91	17.35	-11.20	19.20	-27.84	25.68
5		15.31		15.96	-9.68	19.00		23.52
6		15.18		15.88	-8.39	18.59		20.98
7		15.09		15.86		17.92		20.97
8		14.87		13.03		17.51		20.70
9		14.19		12.25		16.49		16.86
10		13.49		12.18		15.08		14.60
11		12.77		8.97		12.77		8.00
12		10.07		7.65		7.75		4.96
13		8.18				7.39		
14		7.26						

Fig. S3 The amino-acid environment at the first binding site of investigated compounds in a closed state of VGSC, predicted by molecular docking study.

Fig. S4 The amino-acid environment at the first binding site of investigated compounds in AR predicted by molecular docking study.

Table S3 Binding energies (in kcal/mol) of the investigated compounds for selected enzymes, obtained by docking studies.

			-, a.c.a	· -		
Compound	voltage–gated ion		MMP-12		Aldose reductase	
	channel (1BL8)		(3F15)		(2FZD)	
Target	$\Delta E(BS1)$	Δ <i>E</i> (BS2)	$\Delta E(BS1)$	Δ <i>E</i> (BS2)	$\Delta E(BS1)$	Δ <i>E</i> (BS2)
1 (R)	-7.2	_	-8.0 (bm1)	_	-7.9	-7.1
1 (S)	-7.0	_	–7.8 (bm2) –8.6 (bm2)	_	-7.6	-6.6
2 (R)	-7.2	_	–7.8 (bm1) –7.8 (bm2)	_	-7.9	-6.6
2 (S)	-7.0	_	-7.8 (bili2) -8.2 (bm1) -7.5 (bm2)	_	-7.9	-
3 (R)	-6.6	_	-7.9 (bm2)	_	-7.4	_
3 (S)	-6.5	_	-8.2 (bm2)	_	-7.3	_
4 (R)	-7.0	_	–7.5 (bm3) –7.1 (bm2)	_	-7.6	_
4 (S)	-6.8	_	−8.4 (bm3) −7.1 (bm2)	-	-7.6	_