Polymorphs, cocrystal and hydrate of nilutamide

Jupally Prashanth^{ab}, Artem O. Surov^{c*}, Ksenia V. Drozd^c, German L. Perlovich^c, Sridhar Balasubramanian^{ab*}

^aCentre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India

^cG.A. Krestov Institute of Solution Chemistry RAS, 153045, Ivanovo, Russia.

Figure S1. PXRD overlay of [Nil+Adn] (1:1) calc (obtained from SCRD data), various single step [rota evaporator (Rota), LAG, LYO] and multi-step [LAG followed by slurry (LAG Slurry), LYO followed by slurry (LYO Slurry)] and slurry seeding (phase pure cocrystal seeds were added to slurry which has initial components) experimental techniques.

(b) Figure S2. Microscopic image of (a) Nil Form IV and [Nil+Adn] (1:1) crystals and (b) Nil Form V, [Nil·H₂O] (2:0.57), Nil Form II and OMH crystals.

S1. Thermal analysis

The DSC thermogram of the [Nil+Adn] (1:1) cocrystal shows a sharp endotherm with a onset melting point of 203.2±0.2°C and $\Delta H_{fus} = 38.9\pm0.5 \text{ J}\cdot\text{g}^{-1}$ (Fig. S3), which falls in between Nil Form I (153.3°C)¹ and Adn (360°C)². The results of HSM show a melting range of around 202°C to 212°C (Fig. S4), which is also in line with DSC data. DSC cannot be performed for Nil Forms IV and V and [Nil·H₂O] (2:0.57) due to the lack of phase-pure material. However, HSM was performed (Fig. S4), in which Form IV and Form V crystals melted around 138°C to 140°C. HSM of [Nil·H₂O] (2:0.57) (Fig. S4) shows dehydration (desolvation) at 95°C–100°C and completely melts at 158°C. After dehydration, the crystal was subjected to unit cell determination using SCXRD, which confirmed the conversion of [Nil·H₂O] (2:0.57) into Nil Form II. The present observation of desolvation followed by melting of [Nil·H₂O] (2:0.57) is in line with the unstable nilutamide hydrate as discussed by Trasi and Taylor.³

Figure S3. DSC thermograms of the parent compounds and [Nil+Adn] (1:1) cocrystal.

[Nil+Adn] (1:1)

201.8°C

190°C

[Nil·H₂O] (2:0.57)

158°C

150°C

Figure S4. HSM images of Form IV, Form V, [Nil+Adn] (1:1) and $[Nil\cdot H_2O]$ (2:0.57).

100°C

212.9°C

Figure S5. Calculated PXRD patterns of Nil Form IV and experimental PXRD patterns of "metastable form II" reproduced from Fig. 8 of the Trasi & Taylor paper (Trasi, N.S. and L.S. Taylor, *Nucleation and crystal growth of amorphous nilutamide – unusual low temperature behavior*. CrystEngComm, 2014. **16**(31): p. 7186-7195).

Figure S6. Experimental PXRD patterns of the solid phases after dissolution experiments in the blank pH 6.8 buffer solution (d) and pre-dissolved HPMC (e), compared with the parent compounds ((a) Nil, (b) Adn) and cocrystal (c).

	Nil Form IV	Nil Form V	[Nil·H ₂ O]	[Nil+Adn]
			(2:0.57)	(1:1)
Crystal data				
Chemical formula	$C_{12}H_{10}F_3N_3O_4$	$C_{12}H_{10}F_3N_3O_4$	$C_{12}H_{10}F_{3}N_{3}O_{4}$.	C12H10F3N3O4·
М	317 23	317 23	322 37	452 37
Crystal system space	Monoclinic	Monoclinic	Triclinic	Monoclinic
group	$P2_1/c$	$\frac{P2}{n}$	nienine, آم	$P2_1/c$
Tomporature (V)	121/0	$12_1/n$	<i>P</i> 1	100
Temperature (K) $a = b = a \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$	100 12 2681(12)	100	100 10.2707(10)	100
a, b, c (A)	12.2081(13), 24.526(4)	7.1900(3),	10.2797(10), 11.1802(11)	7.3880(3),
	54.550(4), 0.8408(12)	10.2038(12), 22.6200(15)	11.1802(11), 12.2282(12)	12.2110(0), 20.8255(12)
	9.8498(15)	22.6209(13)	13.2382(13)	20.8333(13)
α, β, γ (°)	90, 100.927(5)	90,	86.915(3),	98.845 (3)
	100.837(5),	94.633(2),	(3.762(3),	
	90	90	68.854(3)	1057 ((2)
$V(A^3)$	4098.9(8)	2629.3(3)	1360.5(2)	1857.6 (2)
Z	12	8	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.14	0.15	0.15	0.14
Crystal size (mm)	0.26×0.22×0.16	0.18×0.12×0.09	0.20×0.19×0.18	$0.18 \times 0.12 \times 0.08$
Data collection				
Diffractometer				Bruker D8
Diffractometer	Bruker	D8 QUEST PHOT	ON-III	Bruker D8 QUEST
Diffractometer	Bruker	D8 QUEST PHOT	ON-III	Bruker D8 QUEST PHOTON-100
Diffractometer Absorption correction	Bruker Multi-scan <i>SAL</i>	D8 QUEST PHOT D <i>ABS</i> 2016/2: Krau	ON-III 1se, L., Herbst-	Bruker D8 QUEST PHOTON-100 Multi-scan
Diffractometer Absorption correction	Bruker Multi-scan <i>SAL</i> Irmer, R., She	D8 QUEST PHOT D <i>ABS</i> 2016/2: Krau ldrick G.M. &Stall	CON-III 1se, L., Herbst- ke D., J. Appl.	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker,
Diffractometer Absorption correction	Bruker Multi-scan <i>SAL</i> Irmer, R., She C	D8 QUEST PHOT D <i>ABS</i> 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1	ON-III 1se, L., Herbst- ke D., J. Appl. 0	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016
Diffractometer Absorption correction T_{\min}, T_{\max}	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured,	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240	CON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290	TON-III use, L., Herbst- ce D., J. Appl. 0 0.665, 0.746 31137, 8307	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed [$I > 2\sigma(I)$]	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int}	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹)	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <i>Refinement</i>	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{\max} (Å^{-1})$ <u>Refinement</u> $R[F^2 > 2\sigma(F^2)], wR(F^2),$	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175,	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622	CON-III use, L., Herbst- ce D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102,	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650 0.070, 0.169, 1.17
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <u>Refinement</u> $R[F^2 > 2\sigma(F^2)], wR(F^2),$ S	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175, 1.03	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622 0.044, 0.107, 1.00	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102, 1.02	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <u>Refinement</u> $R[F^2> 2\sigma(F^2)], wR(F^2),$ S No. of reflections	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175, 1.03 8236	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622 0.044, 0.107, 1.00 5290	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102, 1.02 8307	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650 0.070, 0.169, 1.17 4256
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <u>Refinement</u> $R[F^2 > 2\sigma(F^2)], wR(F^2),$ S No. of reflections No. of parameters	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175, 1.03 8236 659	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622 0.044, 0.107, 1.00 5290 409	CON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102, 1.02 8307 419	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650 0.070, 0.169, 1.17 4256 344
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <u>Refinement</u> $R[F^2> 2\sigma(F^2)], wR(F^2),$ S No. of reflections No. of parameters No. of restraints	Bruker Multi-scan <i>SAL</i> Irmer, R., Shei C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175, 1.03 8236 659 10	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622 0.044, 0.107, 1.00 5290 409 0	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102, 1.02 8307 419 2	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650 0.070, 0.169, 1.17 4256 344 18
Diffractometer Absorption correction T_{min}, T_{max} No. of measured, independent and observed [$I > 2\sigma(I)$] reflections R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) <u>Refinement</u> $R[F^2> 2\sigma(F^2)], wR(F^2),$ S No. of reflections No. of parameters No. of restraints H-atom treatment	Bruker Multi-scan <i>SAL</i> Irmer, R., She C 0.589, 0.746 51343, 8236, 3765 0.140 0.622 0.073, 0.175, 1.03 8236 659 10 H atoms treated	D8 QUEST PHOT DABS 2016/2: Krau ldrick G.M. &Stall ryst. 48 (2015) 3-1 0.635, 0.746 26240, 5290, 3029 0.072 0.622 0.044, 0.107, 1.00 5290 409 0 by a mixture of ind	TON-III use, L., Herbst- ke D., J. Appl. 0 0.665, 0.746 31137, 8307, 5999 0.046 0.715 0.040, 0.102, 1.02 8307 419 2 dependent and con	Bruker D8 QUEST PHOTON-100 Multi-scan <i>SADABS</i> , Bruker, 2016 0.686, 0.746 16255, 4256, 3867 0.032 0.650 0.070, 0.169, 1.17 4256 344 18 strained refinement

Table S1. Crystallographic data and structure refinement parameters of the Nil solid forms

Table S2. Hydrogen bond geom	letries for the Ni	li solid forms	D	
<u>D-H···A</u>	<i>D</i> –Н, А	$H \cdots A, A$	$D \cdots A, A$	$D-\mathrm{H}\cdots A, \circ$
Nil Form IV				
N3A–H3NA····O4C ⁱ	0.83(5)	2.05(5)	2.861(5)	167(5)
N3B–H3NB····O3A	0.87(4)	2.04(4)	2.788(4)	143(4)
N3C–H3NC···O3B	0.84(4)	2.02(4)	2.846(5)	169(4)
$C2A-H2A\cdots O4B^{ii}$	0.95	2.41	3.180(5)	139
$C2A-H2A\cdots O1C^{i}$	0.95	2.33	2.959(9)	123
C6A–H6A…O4A ⁱⁱⁱ	0.95	2.43	3.258(5)	146
C11A–H11B····O1A ⁱ	0.98	2.45	3.332(5)	150
$C2B-H2B\cdots O1C^{iv}$	0.95	2.48	3.087(8)	122
$C11B-H11D\cdots F1C^{i}$	0.98	2.47	3.286(10)	141
C11B–H11F····O3A	0.98	2.60	3.316(5)	130
C3C–H3C····O4B ^v	0.95	2.60	3.528(5)	166
C11C–H11I····O2C ⁱ	0.98	2.53	3.372(6)	144
Symmetry codes: (i) $x+1$, y , z ; (ii) <i>x</i> , <i>y</i> , <i>z</i> –1; (iii)	x, -y+3/2, z+1/2	; (iv) $x+1, y, z+1$;	(v) <i>x</i> -1, <i>y</i> , <i>z</i> -1
Nil Form V			· · · · · · · · · · · · · · · · · · ·	
N3A–H3AA…O4B	0.85(3)	2.07(3)	2.911(3)	173(2)
N3B–H3BA····O4A	0.81(3)	2.17(3)	2.967(3)	168(2)
C12A–H12B…F3A ⁱ	0.98	2.35	3.169(3)	141
C11B–H11D····F3B ⁱⁱ	0.98	2.40	3.253(3)	145
Symmetry codes: (i) $-x+3/2$, $v+$	1/2, -z+3/2; (ii)	-x+5/2, $v-1/2$, -	z+3/2	-
[Nil·H ₂ O] (2:0.57)				
N3A-H3AA···O3B	0.88	2.14	2.9839 (13)	161
N3B–H3BA····O3B ⁱ	0.88	2.24	2.9759 (14)	141
N3B–H3BA…O1B ⁱⁱ	0.88	2.43	3.1406 (14)	138
O1W–H1W…O4A ⁱⁱⁱ	0.90(1)	1.89(1)	2.780(2)	172(3)
O1W−H2W…O4A	0.90(2)	1.93(3)	2.826(2)	173(4)
C11A–H11B····O1A ^{iv}	0.98	2.59	3.2520(18)	125
C11A–H11C····O1B ⁱⁱ	0.98	2.58	3.5280(17)	162
$C3B-H3B\cdots O1W^{v}$	0.95	2.21	3.147(2)	167
$C12B-H12D\cdots O1W^{i}$	0.98	2.49	3.410(2)	157
Symmetry codes: (i) $-x$, $-v+2$.	-z: (ii) x. v+1.	z: (iii) $-x+1$. -1	x+1, -z: (iv) $x-1$.	v+1, z: (v) -x
-v+1z	_, (,, ,,	-, (), ,	-, -, (-, , , , , , , , , , , , , , , ,	<i>j</i> =, =, (· <i>j</i> ···,
[Nil+Adn] (1:1)				
N3_H1NN8	0.85(4)	2.08(4)	2 915(3)	171(4)
	0.85(4)	2.00(+) 2.24(5)	2.913(3) 3.000(4)	171(7) 175(4)
M = 112 M $M = 100$	0.80(4)	2.24(3)	3.099(4) 2.017(2)	173(4) 158(4)
$\mathbf{N7} \mathbf{H} \mathbf{M} \mathbf{N} \mathbf{N5} \mathbf{i}$	0.20(4)	2.00(4) 1.85(5)	2.71/(3) 2.820(2)	130(4) 167(4)
C^{2} H ² O ¹	0.05	2.03(3)	2.027(3) 2.221(4)	162
$C_2 = \Pi_2 \cdots O_1 \cdots$	0.93	∠.40 2.50	3.321(4) 2.200(4)	103
$C_{3} = C_{11} + C_{11} + C_{11} + C_{12} + C_{13} + C_{14} + C_$	0.93	2.30	5.500(4)	142 150
C12 U12C = C22	0.98	∠.43 2.25	3.343(4) 2.020(9)	132
$C_1 Z = \Pi I Z C^{**} F Z^{**}$	0.98	2.55	3.039(8)	120 (2 - 1)/2 (-)
Symmetry codes: (1) $-x+1$, $y-1$	/2, -z+3/2; (11)	-x+1, y+1/2, -z+1	-3/2; (111) $-x, y+1$	/2, -z+1/2; (1V)
-x, y-1/2, -z+1/2; (v) -x, -y+1,	-z+1; (V1) $-x+1$, -y+1, -z+1		

Table S2. Hydrogen bond geometries for the Nil solid forms

Initial phase	Experiment type	Solvents*	Time	Result
Physical mixture	LAG	2.2 ml of ACN/H ₂ O mixture 1 h (1:10, v:v)		Physical mixture of Nil and Adn
of Nil (20 mg) and Adn (17.03 mg) in	LYO	4 ml of ACN/H ₂ O mixture (1:1, v:v)	3 h	[Nil+Adn] (1:1), Form I, Form II
1:2 molar ratio	Rotary evaporation	4 ml of ACN/H ₂ O mixture (1:1, v:v)	30 min	Form I, [Nil+Adn] (1:1)
Nil(120mg) and Adn(51.1mg) in 1:1 ratio	Slurry	0.4 ml of ACN/H ₂ O mixture (1:1, v:v)	4-6 days	[Nil+Adn] (1:1)

Table S3. Details of solvents and results obtained using different techniques for getting phase pure compound through single step process.

*ACN - acetonitrile

Initial phase	Primary experiment		Secondary experiment		Degult		
initial phase	Туре	Solvents	Time	Туре	Solvents	Time	Result
	Rotary	4 ml of ACN/H ₂ O	30 min				[Nil+Adn]
Physical	evaporation	(1:1, v:v)	111111				(1.1)
mixture of Nil (20 mg) and Adn (17.03 mg) in 1:2	LAG	0.4 ml of ACN/H ₂ O mixture (1:1, v:v)	1h	Slurry	0.4 ml of ACN/H ₂ O mixture (1:1, v:v)	1 week	Physical mixture of Nil and Adn
molar ratio	LYO	4 ml of ACN/H ₂ O mixture (1:1, v:v)	4 h				[Nil+Adn] (1:1), Adn
Physical mixture of Nil (50 mg) and Adn (42.5 mg) in 1:2 molar ratio	Slurry	8 ml of ACN/H ₂ O mixture (1:2, v:v)	1h	Seeding*	۰ _	1day	Physical mixture of Nil and Adn

Table S4. Details of experiments, solvents and results obtained using two step techniques for getting phase pure compound

*(Phase pure [Nil+Adn] (1:1) seeds were added to the slurry having physical mixtures of Nil (50mg) and Adn (42.59mg) with 8 ml of acetonitrile/water mixture (1:2, v/v))

Initial phase	Solvents*	Result	
[Nil+Adn] (1:1) (20mg)	6 ml of 2-butanone/ethanol/H ₂ O mixture (1:1:1, v:v:v)	Nil Form IV, [Nil+Adn] (1:1)	
[Nil+Adn] (1:1) (20mg)	6 ml of DCE/ethanol/H ₂ O mixture (1:1:1, v:v:v)	Nil Form IV, [Nil+Adn] (1:1)	
Nil(20mg)+ OMH (10.97mg) (1:1)	6 ml of ACN/H ₂ O (1:1, v:v)	Nil Form V, Nil Form II, OMH, [Nil·H ₂ O] (2:0.57)	
[Nil+Adn] (1:1) (20mg)	4 ml of methanol/ $H_2O(1:1, v:v)$	Nil Form V, Nil Form I, [Nil+Adn] (1:1)	
[Nil+Adn] (1:1) (20mg)	4 ml of ATN/H ₂ O (1:1, v:v)	Nil Form I, [Nil+Adn] (1:1)	
[Nil+Adn] (1:1) (20mg)	5 ml of DMF	Nil Form I	
[Nil+Adn] (1:1) (20mg)	4 ml of isopropanol/H ₂ O (1:1, v:v)	Nil Form I	
[Nil+Adn] (1:1) (20mg)	4 ml of Dox/H ₂ O (1:1, v:v)	Nil Form II,[Nil+Adn] (1:1)	

Table S5. Details of solvents used and crystals obtained using slow evaporation technique

*DCE-1,2 dichloroethane, ATN-Acetone, Dox-1,4-dioxane

for genning phase pare compounds of porfinerphis and injurate					
Initial phase	Initial phase Solvents		Result		
	5.5 ml of ACN/ H_2O	Anti-solvent			
Physical mixture of Nil	mixture (1:10, v:v)	addition			
(20 mg) and OMH	5.5 ml of ACN/H ₂ O	Slummer (2 days)			
(10.97mg) in 1:1 molar	mixture (1:10, v:v)	Sturry (Suays)	NII Form I, OMH		
ratio	ratio $5.5 \text{ ml of ACN/H}_2\text{O}$ R		Nil Form I		
	mixture (1:10, v:v)	(1 h)			
	2.5 ml of 2-butanone/ H_2O	Shumar (2 days)	Nil Form I,		
[Ni] + A dm] (1,1) (20m c)	mixture (1:4, v:v)	Sturry (5 days)	[Nil+Adn] (1:1)		
$\left[\operatorname{NII+Adn}\right]\left(1:1\right)\left(20\operatorname{Ing}\right)$	2.5 ml of 2-butanone/ H_2O	Rotary evaporation	Nil Form I,		
	mixture (1:4, v:v)	(1 h)	[Nil+Adn] (1:1)		
	$1 \text{ ml H}_2\text{O}$	Slurry (3days)	Nil Form I		
Nil (20mg)	1.5 ml of ACN/H ₂ O	Rotary evaporation	Nil Eamo I		
	mixture (2:1, v:v)	(1 h)	INII FORM I		

Table S6. Details of experiments, solvents used and results obtained using different techniques for getting phase pure compounds of polymorphs and hydrate

Structure	Molecule	С6-С1-N2-С10(т1)	C6-C1-N2-C8(τ2)	
Nil Form I		-130.60(15) - ac	54.39(19) - sc	
Nil Form II		143.52(10) - ac	-36.23(15) - sc	
Nil Form III		31.48(15) - sc	-150.80(10) - ap	
	А	-80.0(5) - sc	105.1(4) - ac	
Nil Form IV	В	138.6(4) - ac	-47.2(5)- sc	
	С	-131.7(4) - ac	47.2(5) - sc	
Nil Form V	А	145.1(2) - ac	-23.1(3) -sp	
NII FOIIII V	В	-140.9(2) - ac	25.4(3) - sp	
[Nil·Hyd] (2:0.57)	А	129.47(12) - ac	-47.71(16) - sc	
	В	-148.78(12) - ac	44.00(16) - sc	
[Nil+Adn] (1:1)		160.3(3) - ap	-18.6(4) - sp	

Table S7. Selected torsion angles of the reported Nil forms

ac: anti-clinal; sc - syn-clinal; ap: anti-periplanar;sp- syn-periplanar

References

- 1. A. O. Surov, A. P. Voronin, K. V. Drozd, M. S. Gruzdev, G. L. Perlovich, J. Prashanth and S. Balasubramanian, *PCCP*, 2021, **23**, 9695-9708.
- 2. L. J. Thompson, N. Elias, L. Male and M. Tremayne, *Cryst. Growth Des.*, 2013, **13**, 1464-1472.
- 3. N. S. Trasi and L. S. Taylor, *CrystEngComm*, 2014, **16**, 7186-7195.