SUPPORTING INFORMATION

Cytosine Monohydrate Crystals Under Mechanical Stress

Megan E. Fleming^a, Daniel E. Hooks^{b,c}, Michael McBride^c, Nan Li^c and Jennifer A. Swift^{a*}

Fig. S1 Micrograph of CM crystals grown from aqueous solution and a schematic of the 2 typical morphology.

Fig. S2 Representative load-displacement curves from 6 different crystals, all with max 2 load of 1000 μ N. The pop-in frequency and displacement depth varied from crystal to crystal.

Fig. S3 Representative load-displacement curves from 6 different spots within the same 3 CM crystal, with varying loads. Pop-ins are observed at minimum load of 150 μ N but otherwise vary in frequency and displacement depth.

Fig. S4 Reduced modulus (top) and hardness (bottom) values derived from load-
displacement curves from indents 100 - 8000 μ N show a scaling effect with increased
loads. Values at contact depths < 110 nm and above 900 nm may have large associated
errors owing to limitations of the contact geometry model.3

Fig. S5 Slip planes calculated using the CSD-Particle module in Mercury. 4

Fig. S1 Micrograph of CM crystals grown from aqueous solution and a schematic of the typical morphology.

Fig. S2 Representative load-displacement curves from 6 different crystals, all with max load of 1000μ N. The pop-in frequency and displacement depth varied from crystal to crystal.

Fig. S3 Representative load-displacement curves from 6 different spots within the same CM crystal, with varying loads. Pop-ins are observed at minimum load of 150 μ N but otherwise vary in frequency and displacement depth.

Fig. S4 Reduced modulus (top) and hardness (bottom) values derived from load-displacement curves from indents 100 - 8000 μ N show a scaling effect with increased loads. Values at contact depths < 110 nm and above 900 nm may have large associated errors owing to limitations of the contact geometry model.

imu	m slab separation						-0.3 🖨 Rese
tatus Calculation completed							
	Orientation	Slab separation	Repeat distance	Offset	H-bonded		Perpendicular planes
(100)	1.228	7.675	-3.837	yes	(102)	
(102)	0.536	3.188	0.000	yes	(100)	
(104)	0.209	1.768	-0.884	yes	(100)	
(102)	0.105	3.188	-1.978	yes	(100)	
(4	202)	-0.070	2.494	0.000	yes		
(2	206)	-0.096	1.142	0.000	yes	(100)	
(106)	-0.111	1.212	-0.606	yes	(100)	
(002)	-0.136	3.781	+0.726	yes	(100)	
(114)	-0.146	1.740	-0.870	yes	(100)	
) (1-14)	-0.146	1.740	0.000	yes	(100)	
1 (2	214)	-0.258	1.573	0.000	yes	(100)	
2 (2	2 <mark>-14</mark>)	-0.258	1.573	-0.787	yes	(100)	
3 (2	213)	-0.272	1.924	-0.962	yes	(100)	
4 (2-13)	-0.272	1.924	-0.962	yes	(100)	
5 (012)	-0.275	3.528	0.000	yes	(100)	
6 (01-2)	-0.275	3.528	-1.764	yes	(100)	
7 (308)	-0.281	0.842	0.000	yes	(100)	
8 (216)	-0.290	1.135	-0.567	yes	(100)	
9 (2-16)	-0.290	1.135	0.000	yes	(100)	
0 (308)	-0.295	0.842	-0.007	ves	(100)	

Fig. S5 Slip planes calculated using the CSD-Particle module in Mercury.