SUPPORTING INFORMATION

Stress and Light Sensitive Dual Mechanical Property of Acylhydrazone Crystal

Deepak Manoharan,^a Shamim Ahmad,^b Franziska Emmerling,^c Biswajit Bhattacharya, *^c Soumyajit Ghosh*^a

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India,

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246 India.

^cBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.

* Email: soumyajitghosh89@gmail.com

biswajit.bhattacharya@bam.de

Table of Contents	Page No
Synthesis scheme	S3
Three point bending	S3
Elastic Strain calculation	S3
Crystallographic Information table	S4
Face indexing image	S5
Light induced bending images of BrAc Crystals	S5
NMR Spectroscopy	S6
PXRD analysis	S6
DSC analysis	S7
Energy framework calculation	S 8
References	S8

Fig. S1. Synthesis scheme of BrAc Crystal.

Fig. S2. Stepwise three point bending images of BrAc Crystal.

Fig. S3. Elastic strain representation of BrAc Crystal.

 $R = \frac{D}{2} = 0.175 \text{mm}, \text{ (where D is the diameter of the semi-circle formed and so radius is } \frac{D}{2})$

For a beam with thickness t,

$$\frac{t}{\varepsilon(\%)} = \frac{t}{2R} = \frac{0.014}{0.40} x_{100} = 3.5\%$$

Where ' ϵ (%)' is the elastic strain of the crystal, 't' is the thickness of the crystal and 'R' is the radius of the semi-circle formed by bending the crystal.

Compound	Crystal BrAc
Formula	$C_{22}H_{15}Br N_2O_2$
Molecular weight	403.27
T/K	150
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	4.3315 (4)
b/Å	18.5293(17)
c/Å	21.324(2)
α/o	90
β/ο	93.751(4)
γ/ο	90
Volume/Å ³	1707.8(3)
Ζ	4
ρ, Mg.cm ⁻³	1.568
μ /mm ⁻¹	2.420
Reflections collected	64457
Independent Reflections	3620
R _{int}	0.0793
GOF	1.038
Final R[I>2σ]	0.0425
R_1/wR_2	0.1149
CCDC Number.	2245738

 Table S1: Crystallographic information table.

Fig. S4. Face indexing image of BrAc Crystal.

Fig. S6. Light induced bending of BrAc crystals arranged in order of increasing length.

Fig. S7. ¹H NMR comparison for Z and E isomers of BrAc Crystal.

Fig. S8. PXRD comparison of simulated pattern and experimental pattern for BrAc Crystal.

Fig. S9. DSC heating graph of BrAc crystal beyond melting point.

Fig. S10. DSC heating-cooling graph of BrAc crystal.

Fig. S11. Visualization of energy frameworks showing total interaction energy (top, blue), dispersion (middle, green) and electrostatic (below, red) components **BrAc**, in the (a) (001), (b) (010) and (c) (100) faces, respectively. The energy threshold is 10 kJ.mol⁻¹.

Table S2 Molecular structure pairs and the interaction energies (kJ.mol⁻¹) obtained from energy frameworks calculation for **BrAc**. Scale factors are in the lower table.

References:

- 1. G. M. Sheldrick. Acta. Crystallogr. Sec. A, 2008, 64, 112–122.
- 2. G. M. Sheldrick. Z. Kristallogr. Cryst. Mater., 2002, 217, 644-650.
- 3. G. M. Sheldrick. Acta Crystallogr. A: Found. Adv., 2015, 71, 3-8.
- 4. G. M. Sheldrick. Acta Crystallogr. C Struct. Chem., 2015, 71, 3-8.
- 5. P. Gupta, T. Panda, S. Allu, S. Borah, A. Baishya, A. Gunnam, A. Nangia, P. Naumov and N. K. Nath. *Cryst. Growth Des.*, 2019, **19(5)**, 3039-3044.