Electronic Supplementary Information

Hydrothermal Synthesis of defect induced pristine α-NaCe(WO₄)₂: a novel material for solid state lightening and gas sensing

Nibedita Haldar,^(a) Tanmoy Mondal^(a), Tanushri Das^(a, b), Debabrata Sarkar, ^(c) Mrinal Pal^(b) and Chandan Kumar Ghosh^{(a)*}

^(a)School of Materials Science and Nanotechnology, Jadavpur University, Jadavpur, Kolkata – 700032, India

^(b) CSIR-Central Glass and Ceramic Research Institute, Kolkata – 700032

^(c)Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur – 603203, India

(*)Corresponding author's email ID: <u>chandan.kghosh@jadavpuruniversity.in</u>, Tel: 033-2457-3028

Coordinates	X	у	Z	Occupancy	Site	symmetry
atoms					occupancy	
Nal	0.2815	0.7733	0.1567	1.0	1a	1
Na2	0.7184	0.2266	0.8432	1.0	1a	1
Cel	0.1740	0.2878	0.4547	1.0	1a	1
Ce2	0.2860	0.7121	0.5452	1.0	1a	1
01	0.1823	0.3500	0.7987	1.0	1a	1
02	0.8176	0.6500	0.2012	1.0	1a	1
03	0.4619	0.6413	0.2627	1.0	1a	1
O4	0.5380	0.4586	0.7372	1.0	1a	1
05	0.8659	0.0119	0.1955	1.0	1a	1
O6	0.1340	0.9880	0.8044	1.0	1a	1
07	0.7074	0.0107	0.4898	1.0	1a	1
08	0.2925	0.9893	0.5101	1.0	1a	1
09	0.1740	0.6339	0.5530	1.0	1a	1
O10	0.8259	0.3660	0.4469	1.0	1a	1
011	0.4847	0.8316	0.0074	1.0	1a	1
012	0.5152	0.1683	0.9925	1.0	1a	1
013	0.0578	0.3132	0.1062	1.0	1a	1

Table S1: Coordination environment of triclinic NCWO structure.

O14	0.9421	0.6868	0.8937	1.0	1a	1
015	0.3906	0.1712	0.2675	1.0	1a	1
016	0.6093	0.8287	0.7324	1.0	1a	1
W1	0.2753	0.2990	0.0396	1.0	1a	1
W2	0.7246	0.7009	0.9603	1.0	1a	1
W3	0.6569	0.1086	0.2887	1.0	1a	1
W4	0.3430	0.8913	0.7112	1.0	1a	1

Table S2: The details of the deconvolution of the FTIR bands

Samples	Peak position (cm ⁻¹)		Area (cm ²)	FWHM	χ^2
		668.644	0.446	5.089	
	660-717	679.572	0.112	7.247	3.24
		698.572	0.172	13.993	_
		707.462	0.065	8.798	_
NCWO ₁₂₀ °C	718-777	742.568	0.477	15.444	3.30
		762.311	0.614	14.002	
		811.177	3.500	29.541	
	778-910	852.943	5.599	38.620	2.1
		879.857	3.377	28.367	_
		669.343	0.181	5.242	
	660-717	680.665	0.047	5.993	2.24
		700.475	0.118	13.643	
		704.758	0.042	15.349	
NCWO		738.186	0.342	12.033	
140 C	718-777				3.81
		751.922	0.700	21.808	

	814.374	4.428	36.893	
778-910	852.670	5.636	40.724	2.43
	881.042	3.264	26.692	

 $NCWO_{120}O_{C}$ Figure S1: The elemental mapping of $120^{O_{C}}$

Figure S2: The elemental mapping of $NCWO_{140}O_C$

NCWO $^{120}C^{0}$ and (b) Figure S4: XPS wide spectrum of Ce-3d, W-4f, O-1s, Na-1s of (a) NČWO ¹⁴⁰⁰*C* respectively.

Figure S5: UV spectra (a, b) and corresponding band gap calculation (c, d) of $NCWO = \frac{NCWO}{120} e_{and} e_{140} e_{c}$ respectively.